
A Model-driven Approach to Process Enactment

Sana Damak Mallouli1, Saïd Assar2 and Carine Souveyet1
1Centre de Recherche en Informatique, University of Paris 1, 90 rue Tolbiac, 75013 Paris, France

2Telecom Ecole de Management, 9, Rue C. Fourier, 91011, Evry, France

Keywords: Meta-Modeling, Model-driven Engineering, Model Enactment, Event Modeling, Publish/Subscribe Pattern.

Abstract: Building software tools to support a new modeling formalism is a complex, error prone and time consuming

task. Previous experiences have taught us that maintainability and portability are key issues which are

poorly supported when development is realized in and ad-hoc manner. To overcome these limitations, we

are investigating a meta-model driven approach for specifying at design phase not only the structural part of

a process meta-model, but also its operational semantics in order to derive in a systematic manner an

enactment engine. In this paper, we show how process model operational semantics are expressed by

defining the architecture of an interactive enactment engine, and how the engine's behavior is formally

specified using an event based notation. This approach includes an implementation step in which the engine

behavior meta-model is transformed into a running system that is based on the publish/subscribe pattern.

1 INTRODUCTION

The topic of this paper is related to the construction

of software tools that provide enactment

mechanisms for process models. In previous works,

our research team has engineered software tools for

event-oriented and goal-oriented modeling

formalisms (Rolland et al., 1988), (Souveyet and

Tawbi, 1998). These tools were built in an ad-hoc

manner, i.e. minimal specifications were provided at

design time and project resources were, to a large

extent, exclusively dedicated to development effort.

These experiences have taught us that engineering

such tools is complex, error prone and time

consuming. Maintainability and portability are key

issues, they are poorly supported as most of design

knowledge is hard coded into the software program

code. These tools neither lived beyond being

temporary demonstration prototypes, nor could

evolve to support any new modeling languages.

To overcome these drawbacks, we are

investigating the application of model-driven

engineering (MDE) approaches to software tools

engineering. In MDE, models are first level artifacts

through the whole software life-cycle. The final

running system is obtained from design models

through various transformation steps which can –

when possible – be fully automated. This approach

is expected to leverage designers and developers

productivity, and to enhance product quality,

maintainability and portability.

When building software tools according to MDE,

meta-models become essential artifacts as they are

expected to describe the structure, the semantics and

the future usage of the models to be manipulated by

the tool under construction. However, meta-

modeling usage is generally restricted to specifying

the static structure of models, i.e. concepts and links

between these concepts (Sprinkle et al., 2011).

While the process and the behavior perspectives are

well known in information systems modeling (Olle

et al., 1991), they are missing in meta-models

specified in the software engineering domain. For a

process modeling language, this knowledge inquires

on its operational semantics.

A first study on the relationship between a meta-

model and the expression of the underlying model's

operational semantics was made on Petri nets in an

early work by Breton and Bézivin (2001). The

authors complemented the static meta-model

describing the structure a Petri net (arcs and

transitions) by a behavior meta-model which add

necessary data structures for the execution of an

instance of this model (tags and token movements).

Out of these preliminary reflections, the Kermeta

language was proposed and developed. Kermeta is

an object-oriented meta-programming language. It

provides a way to add meta-specification to an UML

351Damak Mallouli S., Assar S. and Souveyet C..
A Model-driven Approach to Process Enactment.
DOI: 10.5220/0004083303510354
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 351-354
ISBN: 978-989-8565-19-8
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

mailto:sana.mallouli@gmail.com
mailto:said.assar@it-sudparis.eu
mailto:carine.souveyet@univ-paris1.fr

meta-diagram (Kermeta, 2012).

Our work adopts a similar approach. We

investigate how to specify at a high level of

abstraction and using meta-models, both the

structure and the semantics of process models, and

how running software tools can systemtically or

automatically be derived from such specifications. In

a previous work (Assar et al., 2011), we analyzed

the need for behaviour perspective in meta-

modeling. In this paper, we refine this proposal and

claim that expressing a process model operational

semantics using a behaviour metamodel corresponds

in fact to specifying an enactement engine. In order

to derive a running software tool, we investigate the

transformation of the behaviour meta-model into an

executable object oriented application based on the

publish/subscribe pattern.

Our research work focuses on the Map

formalism, a goal-oriented modeling notation which

is particularly well suited to represent engineering

processes (Rolland et al., 1999). Earlier works have

explored the possibility of building software tools

dedicated to the Map formalism (Velez, 2003),

(Edme, 2005). These exploratory prototypes were

specified with structure oriented meta-models, and

then developed in ad-hoc manners using

programming languages and relational DBMS.

