
Service-oriented Design of Metamodel Components

Henning Berg
Department of Informatics, University of Oslo, Oslo, Norway

Keywords: Metamodelling, DSLs, Model Weaving, Model Integration, Aspect-orientation, Service-oriented Architecture.

Abstract: Integration of models is an important aspect of Model-Driven Engineering. Current approaches of model
integration rely on model weaving and model transformations. In particular, weaving of metamodels allows
extending a metamodel with additional concepts, and thereby supporting a larger problem space. Unfortu-
nately, weaving of metamodels is not trivial and requires in-depth knowledge both of the problem domains of
the constituent metamodels and the modelling environment. In addition, name conflicts have to be resolved in
an intrusive manner. Another disadvantage of many model weaving approaches is that concepts describing dif-
ferent concerns are mixed together without the possibility for semantically tracing the origin of the concepts.
In this paper, we propose a new approach for combining metamodels by defining these as reusable services
at a conceptual level. We will show that this approach both addresses the issues that arise when models are
woven, and illustrate how metamodel components simplify modelling.

1 INTRODUCTION

Metamodels have a central role in Model-Driven En-
gineering (MDE) (Kent, 2002) where they e.g. are
used as formalisations for language and tool design.
In most MDE environments, metamodels are realised
as class models. Class models do not have other
structure than what can be realised using inheritance,
composition and association relationships, and simple
packages. This means that all metamodel concepts,
regardless of purpose, are reified in the same mod-
elling space without the ability to differentiate one
type of concept from another. The lack of additional
metamodel structure is not critical in metamodels
consisting of a limited number of classes. However,
as metamodels become larger and more complex, as
a consequence of increasing maturity in model-driven
approaches, several troubling issues emerge.

Model weaving/composition is a popular ap-
proach of elaborating a metamodel with additional
concepts, e.g. (Fabro et al., 2006) (Kolovos et al.,
2006) (Groher and Voelter, 2007) (Morin et al., 2009)
(Morin et al., 2008). Model weaving is achieved by
combining a set of models in an assymmetric or sym-
metric manner. Regardless of method, the result is
a composite model containing all classes from the
source models. There are some evident issues with
this approach. First, the resulting metamodels be-
come large which makes it difficult to relate to the

models. Second, classes reflecting concepts of differ-
ent concerns are all blended without adding any addi-
tional metainformation describing from what source
models the concepts in question originated, i.e. trace-
ability is not semantically backed up. Third, weav-
ing of models induces conflicts that have to be re-
solved. E.g. class merging implies that the con-
stituent classes do not contain equally named prop-
erties of different types, etc. Fourth, weaving of
models requires that the source models are altered
intrusively. In particular, such alteration is required
to integrate the constituent models’ dynamic seman-
tics. Fifth, integration of models requires explicit
knowledge in metamodel design and insight into
the specific environment used to realise the meta-
models, e.g. Eclipse Modeling Framework (EMF)
(EMF, 2012), MetaEdit+ (Tolvanen and Kelly, 2009),
Generic Modeling Environment (GME) (GME, 2012)
or similar. The main problem combining proprietary
metamodels is that these are not structured as reusable
artefacts. In particular, there are no apparent ways
metamodels should be composed. This gives a lot of
flexibility since the metamodels can be combined in
many different ways. However, this also induces sev-
eral problematic issues as motivated.

A metamodel is domain-specific, in the sense that
it contains concepts related to one particular prob-
lem domain. Combining metamodels is primarily per-
formed to increase expressiveness by extending the

70 Berg H..
Service-oriented Design of Metamodel Components.
DOI: 10.5220/0004082900700079
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 70-79
ISBN: 978-989-8565-19-8
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

set of concepts that can be used in the conformant
models. Weaving heterogenous metamodels belong-
ing to different domains results in different concerns
being tangled. This is not practical as metamodels be-
come difficult to grasp. Even more critical is the dis-
ability to differentiate between the different concerns
in associated tooling and editors. E.g. a Domain-
Specific Language (DSL) made on the basis of three
combined heterogenous metamodels yields an associ-
ated concrete syntax where language constructs per-
taining to three different concerns are all mixed up.
We believe that the ability to consider one concern at
the time is important to facilitate more complex meta-
models and associated tooling.

