
Free Composition Instead of Language Dictatorship

Lodewijk Bergmans, Steven te Brinke, Christoph Bockisch and Mehmet Akşit
University of Twente, Enschede, The Netherlands

Keywords: Language Design, Language Engineering, Software Composition, Free Composition.

Abstract: Historically, programming languages have been—benevolent—dictators: reducing all possible semantics to
specific ones offered by a few built-in language constructs. Over the years, some programming languages
have freed the programmers from the restrictions to use only built-in libraries, built-in data types, and built-
in type-checking rules. Even though—arguably—such freedom could lead to anarchy, or people shooting
themselves in the foot, the contrary tends to be the case: a language that does not allow for extensibility is
depriving software engineers of the ability to construct proper abstractions and to structure software in the
most optimal way. Therefore the software becomes less structured and maintainable than would be possible
if the software engineer could express the behavior of the program with the most appropriate abstractions.
The idea proposed by this paper is to move composition from built-in language constructs to programmable,
first-class abstractions in a language. We discuss several prototypes of the Co-op language, which show that it
is possible, with a relatively simple model, to express a wide range of compositions as first-class concepts.

1 MOTIVATION

The software engineering discipline faces many chal-
lenges; one of the important challenges is to cope with
the changes that need to be incorporated into software
systems during their lifetime. A particular difficulty is
that small, local changes in the requirements of a sys-
tem, often lead to non-local changes in the software.
This is caused by the fact that the structure of the im-
plementation tends to be significantly different from
the structure of the problem domain.

Another software engineering challenge is manag-
ing the complexity of software (Royce, 2009). We are
building increasingly large software systems. Such
systems encompass a substantial amount of inherent
complexity; partially in the problem domain and par-
tially in the solution domain. However, the realization
of these systems also introduces a large amount of ac-
cidental complexity (Brooks, 1987), while going from
the conceptual solution to a realization model.

A key argument adopted in this paper, and previ-
ously coined, e.g., by Brooks (Brooks, 1987), is that
the limited ability of realization models to accurately
represent the concepts and their interdependencies in
a conceptual solution is the main cause of accidental
complexity. As a result, the complexity of realizations
is typically substantially larger than the complexity of
the conceptual solution.

In software engineering, a key strategy for deal-
ing with change and managing complexity is “divide
and conquer”: achieve separation of concerns (Dijk-
stra, 1976) by dividing a solution into building blocks
and delivering working systems by expressing proper
compositions of these building blocks. The history
of programming and design shows a steady move-
ment towards supporting higher-level abstractions of
building blocks and more advanced ways of express-
ing such compositions. For example, object-oriented
and aspect-oriented programming are largely moti-
vated by the need for improved modularity and sepa-
ration of concerns; recent trends in software engineer-
ing, such as Model-Driven Engineering (MDE) and
Domain-Specific Languages (DSLs), all aim at of-
fering an appropriate abstraction level for expressing
particular types of problems: to this extent, they of-
fer (a) dedicated (possibly graphical) syntax, (b) ded-
icated data types and operators, or (c) dedicated ab-
stractions and corresponding composition techniques,
to achieve better modularity and separation of con-
cerns for specific domains.

The message of this paper is that there is sub-
stantial benefit in offering languages where abstrac-
tions and composition techniques are not hard-wired;
rather they should be easy to introduce on demand by
software engineers when new kinds of compositions
are identified.

388 Bergmans L., te Brinke S., Bockisch C. and Akşit M..
Free Composition Instead of Language Dictatorship.
DOI: 10.5220/0004082603880393
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 388-393
ISBN: 978-989-8565-19-8
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

This paper is an extension of a paper previously
presented at the workshop on Reflection, AOP and
Meta-Data for Software Evolution (RAM-SE) 2011.
Sections 6.2 and 6.3 summarize our publications in
the workshop on Free Composition (FREECO) at
ECOOP 2011 (Te Brinke et al., 2011a) respectively
at Onward! 2011 (Te Brinke et al., 2011b).

