
Reduction of Program-generation Times by Transformation-sequence
Optimization

Martin Kuhlemann, Andreas Lübcke and Gunter Saake
University of Magdeburg, Magdeburg, Germany

Keywords: Program Generation, Code-transformation Time, Optimization.

Abstract: Transforming source code is common today. Such transformation process may involve the execution of a
number of program transformations on the source code. Overall, the transformation process can last long
when individual program transformations last long and when high numbers of program transformations need
to be executed. In this paper, we introduce and discuss techniques that can reduce the time transformation
tools need to produce a program.

1 INTRODUCTION

A number of mainstream programming languages in-
volve the translation of source code. Such transla-
tion is possible by consecutively executing a num-
ber of program transformations (Batory et al., 2004;
Schaefer et al., 2010; Kuhlemann et al., 2009; Bax-
ter, 1990). Generally, such transformation process
might last long because (a) individual transformations
might last long (e.g., the linking of the Mozilla Fire-
fox browser can last more than 30 minutes), (b) the
number of program transformations might be high,
or (c) a combination of both reasons. Such transfor-
mation process even might exceed memory.1 Thus,
we investigate the optimization of transformation se-
quences such that similar problems do no longer oc-
cur. We argue that such problems are especially harm-
ful in the following sample scenarios:

• In configurable programs (sometimes called prod-
uct lines (Czarnecki and Eisenecker, 2000)), pro-
gram transformations can be executed in se-
quences in order to generate programs with cer-
tain features (Batory et al., 2004). If programs
have many features, many program transforma-
tions must be executed.

• In step-wise refinement (Wirth, 1971), program
transformations implement/encapsulate (unfore-
seen) evolutionary steps and might have not been
analyzed for being necessary with respect to the
finally generated program. If many evolutionary

1https://developer.mozilla.org/en/Buildingwith Profile-
GuidedOptimization (accessed: December 23, 2011).

steps exist, so there are many program transfor-
mations to execute.

While the problem of long execution times for
program-transformation sequences has been observed
before (Baxter, 1990; Batory, 2007; Kuhlemann et al.,
2010), no precise rules were proposed for general pro-
gram transformations in order to reduce the times that
tools need for executing sequences of these program
transformations. In this paper, we discuss new ideas
of how to reduce the runtimes of tools, which execute
sequences of program transformations. Future work
remains to evaluate and detail these first ideas in in-
dustrial environments and tools.

2 BACKGROUND ON
TRANSFORMATION SYSTEMS

Different types of program transformations are com-
mon,superimpositionandpattern-basedtransforma-
tions.

2.1 Superimposition Transformations

Jak, FeatureC++, and FeatureHouse are languages
that extend programming languages by superim-
positions (e.g., Jak extends Java by superimposi-
tions) (Batory et al., 2004; Apel et al., 2005; Apel
et al., 2009).2 A superimposition is a program trans-

2FeatureC++ also supports additional types of transfor-
mations.

182 Kuhlemann M., Lübcke A. and Saake G..
Reduction of Program-generation Times by Transformation-sequence Optimization.
DOI: 10.5220/0004093901820186
In Proceedings of the 7th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2012), pages 182-186
ISBN: 978-989-8565-13-6
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



Program transformationBaseElem

1 public class Element {

2 public String name;

3 public void print(){

4 ...

5 System.out.print(name);

6 }

7 }

Program transformationNeighborElem

8 refines class Element {

9 private String neighbor;

10 private void printNeighbor(){...}

11 public void print() {

12 printNeighbor();

13 Super.print();

14 }

15 }

(a) Jak transformations.

16 public class Element {

17 public String name;

18 public void print(){

19 printNeighbor();

20 ...

21 System.out.print(name);

22 }

23 private String neighbor;

24 private void printNeighbor(){...}

25 }

(b) Result of executing the transformations of Fig. 1a.

