
Toward a Quality-driven Service Component Architecture
Techniques and Models

Maryem Rhanoui1 and Bouchra El Asri2
1School of Information Science, Rabat, Morocco

2National Higher School of Computer Science and Systems Analysis, Rabat, Morocco

Keywords: Service Component, Service Component Architecture, Critical System, Fault Tolerance, Contracts.

Abstract: Service Component Architecture (SCA) is a recent approach and an industry standard for developing
complex and distributed systems. Despite the growing research work it still lacks a formal basis for handling
quality and reliability of safety-critical systems. In this paper we present main techniques and models for
assuring quality and trustworthiness of component-based systems in general, then we present and justify the
choice of the design-by-contract approach that we adopted for the following of our research about SCA-
based systems.

1 INTRODUCTION

Service Oriented Architecture is a promising
paradigm for developing complex systems that
utilizes services as fundamental elements for
developing applications, in this perspective; Service
Component Architecture (SCA) is a new concept
that offers a component model for building SOA
architecture.

Official SCA specification document includes
SCA assembly model specification (Beisiegel, 2007)
and SCA policy framework (Barber). However, as
an expanding approach, it still needs more formal
models and frameworks for modelling and verifying
systems.

Our litterature review shows that most research
efforts have focused on technical aspects of SCA,
leaving aside the treatment of quality problems and
extra-functional properties of service component.

Our field of research focus on the design and
development of complex and safety-critical systems.
Critical systems (Isaksen et al., 1997) are systems
whose failure could cause loss of human lives, cause
property damage, or damage to the environment,
such as aviation, nuclear, medical applications, etc.

In this paper we present main techniques and
models for handling quality and trustworthiness of
component-based systems. Among the presented
approaches, the contract-based approach is a light-
weight formal method for designing quality-driven
systems by spefiying its non-functional and quality

properties
The remainder of this paper is organized as

follows: section 2 will be dedicated to the
presentation of the concept of service component.

Section 3 will focus on main techniques and
models for assuring trustworthiness of component-
based systems.

Finally section 4 will present and justify with our
proposed approach.

2 SERVICE COMPONENT
ARCHITECTURE

Service-oriented computing (SOC) is the computing
paradigm that utilizes services as fundamental
elements for developing applications (Papazoglou
and Georgakopoulos, 2003). Service Component
Architecture (SCA) proposes a programming model
for building applications based on components
following the SOA paradigm.

SCA offers many advantages: it simplifies
development of business component and assembly
and deployment of business solutions built as
networks of services; increases agility and
flexibility, protects business logic assets by shielding
from low-level technology change and improves
testability.

2.1 Component Model

Various component models of Service Component

192 Rhanoui M. and El Asri B..
Toward a Quality-driven Service Component Architecture - Techniques and Models.
DOI: 10.5220/0004094701920196
In Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS-2012), pages 192-196
ISBN: 978-989-8565-11-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

Architecture were proposed in literature.
For Ding (Ding et al., 2008) proposed

component model, a service component provide and
require services. A service can be described by
operation activities as by well-defined business
function. A component provides and consumes
services via ports.

A port p is a tuple (M,t, c), where M is a finite
set of methods, t is the port type and c is the
communication type.

A component Com is a tuple (Pp, Pr,G,W), in
which Pp is a finite set of provided ports, Pr is a
finite set of required ports, G is a finite sub
component set

Moreover, Du et al (Du el al., 2008) included
contract concept in the Service Component meta-
model

A contract Ctr is a quadruple (P, Init, Spec,
Prot) where

 P is a port;
 Spec maps each operation m of P to its
specification (am,, gm , pm) where:

 am contains the resource names of the
port P and the input and output
parameters of m.

 gm is the firing condition of operation
m, specifying the environments under
which m can be activated.

 pm is a reactive design, describing the
behaviour of m.

 Init identifies the initial states.
 Prot is a set of operations or service calling
events.