This paper is organized into 5 sections. Section 2

describes briefly Map modeling notation together

with static meta-models. Section 3 introduce the

behavior modeling notation and the behavior meta-

model for the enactment engine. Section 4 presents

the publish/subscribe pattern and defines

transformation rules for deriving enactment tool.

The last section discusses the proposed approach,

and proceeds with the conclusion.

2 THE MAP FORMALISM

Based on the intention paradigm, the Map formalism

captures the goals (Intentions) that a process is

expected to fulfill, together with a set of available

strategies to realize these intentions. Each Intention

can be realized by one or more Strategy, and the

whole process is represented as a labeled graph (Fig.

1a) with intentions as nodes and strategies as edges

(Rolland et al., 1999). The operational semantics of

the Map do not constrain the user in a sequential

process consisting of successive steps, but allows

instead a large degree of freedom in the scheduling

of intentions and in the choice of the strategy to be

applied at each step.

To be expressed precisely, Map operational

(a)

(b)

Figure 1: (a) A map illustrating example, and (b) an

illustration of achieved intentions and candidate sections.

semantics need references to the product. Indeed, the

achievement of an intention corresponds to the

execution of some action on an instance of a product

fragment according to a certain strategy. By

executing a <J, S, L> section, we mean achieving

the intention L, using the strategy S, and starting

from the result (i.e. an instance of a product

fragment) of intention J. If Jri1, Jri2 and Jri3 are past

realizations of intention J with different instances of

the same product fragment (Fig. 1b), the sections <J,

SJK1, K>, <J, SJL1, L> or <J, SJL2, L> can then be

executed for each of these past realizations. For the

realized intention Jri2 for example, three sections are

candidates for execution: < Jri2, SJK1, K>, < Jri2, SJL1,

L> or < Jri2, SJL2, L>. The combination of a past

intention achievement, a strategy and an intention

that could be realized (i.e. the triplet <Jri1, S, L>) is

called a candidate section and is a fundamental

concept for expressing the operational semantics. At

each execution of a section, a new collection of

candidate sections (i.e. sections that could be

enacted next) has to be computed. Thus, Map

enactment engine relies on elements we have

introduced above: Realized Intentions, Executed

Sections and dynamically computed Candidate

Sections. The Map structural meta-model is

presented in the upper part of figure 2.

3 BEHAVIOUR

META-MODELING

The schema in figure 2 presents an extended Map

meta-model with enactment engine architecture (the

lower part of the figure). This schema is however

static; it does not express how the enactment is

dynamically handled by the engine. The purpose of

behavior modeling is to capture this dynamicity and

to express both the interaction between different

elements of the architecture, and the interaction with

the tool execution environment (i.e. external

application and end users). To specify model

behavior, we have introduced in a previous work an

event-based notation (Assar et al., 2011).

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

352

Figure 2: Extended Map meta-model with enactment engine architecture.

Figure 3: Behavior model for the enactment engine.

The behavior perspective is built upon the concepts

of event, trigger and operation (Fig. 3). An External

event corresponds to the arrival of a message, while

an Internal event is related to a state change in an

object. A Message is issued by an agent, which can

be a human actor or an application system. The

ascertain relationship is defined either between an

event and a message (for an external event), or

between an event and an object in case of an internal

event. The Trigger relationship relates an event to

the triggering of one or several Operations. This

execution can be conditional; in this case, a specific

Condition is associated to operation triggering.
The end user (i.e. MapActor) selects a map to

enact (message M1 and event EV1). This sets the
map status to 'Running' (event EV9) and creates a
new enactment session in the engine (i.e. class
MapEnactment). Inserting a new instance in
MapEnactment in status 'Running' (EV2) triggers the
initial candidate section computation.

When new instances of CandidateSections are

inserted (EV3), they are displayed to the user

(message M2). The user then selects a candidate

section to be executed (message M3), and the status

for this candidate section changes from 'Candidate'

to 'Selected' (EV5). This triggers the execution of the

strategy which is associated with the selected

section. Once the end of the strategy execution is

notified (EV8) by the external application (message

M8), the status of selected candidate section changes

from 'Selected' to 'Executed' (EV6). After updating

different data (ExecutedSection, RealizedIntention,

ProductInstance), this triggers the computation of

candidate sections (EV6) and a new dynamic cycle

from events EV3 and EV4 is launched.