In this paper, we present the novel idea of con-
sidering metamodel components as services. Specif-
ically, we will discuss how the dynamic semantics of
metamodels can be integrated in a service-oriented
manner, and thereby support loosely coupled inte-
gration of metamodels. Service-oriented design of
metamodel components yields an alternative to model
weaving, where the metamodels are kept separated.
Still, the metamodels and their conformant models
are integrated and can be utilised in unison to fulfill
modelling requirements. Note that we do not consider
every aspect of services in this paper, but use the con-
cept of service-orientation as inspiration for defining
loosely coupled metamodel components.

The paper is organised as follows. Section 2 ex-
plains the concept of metamodel components and uses
SoaML (SoaML, 2012) to illuminate how metamodel
components are connected. Section 3 delves into de-
tails on how metamodel components can be realised,
while Section 4 presents a case study where meta-
model components are used in concert to construct
an e-commerce solution. Section 5 discusses related
work, and Section 6 conludes the paper.

2 METAMODELS AS SERVICES

Service-Oriented Arhitectures (SOAs) is a software
engineering branch that deals with services and how
they interact to realise a software system. A service is
a reusable set of functionalities that provides value to
its clients, e.g. other services. SOA is a broad field. In
this paper, we will only use a small subset of the SOA
terms and concepts to describe our approach. We will
use SoaML (SoaML, 2012) in our examples. SoaML
is an Object Management Group (OMG) standarised
modelling language for describing services architec-
tures. It provides terminology for bridging the busi-
ness and IT levels of service design. Note that we will
not follow the SoaML specification strictly, but use it

as a platform for describing the concepts of this paper.
Some additional terminology is used.

A metamodel formalises the structure and seman-
tics of models. We consider both static and dynamic
semantics as part of the metamodel. E.g. EMF allows
defining dynamic semantics, referred to as model
code, in methods of plain Java classes. Alternatively,
Kermeta (Muller et al., 2005) is a metalanguage that
allows defining dynamic semantics within the opera-
tions of the metamodel classes. We will not go into
details on how the abstract syntax and dynamic se-
mantics are mapped, and consider the dynamic se-
mantics to be defined in operations within the meta-
model classes.

A metamodel is constrained to a particular prob-
lem domain, and can be observed as a service that
provides structure and semantics for expressing prob-
lems in this domain; in particular, dynamic semantics
for performing some kind of processing. We will use
the term metamodel component as an entity that com-
prises four elements: the metamodel (abstract syntax
and static/dynamic semantics), concrete syntax (op-
tional), one or more service contracts and an informal
description of the metamodel’s domain and purpose,
see Figure 1.

Abstract syntax Concrete syntax

Static semantics Dynamic semantics

Service contracts

Metamodel description

Metamodel component

Figure 1: Overview of a metamodel component.

Each service contract defines an integration point
between the referenced metamodel and another com-
patible metamodel. In SoaML, this can be mod-
elled as a service channel between a consumer and
a provider role. A composite metamodel is created
by orchestrating a set of metamodel components by
binding these to the roles of the service contracts, and
thereby fulfilling the service contracts. Metamodel
components are combined in an asymmetric manner.
Thus, the metamodel of a component bound to a con-
sumer role of a service contract implies a base model,
while the metamodel of a component bound to the
provider role of the contract implies an aspect model.
A metamodel can act as both model types depend-
ing on whether its component takes a consumer or
provider role. It can also fulfill several roles in par-
allel. Refer (Groher and Voelter, 2007) for details on

Service-oriented�Design�of�Metamodel�Components

71

how these terms are used in model weaving. An ex-
ample of a generic services architecture for a com-
posite metamodel is given in Figure 2. Notice that a
composite metamodel is more of a conceptual notion,
as its constituent metamodels are not woven together.

«ServicesArchitecture»
Composite Metamodel Architecture

mma : MetamodelA mmb : MetamodelB

mmc : MetamodelC

b: ProvideB1

a : ProvideA1 b : ProvideB2

consumer provider

provider
provider

consumer
consumer

ProvideA1
ProvideA2

ProvideB1
ProvideB2
ProvideB3

ProvideC1

Figure 2: Services architecture consisting of three partici-
pating metamodel components.