Figure 1: Jak program transformations and their execution
result.

formation, which is structured like its input program;
code of such superimpositions is added to the input
program in positions that coincide with the code po-
sition inside the superimposition.

In Figure 1, we list two superimposition transfor-
mations written in Jak,BaseElemandNeighborElem.
BaseElemtakes a program as an input and adds a
classElement to it, which has a fieldname and a
methodprint. NeighborElemtakes a program as an
input (possibly the program generated byBaseElem)
and adds the membersneighbor andprintNeighbor to
the classElement (keywordrefines, Line 8); further,
theNeighborElemmethodprint overrides the method
print of Element (as the methods’ positions coincide)
– thereby,print of NeighborElemcalls theBaseElem
methodprint (keywordSuper, Line 13). When we ex-
ecute the program transformations of Figure 1a, we
generate the program of Figure 1b.

1 public class Element {

2 public String name;

3 public void print(){

4 ...

5 System.out.print(name);

6 }

7 }

8 public aspect ElementAspect {

9 private String Element.neighbor;

10 private void Element.printNeighbor(){...}

11 before() : execution(void Element.print()) {

12 printNeighbor();

13 }

14 }

Figure 2: AspectJ aspects and a program they alter.

2.2 Pattern-based Transformations

AspectJ and macro languages (like the one of
C++) extend programming languages by program-
transformation-like mechanisms (Kiczales et al.,
2001; Stroustrup, 1991). Basically, the mechanisms
in these languages take a program as an input, de-
tect code that follows an explicitly defined pattern (be
the pattern (a) a description of code positions or (b) a
piece of code of the extended program), and add/re-
place code according to the matching code. For ex-
ample, aspects might match the method of a certain
class and transform it.

In Figure 2, we show a base program consisting of
classElement and we show an aspectElementAspect.
The aspect adds members to classElement of the
base program (neighbor andprintNeighbor to classEl-
ement) and extends methodprint of Element. The re-
sult of executing the aspectElementAspect with its
base program is equal to the program of Figure 1b.
The pattern, which matches the methodprint (Fig. 2,
Line 11), is specific to the base program as it depends
on that there is a classElement and on that there is a
methodprint inside theElement class. However, the
pattern might also contain wild cards to match differ-
ent methods; for example, the patternexecution(void
Element.*()) can match multiple methods of theEle-
ment class in order to extend them.

3 OPTIMIZING SEQUENCES OF
PROGRAM
TRANSFORMATIONS

We have introduced basic techniques of transforma-
tion systems in Section 2. Now, we analyze new

Reduction�of�Program-generation�Times�by�Transformation-sequence�Optimization

183



Table 1: Support of optimization concepts by transforma-
tion types.

Transformation type P
os

tp
on

in
g

L
oc

al
it

y

O
ve

rw
ri

tt
en

P
ar

al
le

lis
m

Superimposition transformations⊕ ⊙ ⊕ ⊕
Pattern-based transformations ⊖ ⊙ ⊕ ⊙

⊕good support;⊙problematic support;⊖bad/no support

approaches to reduce the time tools need to exe-
cute sequences of program transformations; specif-
ically, these approaches involve thepostponing of
long-lasting transformations, the analysis oflocality
of altered code, theremoving of overwritten program
transformations, and theparallel processing of pro-
gram transformations. In Table 1, we summarize the
support for the concepts we propose by the transfor-
mation types.

Postponing of Long-lasting Transformations. We
propose to postpone in sequences those transforma-
tions which last long; we do so to execute short-term
transformations first. First, this helps to not run out
of memory when less objects must be kept in mem-
ory, which in turn helps to reduce the execution time
of a program-transformation tool. Second, postpon-
ing long-lasting program transformations can help to
abort a generation process early when a transforma-
tion inside a sequence to execute is in error (as more
transformations are executed earlier). For example, if
transformationA takes long but not transformationB,
thenB should be executed beforeA; if B fails then it
does before executing the long-lastingA and whenA
fails it does after the short-termB.