4 DERIVING AN ENGINE FOR

PROCESS ENACTMENT

In order to derive a running tool from these meta-

specifications, we are working on transformation

rules that target Java platforms. Because of the

A Model-driven Approach to Process Enactment

353

dynamic and interactive nature of the behavior

model, we rely on the publish/subscribe

development patterns. These patterns originate from

the field of distributed programming and were

initially proposed for designing loosely coupled

systems (Eugster et al., 2003). Subscribers can

express their interest in an event, and are

automatically notified of any event, generated by a

publisher, which matches their registered interest.

An event is thus asynchronously propagated to all

subscribers that are registered to that event. This

pattern of asynchronous interaction is being

recognized as the paradigm of choice for reactive

application development (Hinze et al., 2009).

Three main rules are necessary to transform the

behavior schema into a reactive and dynamic

running application (Fig.4). The first rule concerns

the internal event. It says that each event is

transformed into a Listener class type, and all

operations triggered by this event will be called in

the firePropertyChange method of this class. For

external events, we distinct tow cases. In the case of

an actor action, the rule consists in transforming the

actor object into a Publisher class having methods

that allow adding, removing and subscribing

listeners. The third rule concerns the invoking of an

external actor. In this case, the trigger which

displays messages to the end-user is transformed

into Publisher class type in a similar manner to the

second rule.

Figure 4: Transformation rules from event model concepts

into publish/subscribe patterns.

This work is under progress, and we are actually

exploring how to express these rules using some

formal notation such as ATL.

5 CONCLUSIONS

We have presented in this paper an approach

inspired by MDE for designing and developing

software tools. In this approach, meta-models are

fundamental artifacts which are used to express both

the structure and the operational semantics of target

models that will be manipulated by tools. We claim

that using adequate transformation rules, a fully

running software tool can be obtained. This proposal

is ongoing, and we are working on the specification

and the implementation of the transformation rules.

The contribution of this work is in model

engineering and in process model enactment. We

seek to rigorously specify the operational semantics

of process models and to apply it to a decision

oriented model used to describe and to guide

engineering process. The proposed approach is

promising, it has been partly experimented, it needs

however further validation and formalization.

REFERENCES

Assar, S., Mallouli, S. & Souveyet, C., 2011. A behavioral

perspective in meta-modeling. 6th Int. Conf. on Soft.

and Data Technologies (ICSOFT), Sevilla, Spain.

Breton, E. & Bézivin, J., 2001. Towards an understanding

of model executability. In Proc. 2nd Int. Conf. on

Formal Ontology in Inf. Syst. USA: ACM.

Edme, M., 2005. Proposition pour la modélisation

intentionnelle et le guidage de l'usage des systèmes

d'information. PhD thesis, University of Paris 1,

France.

Eugster, P.T., et al., 2003. The many faces of publish/

subscribe. ACM Comp. Surveys, 35(2), p.114–131.

Hinze, A., Sachs, K. & Buchmann, A., 2009. Event-based

applications and enabling technologies. In

Proceedings 3rd ACM Int. Conf. on Distributed Event-

Based Systems. New York, USA: ACM, p. 1–15.

Kermeta, 2012. http://www.kermeta.org.

Olle, T.W. et al., 1991. Inf. Syst. Methodologies: a

Framework for Understanding, Addison-Wesley.

Rolland, C. et al., 1988. The RUBIS system. In T.W. Olle,

A.A. Verrijn-Stuart & L. Bhabuta (eds), Computerized

Assistance During the Information Systems Life Cycle,

North-Holland, p. 193–239.

Rolland, C., Prakash, N. & Benjamen, A., 1999. A Multi-

Model View of Process Modelling. RE,4,p.169–187.

Souveyet, C. & Tawbi, M., 1998. Process centred

approach for developing tool support of situated

methods. DEXA’98. LNCS.

Berlin/Heidelberg:Springer, p.206–215.

Sprinkle, J. et al., 2011. Metamodelling: State of the Art

and Research Challenges. In H. Giese et al., éd.

Model-Based Engineering of Embedded Real-Time

Systems. LNCS. Berlin/Heidelberg: Springer, p. 57–

76.

Velez, F., 2003. Proposition d’un environnement logiciel

centré processus pour l’ingénierie des systèmes

d’information, PhD thesis, University of Paris 1,

France.

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

354

http://www.kermeta.org/