A services architecture consisting of the three
metamodel components: MetamodelA, MetamodelB and
MetamodelC, is given in Figure 2. The three meta-
model components specify various service contracts.
E.g. MetamodelB defines the three service constracts:
ProvideB1, ProvideB2 and ProvideB3, whereas the two
first are fulfilled as part of realising the composite
metamodel. We have included fragments of the ab-
stract syntax for two example metamodels that ful-
fill the requirements of the ProvideB1 service contract.
See Figure 3.

Figure 3: Excerpts of compatible metamodels for the Meta-
modelA (left) and MetamodelB (right) components.

Let us focus on the ProvideB1 service contract and
see how it is defined. The ProvideB1 service con-
tract consists of two roles: baseModel and aspectModel,
which are connected through a service channel. See
Figure 4. The roles are associated with a consumer
and provider interface, respectively, as described by
the SoaML specification.

Each service contract specifies an integration
point between two classes: one class from the base
model and one from the aspect model. The connec-
tion between the classes can be realised e.g. as an as-

«ServiceContract»
ProvideB1

baseModel : RequiredInterface aspectModel : ProvidedInterface

service channel

Figure 4: The ProvideB1 service contract.

«Interface, Consumer»
RequiredInterface

<opposite B1>::operation1(…) : ...

«Interface, Provider»
ProvidedInterface

B1::operation1(…) : ...
B1::operation2(…) : ...

Figure 5: Consumer and provider interfaces.

sociation or composition relationship. We will later
come back to how this connection can be realised.
The interfaces for the ProvideB1 service contract are
given in Figure 5. The ProvidedInterface specifies two
operations: operation1(...) and operation2(...). Both op-
erations are defined within the B1 class. The service
contract is part of the MetamodelB component. Thus,
the B1 class represents the aspect model part of an
integration point. RequiredInterface specifies one op-
eration: operation1(...). This operation has to be im-
plemented by the base model class that relates the as-
pect model B1 class, and indicates a bidirectional re-
lation between the two metamodels’ dynamic seman-
tics. See Figure 6.

Figure 6: Realised integration point.

Figure 6 shows how the ProvideB1 service con-
tract is realised by the class A3 in the metamodel of
the MetamodelA component and B1 in the metamodel
of the MetamodelB component. In the remainder of
this paper, we will only differentiate between a meta-
model and metamodel component where this is re-
quired. E.g., we may use ’MetamodelA’ to denote the
metamodel of the MetamodelA component.

3 REALISING METAMODEL
COMPONENTS

So far we have deliberately avoided discussing how
metamodel components can be realised. The reason
for this is that metamodel components can be realised

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

72

in various manners using several supporting mecha-
nisms. Here we discuss some general issues in re-
alising metamodel components and present a brief
overview of the most promising approaches.

Weaving metamodels together gives a resulting
composite metamodel where all the source metamod-
els are tightly integrated. Creating models that con-
form to the composite metamodel takes the same form
as creating models of either of the source models, i.e.
using an editor that provides representations for all
the composite metamodel concepts. Modelling us-
ing metamodel components orchestrated as services
works slightly different. Specifically, it is still possi-
ble to model using concepts from each of the source
metamodels separately, see Figure 7. This allows
modelling different concerns one at the time. Let us
see how this is achieved.

: A1 : A2

: A3 :B1

MetamodelA perspective

Model name: m1

: B1 : B2

: B3

MetamodelB perspective

Model name: m2

Figure 7: Modelling separate concerns in different perspec-
tives.

A service contract defines an integration point be-
tween two metamodels. An integration point is re-
alised as a (possibly bidirectional) relation between
two classes and two sets of operations that can be ac-
cessed (navigated) using the relation. The operations
are specified by the associated consumer and provider
interfaces. The relation can take many forms, but
would typically be an association or composition. The
type of relation is selected as part of the service or-
chestration.