In order to reorder two program transformations
A andB, both transformations must be commutative
(i.e., A(B(program)) = B(A(program))). However,
two transformations might not be commutative when
there are interdependencies between them (Mens
et al., 2006; Mens et al., 2007; Whitfield and Soffa,
1997). For example, in Figure 1a, we must at-
tend interdependencies between the program trans-
formationsBaseElemand NeighborElemsuch that
BaseElemmust execute beforeNeighborElem; specif-
ically, NeighborElemextends a classElement, which
thus must exist, and the method extension ofNeigh-
borElem, print, calls the base method, which only ex-
ists if BaseElemexecuted beforeNeighborElem. We
further cannot postpone and reorder transformations
if we cannot always detect which pieces of code they

affect (i.e., when program transformations do not enu-
merate these pieces).

Now, how can we estimate the time, which a
tool needs to execute a program transformation? We
propose to analyze program transformations with
respect to the number of pieces of code, which each
transformation affects. We assume that transforma-
tions, which alter more pieces of code, last longer
and should thus be postponed in sequences as much
as possible. We also could apply additional code
metrics (e.g., metrics measuring positional distances
of code elements inside respective input programs)
to estimate the time of executing a transformation.
For superimposition languages, we can count the
number of pieces of code that are altered by a
program transformation. For example, the feature
transformationNeighborElem in Figure 1a alters
four pieces of code (Element, Element.neighbor,
Element.printNeighbor(), Element.print()) whereas
BaseElemin this figure alters only three pieces of
code (Element, Element.name, andElement.print()).
We thus can assume that executingBaseElembefore
NeighborElem(if possible with respect to the trans-
formations’ interdependencies) keeps the memory
non-full for a longer period of time which in turn
improves performance of the program-generation
process. Program transformations, which do not
enumerate the pieces of code they alter, can hardly
be estimated with respect to the number of pieces of
code they alter. Summarizing, we can estimate well
the time to execute superimposition transformations
(as they list all the pieces of code they alter) but not
pattern-based transformations.

Locality of Altered Code. We could group trans-
formations, which alter pieces of code that are near
each other with respect to the code structure be-
cause this could allow us to pass intermediate trans-
formation results between the transformation steps in
memory (if they are not grouped, buffer management
might force tools to write intermediate results to hard
disk). This way, we might reduce disk accesses and
thus improve performance. For example, we could
group transformations which target methods of the
same class such that this class and classes, which
use this class or are related to this class, only must
be loaded, parsed, and processed once while other
classes (transformed by other transformations) need
not be loaded for the time of executing these trans-
formations. For superimposition transformations and
pattern-based transformations, locality of code might
be hard to detect from the transformation description
(e.g., when transformed pieces of code are scattered
across classes of which relations are unknown).

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

184



Removing Overwritten Program Transforma-
tions. In many program-transformation languages,
transformation effects can be undone or overwrit-
ten by program transformations that are executed
later. For example, DELTAJAVA (Schaefer et al.,
2010) is a program-transformation language with
superimposition-like mechanisms, which allow pro-
gram transformations to add code, to alter code, and
to remove code. If we can detect program transforma-
tions that overwrite effects of other transformations,
we might be able to omit these other transformations
without affecting the transformation result. To imple-
ment this approach, we can analyze the containment
of pieces of transformed code. For example, if we
can detect that a first program transformation solely
creates a method inside a class and a later program
transformation removes or replaces this class (includ-
ing the method) we can omit the first transformation
without problems. In accordance to database technol-
ogy, we call such casesblind-write cases. We might
also alter transformations when transformed pieces of
code of two transformations just partly overwrite each
other.

In Jak, pieces of code with equal scoped names
overwrite each other. If a piece of code overwrites an-
other piece of code but does neither call nor reference
this other piece of code (usingrefines or Super); this
other piece gets replaced and needs not to be inserted
in the first place.