2 COMPOSITION MECHANISMS

Programming languages1 offer explicit and implicit
means to express composition of abstractions, which
means that the characteristics of a new abstraction
are expressed in terms of the characteristics of one
or more existing abstractions (and possibly additional
specifications). For example, function composition in
functional programming, such as f (g()), expresses
that—the behavior of— f and g are composed by
using the result of g as an argument of f . Simi-
larly, function invocation, such as the call to q in
p()fp1;q(); p2g is used to define part of the behavior
of a procedure p in terms of the behavior of q. In this
sense, the function invocation expresses that the be-
havior of p is a composition of the behavior of p1, q()
and p2. Another example is object aggregation (also
referred to as object composition): this expresses how
a new object structure is defined as, e.g., the union of
other object structures.

In typical object-oriented languages, the follow-
ing composition mechanisms are available: behav-
ior composition through message passing (cf. func-
tion invocation), object aggregation, and inheritance.
Compositions can be binary (such as function invoca-
tion and single inheritance) or n-ary (such as multiple
inheritance or pointcut-advice composition in AOP).

Composition is not necessarily implemented di-
rectly by language constructs; for example, many de-
sign patterns describe how a set of objects interact to
create a coherent new behavior: a composition of the
participating objects. This composition is typically
realized by a set of code snippets distributed over the
participating objects, which must be re-implemented
for every design pattern instantiation, it affects the
traceability of the patterns in the code, and is hard to
maintain.

1Whenever we talk about languages in this paper, this
should be interpreted broadly to any means of specifying
machine-executable behavior.

3 PROBLEM ANALYSIS

New composition mechanisms are introduced all the
time. For example, Taivalsaari (Taivalsaari, 1996) de-
scribes a taxonomy for inheritance mechanisms, from
which—in theory—hundreds of variants for inheri-
tance can be derived. More recently, many propos-
als have been made for aspect-oriented languages and
models: a survey report (Brichau et al., 2005) con-
tains 45 different proposals, where in most cases the
composition techniques are unique. Similarly, there
is an indefinite amount of design patterns that essen-
tially express a composition of several objects.

In general, it can be safely assumed that for each
of these proposed composition mechanisms, there is
a sound argumentation why that mechanism works
better—at least for a certain class of applications, or
within a certain context. The fundamental reason is
that the application of each composition mechanism
involves a certain trade-off, which makes it particu-
larly suitable in certain contexts, but less so in others.
Hence, a language that dictates a fixed set of compo-
sition techniques, with no opportunity to extend that
set, will inherently restrain the software engineer: he
or she is not able to choose the most appropriate com-
position mechanism, with the best possible trade-offs,
and the most natural mapping from a conceptual so-
lution to the implementation. Among the negative re-
sults caused by such dictatorship2 are:

Lack of Traceability since the intended composi-
tion has to be replaced with an alternative, typi-
cally involving additional ‘glue code’.

Lack of Maintainability because the glue code is
usually specific to the context, and has to be added
in multiple locations, where it is also tangled with
the functionality.

Increased Accidental Complexity because straight-
forward compositions at the conceptual level have
to be realized by more complicated code that in-
troduces additional dependencies.

4 SCOPE AND ASSUMPTIONS

By now the strategy that we propose in this paper may
be obvious; we want to free composition from lan-
guages where it is limited to a few composition mech-
anisms, and instead propose language facilities where
the appropriate mechanisms can be defined, applied,
and reused. Before explaining this approach in more

2There are in fact also positive sides; e.g. less choice
makes both decisions and comprehension easier—albeit at
substantial costs.

Free�Composition�Instead�of�Language�Dictatorship

389

detail, we first discuss the scope of our solution ap-
proach and some of the assumptions we make. This
discussion should also help to distinguish our work
from various areas of related work.

Although not essential to the general idea, in the
remainder of this paper we focus on object-based lan-
guages, which support encapsulation and message-
invocation. In this context, composition refers to com-
position of the behavior of objects.