Let us return to the running example. When mod-
elling, it should be possible to refer the B1 concept
from within a model of MetamodelA, since Metamod-
elB is an aspect model that increases the expressive-
ness of MetamodelA. However, the metamodels are not
woven together. To address this, a placeholder/proxy
representing B1 is used in the model of MetamodelA,
see Figure 7. The proxy is linked to an actual object
of the B1 class at runtime in a loosely manner using
XML-based messages. The object of the B1 class is
selected from a repository of models conforming to
MetamodelB.

Modelling using the metamodel of a metamodel
component results in a model that is automatically ac-

cessible via a model repository. This facilitates link-
ing the proxy of a model object in one perspective
to a model of another perspective. Additionally, the
same model (clones) can be used several times. Fig-
ure 8 illustrates this. We assume there are five models
available in the repository.

: A1 : A2

: A3 :B1

MetamodelA perspective

Model name: m1

m1 : MetamodelA

Model repository

m2 : MetamodelB

m3 : MetamodelA

m4 : MetamodelA

m5 : MetamodelB

B1 proxy #1 properties

Model: m2

Figure 8: Linking a proxy to a model.

: A1 : A2

: A3 :B1 : B2

: B3

dynamic link

Figure 9: The resulting model as used at runtime.

Message-based links between models are estab-
lished and maintained by the runtime environment.
The runtime environment acts as a superstructure on
top of a modelling environment, like EMF. The re-
sulting (apparent) model at runtime is given in Figure
9.

3.1 Service Orchestration

Orchestration of metamodel components comprises
two steps: instantiating service contracts and select-
ing relation type with multiplicity. Orchestration can
be performed graphically. Specifically, a relation is
made between a base model class and a service con-
tract of the aspect model. In Figure 10, the A3 class
of MetamodelA is related to MetamodelB through the
ProvideB1 service contract 1. MetamodelC is integrated
with both MetamodelA and MetamodelB. The C1 class
has an assosiation to the class A1 (via the ProvideA1
service contract). Objects of the C2 class are com-
posed of B2 objects, as indicated by the composition

1The name of the relation indicates base model class.

Service-oriented�Design�of�Metamodel�Components

73

relation between C2 and the ProvideB2 service con-
tract. Notice how MetamodelA is both a base model
and aspect model, depending on its role of the ful-
filled service contracts.

MetamodelA MetamodelB

ProvideA1
ProvideA2

ProvideB1
ProvideB2
ProvideB3

MetamodelC

ProvideC1

class model class model

class model

A3

C2

C1

base model

aspect model

aspect model

base model

aspect model

base model

1..*
1..1

0..1

1..*

Figure 10: Orchestrating metamodel components.

3.2 Mechanisms for Realisation of
Metamodel Services

There are several mechanisms that may support reali-
sation of metamodel components as discussed in this
paper. Model types (Steel and Jézéquel, 2005), class
nesting and mechanisms used in component technolo-
gies are all promising alternatives.

One potential application of model types is for
definition of service contracts. A model type can
be used to specify one or more classes of the aspect
model that form the basis for integration points. This
approach would allow defining generic service con-
tracts that can be reused by several metamodels.

Class nesting may be used to identify different
perspectives or subsets of classes within a metamodel.
In particular, an inner nested class may represent an
interface for interacting with other metamodels.

There exist several component technologies used
for distributed systems. Some may provide mecha-
nisms that can be used to realise metamodel services.
An interesting topic is how to serialise models which
can be distributed over a network. This would allow
different stakeholders to model a given system with-
out being at the same location. The metamodel com-
ponents and respective models could later be com-
bined to form the composite model of the system.

4 CASE STUDY: AN
E-COMMERCE SOLUTION

In this section, we will illustrate metamodel compo-
nents using a practical example in the domain of web
design. We will use two DSLs for modelling of two
different concerns: web site structure and queries.
The metamodels of the DSLs are given in Figures 11
and 12. We will refer to the metamodels as Website
and Query, respectively.

Figure 11: Metamodel for the website design language.