We can detect containment and overlapping of
transformed pieces of code of two transformations
straightforwardly for superimpositions because super-
impositions enumerate respective pieces. For pattern-
based program transformations, we must compare the
patterns and maybe can neither detect containment
nor overlapping of transformed pieces of code at all.

Throughout this optimization, we must check that
program transformations do not depend on a piece of
code, which was generated by a transformation to be
removed, as they could fail after the removal.

Parallel Processing of Program Transformations.
With superimposition transformations, we easily can
determine program transformations that alter disjoint
pieces of code in a program. This is because superim-
positions enumerate the pieces of code they transform
and we can compare these pieces. Once, we know
that transformations alter disjoint pieces of code in
a program, we can execute both transformations in
parallel (after making them successors in the trans-
formation sequence) and merge their results. Execut-
ing pattern-based transformations in parallel is hard
but possible (as shown for refactorings before (Kuh-
lemann et al., 2010)). That is, though we can execute

such transformations in parallel, we must ensure that
the merge of the result is equal to the result of execut-
ing the transformations sequentially. In accordance to
database technology, we call problems in such cases
lost-update errors.

4 RELATED WORK

Batory et al. motivated the need to optimize the
program-generation process for superimposition
transformations (Batory, 2007; Batory, 2004). We
now gave rules that shall allow tools to estimate
the time they need for executing a program trans-
formation. In previous work, we gave such precise
rules only for sequences of refactoring transforma-
tions (Kuhlemann et al., 2010). Others optimized
sequences of program transformations (mostly
refactorings) by targeting the precondition checks
of these program transformations (Cinnéide and
Nixon, 2000; Kniesel and Koch, 2004; Kniesel,
2006; Roberts, 1999); we did not aim at reducing the
precondition checks of program transformations to
increase transformation-tool performance.

Approaches exist, to reorder program transfor-
mations of concurrent program-transformation se-
quences (Lynagh, 2006). In our approach, we re-
order program transformations in individual program-
transformation sequences.

Other approaches involve the reordering of trans-
formations in individual program-transformation se-
quences (Dig, 2007; Dig et al., 2008; Baxter, 1990);
these approaches, however, do not have the purpose of
reducing any program-generation time. Instead, they
reorder program transformations, for example, in or-
der to synchronize maintenance edits made to a pro-
gram with a previous version of this program in a ver-
sioning system.

5 CONCLUSIONS

In this paper, we analyzed how sequences of program
transformations can be executed faster. To this end,
we introduced techniques to detect program transfor-
mations, which perform unnecessary operations. Fur-
ther, we introduced ideas to estimate the time tools
need to execute a program transformation. As a result,
our techniques will help to reduce the time tools need
to execute sequences of program transformations as
well as resources like memory.

There is a lot of future work for us to do. First, we
need to perform studies in order to verify our con-
cepts (e.g., regarding the effort estimation for pro-

Reduction�of�Program-generation�Times�by�Transformation-sequence�Optimization

185



gram transformations). That is, for example, we need
to check whether the count of pieces of code to trans-
form really is a good indicator for the time tools need
to execute transformations. Second, we need to in-
vestigate on the effect we can gain in real-world pro-
grams. Third, we need to investigate new cost mod-
els for program transformations (just as they exist in
database systems for data transformations). Finally,
we need to find out how program transformations
should look like in order to apply our concepts to
them. We plan to adopt techniques of query optimiza-
tion and transaction management of database man-
agement systems for program-transformation tools in
this future work.

REFERENCES

Apel, S., Kästner, C., and Lengauer, C. (2009). Fea-
tureHouse: Language-independent, automated soft-
ware composition. InProceedings of the International
Conference on Software Engineering, pages 221–231.
IEEE Computer Society.