Our approach is not based on full reflection: al-
though that is a very powerful technique, reflection-
based solutions tend to be very hard to organize and
manage and, hence, are not suitable from a scalability
point-of-view. In particular, building fully reflective
solutions that are also composable and extensible, re-
quires a substantial amount of effort and discipline for
the involved software engineers. However, we do pro-
pose to adopt limited reflection (where only specific
elements of a language are exposed for reflection).
We would like to point out that our approach can well
be implemented, using reflection, as a specific Meta-
Object protocol (MOP) (Kiczales et al., 1991).

We also aim for solutions that are not
transformation-based, such as most Model-Driven
Engineering (MDE) tools and external Domain-
Specific Languages (DSLs). Although implementing
composition operators as transformations is in prin-
ciple a possibility, this suffers from several issues.
In particular, if multiple composition operators are
to be integrated within a larger solution: (1) it is
hard to exchange data between the model (or DSL)
world and the rest of the system, (2) it is hard to add
additional DSLs without running into all kinds of
integration issues, and (3) it requires additional tool
support to develop at the model level.

5 GENERAL APPROACH

In the general approach of first-class composition op-
erators (Co-op), composition operators are objects
which operate on compositions. Composition oper-
ators can (cooperatively) influence the behavior of a
composition. As we will discuss, this approach is
sufficiently powerful to express common composition
mechanisms such as inheritance, delegation, and de-
sign patterns. Key characteristics of a language adopt-
ing the Co-op approach are the following:

� Only one primitive composition operator is pro-
vided by the language, which is sending a mes-
sage. Other composition operators such as inheri-
tance are not manifested in the language’s syntax.

� New composition operators can be defined and
added to a system (a key characteristic of Co-op).

� Composition operators are first-class entities in
the language: we believe this is an essential fea-
ture for a scalable approach (see also composabil-
ity (3) below). This also means that the appli-
cation of composition operators can be as simple
as object instantiation, and composition operators
can be managed as regular libraries.

� Composability (1): it is possible to freely apply
multiple composition operators within the same
application.

� Composability (2): it is possible to combine mul-
tiple composition operators in the same context,
i.e. apply them to the same objects. Neverthe-
less, in some cases the semantics of those oper-
ators may be such that a combined usage is not
desirable.

� Composability (3): composition operators can be
used in the definition of other composition opera-
tors (as long as this does not cause infinite recur-
sion).

� Inherent dependencies or constraints among com-
position operators are expressible, such as ex-
clusion, relative ordering, and overriding among
composition operators.

While the syntax for a message send is embodied in a
language that follows our approach, the semantics of
where a message is delivered is not fixed, but deter-
mined by the composition operators in Co-op: Com-
position is performed at message sends, by rewriting
the message’s properties. A message send is, by itself,
undirected; i.e., when the program sends a message,
it specifies property values such as the message name
or initial argument values; since all message proper-
ties may be rewritten by composition operators, e.g.,
the first argument value is not necessarily the receiver
of the message.

Figure 1 shows the composition infrastructure
schematically. In Co-op, we have chosen to use the
terms module and module instance to refer to con-
cepts that are comparable to (object-based) classes
and objects, with the distinction that they may also
specify composition operators. In the middle left, a
module instance (object) performs a message send.
The reified message is evaluated by the active set
of bindings, defined by Co-op modules. Finally, the
evaluation of a message send typically leads to the in-
vocation of one (or more) operation(s) on a module
instance. The key characteristic is that all possible
behavior involves message dispatch; hence manipu-
lating message dispatch can be used to express a truly
wide range of behavioral compositions.

Composition operators are modules (classes) that
can specify one or more of the following three addi-
tional members to define how messages are eventually

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

390

module
source

module instance

jhgjhg hgjh jh

 jhvhjij jo

 g uhiuh

 jh uhuhh

kjkj]

jj ijii

 jj jj

 oko oko

 ko jj8g

 88hh

ijio ijij

message send

instance of

module
source

module instance

jhgjhg hgjh

jh

 jhvhjij jo

 g uhiuh

 jh uhuhh

kjkj]

jj ijii

 jj jj

 oko oko

 ko jj8g

 88hh

ijio ijij

instance of

module
source

module
source

bindings defined by

final (default) dispatch

constraints: conditions:

 =binding

 =binding

 =binding

 =binding

Figure 1: Overview: composition in Co-op.

bound to concrete operations; this in turn expresses
the semantics of a particular composition technique:

1. Conditions define boolean predicates that refer to
message properties and to fields or methods de-
fined in the class.