As seen in Figure 11, a website comprises one or
more pages that contain an arbitrary number of ele-
ments. In particular a page may contain forms re-
alised within a table structure. An example of a form
is a list of products or similar, that can be selected by
the end user. The Form dynamic semantics include an
operation addObjects(...) which accepts a list of (dese-
rialised) objects. The operation populates a form us-
ing a table element. The number of rows and columns
in the table is determined automatically by the num-
ber and type of objects used as argument. We assume
that the metamodels are defined in EMF, thus, the dy-
namic semantics would be written in Java.

A simple query language is given in Figure 12. It
captures concepts for expressing queries that can be
used for acquisition of objects, e.g. from a database
abstraction. A query consists of one or more object
identifiers. An object identifier is composed of a set of
property name-value pairs which are used to identify
a given set of objects. For instance, an e-commerce
solution for selling computer hardware may utilise a
domain model including the domain class Product. An
excerpt of the definition of such a class is given in
Figure 13.

Distinct products have different values for the at-

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

74

Figure 12: Metamodel for the query language.

class Product

{

private String manufacturer:

private String name;

private int version;

private String description;

private double price;

...

}

Figure 13: The Product domain model class.

tributes. Querying for a given type of products is per-
formed by using object identifiers and property name-
value pairs. An example of a statement that identifies
a set of products from a couple of target manufactur-
ers is given in Figure 14 in a textual concrete syntax.
The query statement of Figure 14 returns all products
that are manufactured by Toshiba or Acer and cost
under $300.

Describing queries that are issued to a database is
a natural part of designing an e-commerce solution.
Designing the website and programming the queries
represent two different concerns. It is likely that dif-
ferent stakeholders would model these concerns. A
graphical designer could construct the website, while
a programmer would define the backbone business
logic including database queries.

We have identified two DSLs that address each of
these concerns. The traditional approach would be to
weave the metamodels of the DSLs to create a richer
language that can be used to both model the website
and express database queries, i.e. the Form and Query
classes would be merged. First, combining Form and
Query is awkward, since these two classes are not se-
mantic coherent. Second, the weaving process clearly
mixes two concerns. E.g. a graphical concrete syntax

Query {

ObjectIdentifier["Product"] {

Property: "manufacturer" = "Toshiba"

Property: "manufacturer" = "Acer"

Property: "price" < 300

}

Resource[Database] {

URI: "jdbc://..."

}

}

Figure 14: An example query in a textual notation.

for the composite language would yield a palette of
language constructs for the entire language, whereas a
textual syntax would provide the user with code com-
pletion suggestions for all the constructs. The graph-
ical website designer would not be interested in the
language constructs for performing queries as used
by the programmer, and vice versa. One alternative is
to manually program the concrete syntax of the com-
posite language to differentiate the two sets of lan-
guage constructs, yet the resulting model of a web-
site and associated queries would still be expressed in
the same modelling space. Providing two sets of con-
crete syntax concepts would require in-depth techni-
cal knowledge, which reduces the reuse value of the
languages/metamodels. Additionally, the website lan-
guage would typically be implemented with a graph-
ical concrete syntax, whereas the query language is
better designed using a textual syntax. Combining
different kinds of syntaxes is not a trivial task.

Let us see how metamodel components tackle the
same scenario. The dynamic semantics of Form in
Figure 11 comprises the operations getObjects() and
addObjects(...). The semantics of Query in Figure 12
consists of the operation query(). These operations
could either be a natural part of the classes’ seman-
tics or be defined explicitly in order to construct the
metamodels as reusable components. The three oper-
ations will reify the consumer and provider interfaces
of a Query service contract. For this example, only the
query component will feature a service contract.

«ServiceContract»
Perform Query

ql : QueryTaker qp : QueryProvider

Figure 15: The Perform Query service contract.

Service-oriented�Design�of�Metamodel�Components

75

The service contract of the query component is
given in Figure 15. It specifies two roles, each typed
with an interface. The interfaces are given in Figure
16.

«Interface, Consumer»
QueryTaker

<opposite Query>::initiate()
<opposite Query>::addObjects(Object[] objects)

«Interface, Provider»
QueryProvider

Query::query()

Figure 16: The consumer and provider interfaces associated
with the Perform Query service contract.