Apel, S., Rosenmüller, M., Leich, T., and Saake, G. (2005).
FeatureC++: On the symbiosis of feature-oriented and
aspect-oriented programming. InProceedings of the
Conference on Generative Programming and Compo-
nent Engineering, pages 125–140. Springer Verlag.

Batory, D. (2004). The road to Utopia: A future for gen-
erative programming. InProceedings of the Seminar
on Domain-Specific Program Generation, pages 211–
250. Springer Verlag.

Batory, D. (2007). A modeling language for program design
and synthesis. InProceedings of the Lipari Summer
School on Advances in Software Engineering, pages
39–58. Springer Verlag.

Batory, D., Sarvela, J., and Rauschmayer, A. (2004). Scal-
ing step-wise refinement.IEEE Transactions on Soft-
ware Engineering, 30(6):355–371.

Baxter, I. (1990).Transformational maintenance by reuse of
design histories. PhD thesis, University of California
at Irvine, USA.

Cinnéide, M.Ó. and Nixon, P. (2000). Composite refactor-
ings for Java programs. InProceedings of the Work-
shop on Formal Techniques for Java Programs, pages
129–135.

Czarnecki, K. and Eisenecker, U. (2000).Generative
programming: Methods, tools, and applications.
Addison-Wesley Longman Publishing Co., Inc.

Dig, D. (2007).Automated upgrading of component-based
applications. PhD thesis, University of Illinois at
Urbana-Champaign, USA.

Dig, D., Manzoor, K., Johnson, R., and Nguyen, T. (2008).
Effective software merging in the presence of object-
oriented refactorings.IEEE Transactions on Software
Engineering, 34(3):321–335.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J., and Griswold, W. (2001). An overview of As-

pectJ. InProceedings of the European Conference
on Object-Oriented Programming, pages 327–353.
Springer Verlag.

Kniesel, G. (2006). A logic foundation for program trans-
formations. Technical Report IAI-TR-2006-1, Univer-
sity of Bonn, Germany.

Kniesel, G. and Koch, H. (2004). Static composition
of refactorings. Science of Computer Programming,
52(1-3):9–51.

Kuhlemann, M., Batory, D., and Apel, S. (2009). Refactor-
ing feature modules. InProceedings of the Interna-
tional Conference on Software Reuse, pages 106–115.
Springer Verlag.

Kuhlemann, M., Liang, L., and Saake, G. (2010). Al-
gebraic and cost-based optimization of refactoring
sequences. InProceedings of the Workshop on
Model-Driven Product Line Engineering, pages 37–
48. CEUR-WS.org.

Lynagh, I. (2006). An algebra of patches. [Available
online: http://urchin.earth.li/∼ian/conflictors/paper-
2006-10-30.pdf; accessed: July 16,2011].

Mens, T., Kniesel, G., and Runge, O. (2006). Transforma-
tion dependency analysis - A comparison of two ap-
proaches. InProceedings of Langages et Modèles à
Objets, pages 167–184. Hermes Science Publishing.

Mens, T., Taentzer, G., and Runge, O. (2007). Analysing
refactoring dependencies using graph transformation.
Software and Systems Modeling, 6(3):269–285.

Roberts, D. (1999).Practical analysis for refactoring. PhD
thesis, University of Illinois at Urbana-Champaign,
USA.

Schaefer, I., Bettini, L., Bono, V., Damiani, F., and Tan-
zarella, N. (2010). Delta-oriented programming of
software product lines. InProceedings of the Software
Product Line Conference, pages 77–91. Springer Ver-
lag.

Stroustrup, B. (1991).The C++ programming language.
Addison-Wesley Longman Publishing Co., Inc., 2nd
edition.

Whitfield, D. and Soffa, M. (1997). An approach for ex-
ploring code improving transformations.ACM Trans-
actions on Programming Languages and Systems,
19(6):1053–1084.

Wirth, N. (1971). Program development by stepwise refine-
ment.Communications of the ACM, 14(4):221–227.

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

186