2. Bindings define the conditions to specify which
messages are selected to participate in the rewrit-
ing of a message, and assign new values to mes-
sage properties when they are applicable; hence
they bind source messages to new target mes-
sages. The target messages may be directly ex-
ecutable, or may be manipulated once more by
other bindings.

3. Constraints define relations between composition
operators with bindings that are applicable at the
same message send. Relations are, for example,
the order of evaluation and the prevention of eval-
uating one operator. This can express exclusion,
ordering, and overriding of compositions.

6 EVIDENCE: IMPLEMENTING
THE CO-OP IDEA IN A
LANGUAGE

As a proof-of-concept, we have partially realized
these ideas in three language implementations of Co-
op as object-oriented, dynamically typed languages.3

3See the SourceForge project Co-op at co-op.sf.net.

In this section, we will present these three implemen-
tations.

6.1 The Co-op/I Language

For Co-op/I (Bergmans et al., 2011; Havinga et al.,
2010a), we have defined an operational semantics and
implemented an interpreter for it in Java. Co-op/I
faithfully realizes the execution approach described
in the previous section and exposes all method invo-
cations as message sends.

In this prototype language we have been able to
realize many different composition operators such as
aspects, delegation, traits, different forms of inher-
itance (Havinga et al., 2010a), and several design
patterns (including the Memoization, Observer and
State patterns (Havinga et al., 2010b)). Of the differ-
ent alternative semantics for inheritance presented by
Taivalsaari (Taivalsaari, 1996), we have implemented
all, except for those with ordered multiple inheritance,
due to a limitation in the Co-op/I implementation, not
in the concept. In our examples, we have been able to
reuse the implementation of lower-level composition
operators by combining them to more complex ones,
again by means of Co-op/I composition operators.

6.2 The Co-op/II Language

As a successor of Co-op/I, we designed a second pro-
totype of a Co-op language and execution environ-
ment, Co-op/II (Te Brinke et al., 2011a). In this pro-
totype, additional to function calls, also data accesses
are reified as messages being sent and composition
operators can reason about and influence such mes-
sages.

Composition techniques such as inheritance do
not only control the composition of behavior, but also
the composition of data. For example, access modi-
fiers control from where data fields can be accessed:
e.g., only from methods defined in the same class as
the field declaration or also from methods defined in
classes inheriting from the class declaring the field.

Most (OO) programming languages have built-in
language constructs to manipulate the way that data
is—or can be—accessed. A few examples are:

� Access modifiers in Java, C++ and C# are public,
protected, and private. A language like C++ adds
a friend keyword to express yet another form of
access rights on data (as well as behavior). Note
that there is a wide range of possible access mod-
ifiers, when including the notion of package-level
protection, or the distinction between class-level
and instance-level protection.

Free�Composition�Instead�of�Language�Dictatorship

391

� The Java, C++, and C# keyword static controls
whether all instances of a class share a field, or
each has its own copy.

� The keywords final in Java, const in C++, and
readonly in C# declare special semantics to the
usage of a variable (i.e., the variable may be as-
signed only once).

In general, examples of modified composition seman-
tics, which Co-op/II facilitates in addition to those
supported already by Co-op/I, are: access modifiers
(static, synchronized, final, and so forth) and also
more conceptual constructs such as automatic con-
versions, checking of validity constraints, persistence,
transactions, and expressing roles.

Co-op/II provides a more declarative language for
defining composition operators than Co-op/I. This al-
lows reasoning about composition operators to, for
example, provide optimizations and check their cor-
rectness. Identifying the precise amount of reasoning
that can be done is still future work.