As can be seen, the provider interface comprises
one operation named query(), while the consumer in-
terface specifies the operations getObjects() and addOb-
jects(Object[] objects). The actual operations of the
class that fulfill the consumer interface do not have to
match the operation names in the interface, however,
the target operations’ signatures and return types are
required to match those of the interface operations.
How to ensure that the correct operations are cho-
sen is out of scope of this paper2. We assume that
each service contract has a description that informally
specifies the required semantics of its operations.

The services architecture describing the e-
commerce modelling solution is given in Figure 17.

«ServicesArchitecture»
E-commerce Solution Architecture

structure : QueryTaker queries : QueryProviderquery: Perform Query

Perform Query

Figure 17: The e-commerce modelling solution services ar-
chitecture.

The modelling process of the e-commerce solu-
tion consists of three steps:

� Service orchestration.

� Modelling each concern in distinct perspectives.

� Linking the base model proxies by acquiring as-
pect models from the model repository.

2Assuring that the operation does what it should is also
out of scope of this paper.

Figure 18 shows the three steps of modelling the e-
commerce solution (with imagined tool support). The
Form class of the Website metamodel is related to the
Query metamodel via the Perform Query service con-
tract using an association (1). This is possible since
the Form class contains operations with the signatures
and return types as specified by the service contract
(required operations). The initiate() operation of the
consumer interface is realised as getObjects() in the
Form class, while the addObjects(...) interface opera-
tion is realised by the equally named operation. I.e.
the service contract is fulfilled. A simplified descrip-
tion of the functionality offered by the query com-
ponent is given in XML format. The website and
queries are modelled separately (2). The website con-
tains two forms, thus two queries have to be modelled.
The website model is named website1, while the query
models are named query1 and query2. All models are
stored in the model repository (when saved). Note
the two proxies in the website model representing the
Query class objects. The two proxies are linked to the
query models in properties panes/views (3). Conse-
quently, each proxy is bound to the respective Query
object of the specified query model. The class of the
model object represented by the proxy, and the de-
tails on how the proxy object connects to the aspect
model, are determined by the service contract and as-
sociated interfaces. Thus, there is no need for ex-
plicitly designating the proxy to a specific model ob-
ject. It is already defined in the interfaces. Several
proxies can be assigned clones of the same model.
E.g. if both forms required the same type of query,
they could both be linked to e.g. query1. Models are
cloned automatically by the tooling. At runtime, the
different operations specified in the interfaces are in-
voked to exchange data between the constituent mod-
els (website1, query1 and query2) using an XML-based
message format. Population of a form is initiated
when the dynamic semantics of the website language
invokes getObjects(). This invocation is resolved by
the runtime environment and results in invocation of
query() in the associated query model. Consequently,
a set of objects are acquired from the database and
returned to the website model via the addObjects(...)
operation. The models are linked dynamically. Thus,
proxies are linked to model objects at runtime. As
pointed out, the runtime link is realised as messages
sent as serialised XML data (loose coupling).

The example shows how two metamodels can be
used together without using model weaving. Here,
only one service contract was fulfilled. A metamodel
component can feature an arbitrary number of service
contracts. This allows creating complex architectures
with many metamodels. In addition, it is possible to

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

76

Website Query

Perform Query

class model class model

Form

Website perspective

Model name: website1

Query perspective

Model name: query1

Query perspective

Model name: query2

website1 : Website

Model repository

query1 : Query

query2 : Query

?

?

Products page

Campaign page

Query proxy #1

Query proxy #2

Product list form

Campaign product list form

Query proxy #1 properties

Model: query1

Query proxy #2 properties

Model: query2

1.

2.

3.

Query {
 ObjectIdentifier
 [”Product”] {
 Property: …
 Property: ...
 }
 ...
}

Query {
 ObjectIdentifier
 [”Campaign”] {
 Property: …
 Property: ...
 }
 ...
}

<interface name="Perform Query">
 <provider>
 <operation name="query" type="void" trigger="initiate" />
 </provider>
 <consumer>
 <operation name="initiate" type="void" />
 <operation name="addObjects" type="void">
 <param type="ArrayOfObject" />
 </operation>
 </consumer>
</interface>

1..1

Figure 18: Orchestration of metamodel components and modelling of an e-commerce solution.

integrate a metamodel with other metamodels in sev-
eral ways depending on what service contracts that
are fulfilled.

5 RELATED WORK

The work of (Weisemöller and Schürr, 2008) dis-
cusses how metamodel components can be realised
using a graph transformation based formalisation of
MOF. In essence, a metamodel component provides
export and import interfaces. Each interface identi-
fies a submodel. A submodel of an export interface
can be bound with the submodel of an import inter-
face using graph morphisms, and thereby combining
the metamodels. The work resembles the approach of
this paper. The main difference is that our approach
allows a higher degree of decoupling, since metamod-
els are integrated through proxies.

An approach for enabling generic metamodelling
is elaborated in (Lara and Guerra, 2010). The pa-
per investigates how C++ concepts, model templates
and mixin layers can be used to specify generic be-
haviour and transformations, create model component
and pattern libraries and extend metamodels with new

classes and semantics. A concept can be bound to
models that fulfill a set of requirements specified by
the concept. The bounding is performed using pattern
matching. Consequently, generic behaviour can be
reused for instances of the compatible models. Model
templates allow defining reusable patterns and com-
ponents which can be instantiated with actual param-
eters. The parameters comprise models and model el-
ements. Finally, mixin layer templates facilitate ex-
tending metamodels with new classes and semantics
in a non-intrusive manner.

Package extension is a mechanism that allows
merging equally named classes of metamodels that re-
side in packages (Clark et al., 2003). A package can
be defined by extending other packages. The paper
also describes a package template concept. A pack-
age template is a package that can be parameterised
with string arguments. The arguments facilitate re-
naming of several package elements simultaneously.

An approach for loose integration of models, in
the form of model sewing, is discussed in (Reiter
et al., 2005). Model sewing is an operation that al-
lows models to be both synchronised and depend on
each other without utilising model weaving. The dis-
cussed advantages are the ability to utilise existing

Service-oriented�Design�of�Metamodel�Components

77

GUI for the constituent models of a sewing operation,
and avoidance of entanglement of concepts from dif-
ferent models. The approach identifies the need of
mediating entities that bind the models together. The
work resembles the approach of this paper. The main
difference is that we utilise interfaces and treat meta-
models as components that are combined in a service-
oriented manner.

6 DISCUSSION AND
CONCLUSIONS

Metamodel components allow using metamodels in
unison without weaving these explicitly together.
This has apparent advantages. First, it is possible to
create models that express different concerns in a sep-
arate fashion. The models of different concerns are
still integrated by the modelling environment using
model links that are maintained dynamically. This en-
sures a loosely coupled integration. Second, models
of different concerns can be validated and tested in-
dependently one at the time. Specifically, the proxies
can communicate with mock-ups that represent mod-
els (simulation mode). Third, orchestration of meta-
model components can be achieved by non-technical
stakeholders since the metamodels do not need to
be altered in order to combine these. The service
contracts formalise the integration points. Fourth,
a model or model fragment (clone) can be acquired
from the model repository and reused, which simpli-
fies the modelling process. Thus, it is not required to
model the same thing twice.

Model weaving usually requires that classes are
merged. However, it is not always reasonable to
merge two classes, particularly when the classes rep-
resent concepts of different problem domains. Using
the approach of this paper, an aspect model class is in-
stead used to type the relation between this class and
a base model class (and vice versa). This resembles
class refinement as discussed in (Emerson and Szti-
panovits, 2006).

A consequence of weaving the abstract syntax of
metamodels is the need of combining concrete syn-
taxes as well. This is avoided by using components,
since each component independently provides its dis-
tinct textual or graphical concrete syntax. Compo-
nents also address evolution issues. Model confor-
mance is a term that indicates whether a model is
compatible with its metamodel. Weaving metamod-
els breaks model conformance. This requires using
model transformations to create a conformant com-
posite model from the basis of pre-existing models.
Components address this by defining a sand box/s-

cope for each metamodel. Changing or revising the
metamodel of one component will only break confor-
mance with the existing models of this component’s
metamodel. Models of the other components’ meta-
models in the services architecture will still conform
to their metamodels.