6.3 The Co-op/III Language

At the moment, we are working on yet another Co-op
implementation, Co-op/III (Te Brinke et al., 2011b).
In addition to the request-reply model of method invo-
cation and data access, supported already by Co-op/I
and Co-op/II, this language has a focus on control-
flow-related semantics of compositions. By this, we
mean inter-procedural constructs such as exception
handling, co-routines, and around advice with pro-
ceed in AOP, as well as intra-procedural control struc-
tures such as conditionals and loops.

This will allow defining, e.g., different seman-
tics for exception handling such as adding support
to retry—or even resume—the operation that caused
an exception. At the same time, e.g., loop constructs
with different semantics can be defined in Co-op/III,
such as evaluating the loop condition before, after or
even during the loop (Dahl et al., 1972).

The current implementation of Co-op/III will also
unify operators (such as addition, subtraction, and
string concatenation) with method invocations. Thus,
all operators are message sends that can be influenced
by the programmer.

6.4 Discussion

While our implementations of the Co-op languages
demonstrate that it is in principle possible to make
a language sufficiently powerful to define at least a
wide range of composition mechanisms, some ques-
tions remain. For example, the following issues must

be addressed to make this approach ready for practi-
cal use: the language must be made more complete
to support, e.g., ordered multiple inheritance; the ex-
ecution performance of Co-op programs must be op-
timized; and inter-operation with other programming
languages should be supported.

Optimizations are necessary because the dynamic
evaluation of composition operators adds an overhead
to each message send in the program. To compensate,
the Co-op/II and Co-op/III prototypes already aim at a
high degree of declarativity in the definition of condi-
tions, bindings and constraints. Thus, their effects on
a message can be partially evaluated before runtime.
However, it is still an open topic to actually imple-
ment and evaluate such optimizations for Co-op.

Language interoperability is important to use the
large body of existing libraries. This is supported
by main-stream languages, e.g., the Java Native In-
terface allows to use C/C++ libraries from Java and
vice versa. To support such interoperability, ways for
communicating between the dynamically-typed Co-
op world and the statically-typed world of Java or
C++ must be researched. A bridge to another dynam-
ically typed language, e.g. Smalltalk, may be simpler,
but still not trivial: also Smalltalk has a notion of type
hierarchies and assignment compatibility while Co-op
composes the behavior.

7 IMPLEMENTATION
STRATEGIES

Facilities for message rewriting can also be offered in
other ways, most obviously through a reflective lan-
guage, as a meta-object protocol (MOP). As already
explained in Section 4, the Co-op model and a MOP
approach are not contradictory, and a MOP approach
is one way to implement the Co-op ideas. How-
ever, the advantage of defining a language is that it
can offer the programmer dedicated abstractions for,
e.g., the conditions, bindings and constraints. This
can make the specification more declarative, which
makes composition operators, themselves, more com-
posable. Such declarativeness furthermore enables
analyses for better IDE support or performance op-
timization.

Various OO programming languages (e.g. SELF
(Ungar and Smith, 1987) and Smalltalk (Goldberg
and Robson, 1983)) aim at offering a simple core lan-
guage on which to build complex abstractions. How-
ever, to the best of our knowledge, these languages
either do not offer the ability to define tailored compo-
sition semantics or do so by opening up the language
in a generic way through reflection, as discussed in

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

392

the previous paragraph.
Another conceivable approach is to implement

composition operators by means of code transfor-
mations. They can be implemented in terms of a
compile-time MOP (Sheard and Jones, 2002), which
means that the transformations can be defined in the
same language as the application code. But still trans-
formations cannot be freely composed because they,
generally, make assumptions on the code structure;
this may have been modified by a previously applied
transformation.

8 CONCLUSIONS

The message of this paper is that, when implementing
an application, dedicated abstractions that fit the prob-
lem domain are needed; and since programs, in gen-
eral, combine multiple problem domains in unfore-
seeable ways, programming languages must not hard-
wire abstractions and composition mechanisms, but
must allow developers to tailor them to their needs.