Two important aspects of service-oriented ap-
proaches are service repositories and service discov-
ery, which facilitate service reuse and availability.
Metamodel components may follow a similar scheme.
In particular, reusable generic metamodel patterns can
be stored in searchable, distributed repositories and
used as language building blocks by language engi-
neers. A metamodel pattern may describe an aspect
or requirement that is common for several metamod-
els/languages, e.g. a state machine or similar (Cho
and Gray, 2011). Analysis and validation of services
are important parts of service-oriented engineering
methodologies and required to ensure high quality ar-
chitectures and systems. This has not been addressed
in this paper.

An interesting application of metamodel compo-
nents is for integrating metamodels and languages
(and their models) defined in different modelling en-
vironments. This is possible since the dynamic se-
mantics of each metamodel component can be run
separately, yet connected as specified in the service
contracts. E.g. a metamodel and conformant models
defined in EMF could utilise models defined in GME,
or similar. This is one particular application of meta-
model components that justifies the high-degree of
separation provided by a service-oriented metamodel
integration.

We believe that combining metamodels in a
service-oriented manner addresses current limitations
of model weaving by simplifying integration of mod-
els and the modelling process, and thereby increasing
the reusability and value of metamodels and models.

REFERENCES

Cho, H. and Gray, J. (2011). Design patterns for metamod-
els. In Proceedings of the OOPSLA/SPLASH DSM’11
Workshop.

Clark, T., Evans, A., and Kent, S. (2003). Aspect-oriented
metamodelling. The Computer Journal, 46(5).

Emerson, M. and Sztipanovits, J. (2006). Techniques for
metamodel composition. In The 6th OOPSLA Work-
shop on Domain-Specific Modeling.

EMF (2012). Eclipse modeling framework (emf).
http://www.eclipse.org/modeling/emf.

Fabro, M. D. D., Bézivin, J., and Valduriez, P. (2006).
Weaving models with the eclipse amw plugin. In
Eclipse Modeling Symposium.

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

78

GME (2012). Generic modeling environment (gme).
http://www.isis.vanderbilt.edu/projects/gme.

Groher, I. and Voelter, M. (2007). Xweave: Models and
aspects in concert. In Proceedings of AOM Workshop
’07.

Kent, S. (2002). Model driven engineering. In Proceedings
of IFM’02.

Kolovos, D. S., Paige, R. F., and Polack, F. A. (2006). Merg-
ing models with the epsilon merging language (eml).
In Proceedings of MODELS 2006.

Lara, J. and Guerra, E. (2010). Generic meta-modelling
with concepts, templates and mixin layers. In Pro-
ceedings of MODELS’2010.

Morin, B., Klein, J., and Barais, O. (2008). A generic
weaver for supporting product lines. In Proceedings
of the Workshop on Early Aspects (EA’08).

Morin, B., Perrouin, G., Lahire, P., Barais, O., Van-
wormhoudt, G., and Jézéquel, J.-M. (2009). Weaving
variability into domain metamodels. In Proceedings
of MODELS 2009.

Muller, P., Fleurey, F., and Jézéquel, J. (2005). Weaving
executability into object-oriented meta-languages. In
Proceedings of MODELS 2005.

Reiter, T., Kapsammer, E., Retschitzegger, W., and
Schwinger, W. (2005). Model integration through
mega operations. In Proceedings of the Workshop on
Model-Driven Web Engineering MDWE 2005.

SoaML (2012). Service-oriented architecture modeling lan-
guage (soaml). http://www.omg.org/spec/SoaML.

Steel, J. and Jézéquel, J.-M. (2005). Model typing for im-
proving reuse in model-driven engineering. In Pro-
ceedings of MODELS 2005.

Tolvanen, J.-P. and Kelly, S. (2009). Metaedit+: Defining
and using integrated domain-specific modeling lan-
guages. In OOPSLA 2009.

Weisemöller, I. and Schürr, A. (2008). Formal definition of
mof 2.0 metamodel components and composition. In
Proceedings of MODELS 2008.

Service-oriented�Design�of�Metamodel�Components

79