For this purpose, we propose the Co-op approach
to integrate facilities into programming languages that
allow developers to implement their own composition
mechanisms according to their domain’s abstractions.
They should be implemented as composition opera-
tors which are first class objects in the programming
language such that they can be composed, themselves,
by means of custom composition operators. By dis-
cussing the Co-op language prototypes that allow nor-
mal application objects to act as composition opera-
tors by means of message rewriting, we have shown
that realizing these ideas is feasible.

While the Co-op approach—allowing program-
mers to define their own composition operators as
first-class objects—is quite powerful, it also bears
more complexity. This complexity needs not be ex-
posed to the day-to-day programmer, though, because
the implementation of composition operators can be
provided by a few, well-trained experts through li-
braries. The common programmer simply uses such a
library, instantiating composition operators as needed.
Nevertheless, it is subject to future studies to research
the impact of our proposed programming model in
practice.

ACKNOWLEDGEMENTS

We would like to thank Wilke Havinga and Havva
Gülay Gürbüz for their contributions to Co-op. This
research work was partially funded through the
ENOFES project (STW 11850).

REFERENCES

Bergmans, L. M. J., Havinga, W. K., and Akşit, M. (2011).
First-class compositions–defining and composing ob-
ject and aspect compositions with first-class operators.
Transactions on Aspect-Oriented Software Develop-
ment.

Brichau, J., Haupt, M., Leidenfrost, N., Rashid, A.,
Bergmans, L., et al. (2005). Report describing sur-
vey of aspect languages and models. Technical Re-
port AOSD-Europe Deliverable D12, AOSD-Europe-
VUB-01, Vrije Universiteit Brussel.

Te Brinke, S., Bergmans, L. M. J., and Bockisch, C. M.
(2011a). The keyword revolution: Promoting lan-
guage constructs for data access to first class citi-
zens. In Proc. 1st Int. Workshop on Free Composition,
FREECO ’11, New York, NY, USA. ACM.

Te Brinke, S., Bockisch, C. M., and Bergmans, L. M. J.
(2011b). Reuse of continuation-based control-flow ab-
stractions. In Proc. 2nd Workshop on Free Composi-
tion @ Onward! 2011, FREECO-Onward! ’11, pages
13–18, New York, NY, USA. ACM.

Brooks, F. (1987). No silver bullet: Essence and accidents
of software engineering. IEEE computer, 20(4):10–
19.

Dahl, O. J., Dijkstra, E. W., and Hoare, C. A. R., editors
(1972). Structured Programming. Academic Press
Ltd., London, UK.

Dijkstra, E. W. (1976). A discipline of programming.
Prentice-Hall, Englewood Cliffs, New Jersey.

Goldberg, A. and Robson, D. (1983). Smalltalk-80: the lan-
guage and its implementation. Addison-Wesley Long-
man Publishing Co., Inc. Boston, MA, USA.

Havinga, W. K., Bergmans, L. M. J., and Akşit, M. (2010a).
A model for composable composition operators: Ex-
pressing object and aspect compositions with first-
class operators. In Proc. 9th Int. Conf. on Aspect-
Oriented Software Development, pages 145–156, New
York. ACM.

Havinga, W. K., Bockisch, C. M., and Bergmans, L. M. J.
(2010b). A case for custom, composable composition
operators. In Proc. 1st Int. Workshop on Composition:
Objects, Aspects, Components, Services and Product
Lines, volume 564 of Workshop Proceedings, pages
45–50. CEUR-WS.

Kiczales, G., des Rivieres, J., and Bobrow, D. G. (1991).
The Art of the Metaobject Protocol. MIT Press, Cam-
bridge, Massachusetts.

Royce, W. (2009). Improving software economics-top 10
principles of achieving agility at scale. White paper,
IBM Rational.

Sheard, T. and Jones, S. P. (2002). Template meta-
programming for Haskell. SIGPLAN Not., 37:60–75.

Taivalsaari, A. (1996). On the notion of inheritance. ACM
Comput. Surv., 28(3):438–479.

Ungar, D. and Smith, R. B. (1987). Self: The power of
simplicity. SIGPLAN Not., 22:227–242.

Free�Composition�Instead�of�Language�Dictatorship

393