2.2 Framework and Meta-Model for
SCA

Zhang et al (Zhang et al., 2009) realized a
framework for modelling service-oriented systems.
In this framework, the concept of "service
component" is considered as a unit of first-class
modeling to capture the functional unit linked to the
abstract service.

A "service component" is autonomous, self-
descriptive and can offer and deliver functionality to
other "component service" through interfaces
without displaying the implementation details.

The meta-model of the component service
(Zhang et al., 2009) is defined from the following
aspects: Identification: Identifies a service
component, Specification: Declares the service
interfaces and service contracts, Content:
Represents the implementation of an implicit
component service and details of its realization,

Context: Sets the environment in which the
component service exists and where it can be
adopted. Choreography: Specifies whether the
service component is a composite service or not.

Du (Du et al., 2007) proposed another meta-
model that includes contracts to the service
component

Contracts can specify both the functional
properties and the properties of QoS (Quality of
Service) of the various system service components.

3 TECHNIQUES AND MODELS
FOR QUALITY ASSURANCE
OF COMPONENT-BASED
SYSTEMS

As Service Component Architecture is a recent
approach, there are very few research works for
addressing quality issues and trustworthiness of
service-component based systems.

In this section we present main techniques and
models for quality assurance of component-based
systems in general. We have identified two main
classes, a priori and a posteriori approaches, the
first one address quality issues in build and
construction time and are rather considered process-
based approaches. The second one is a product-
based approach and is concerned by testing and
correcting the final product.

3.1 Fault Tolerance

Anderson and Lee (Anderson and Lee, 1981) have
identified four phases of fault tolerance: error
detection, damage assessment, restoration of the
state, and continuous service:

 Error detection determines the presence of
a fault by detecting an erroneous state in a
system component.

 Damage assessment determines the extent
of damage to the system state caused by
component failures and limit damage to the
extent possible.

 Restoration of the state realizes the
recovery of the error by restoring the
system to a defined state, error-free.

 Continuation of service, despite the fault
has been identified, means either that the
fault must be repaired or the system must
operate in a configuration where the effects
of the fault no longer lead to an erroneous
state.

Toward�a�Quality-driven�Service�Component�Architecture�-�Techniques�and�Models

193

Fault tolerance is a primary means of reliability
of components-based systems. Mohamed and
Zulkerine (Mohamed and Zulkerine, 2009) classified
the efforts of fault tolerance depending on the type
of component into three main classes: programming
based paradigm, environment based fault tolerance
models based fault tolerance.

3.2 Reliability Evaluation and
Prediction

The evaluation and prediction of reliability is to
predict the failure rate of components and overall
system reliability. They can be used in the
operational phase and the early stages of system
design software.

Reliability models of the system are classified
into three types: state-based, path-based and
propagation-based.

 State-based: uses control flow graph to
represent the system architecture and
software to predict the reliability
analytically.

 Path-based: software reliability calculated
by considering the possible execution paths
of the program

 Propagation-based: includes the
dependence of component failures by
considering the error propagation between
system components

3.3 Certification

There is no consensus on the definition of
components certification in component-based
systems engineering, Councill (Councill and
Heineman, 2001) proposed the following definition:

Third-party certification is a method to ensure
software components conform to well-defined
standards; based on this certification, trusted
assemblies of components can be constructed.

Research on the quality of component-based
systems can be divided in time into two categories:
pre-2001 research focused on mathematical proofs
and tests, and then the research has focused on
models and prediction techniques and on quality
assessment (Alvaro et al., 2005).

3.4 Quality Assurance Models

There are several standards for controlling and
improving software and development process quality
like ISO9001 and CMMI model (SEI), however,
there is still no standard and effective process

specific for component-based systems.
In the literature, several frameworks and quality

assurance models have been proposed for the
development of systems to bases of components like
(Cai et al., 2000), (Meyer, 2003) and (Andreou and
Tziakouris 2007).

A recent component quality framework is
proposed Alvaro et al. (Alvaro et al., 2010), the
framework consists of four modules: A Component
Quality Model that determines which quality
characteristics should be considered and which sub-
attributes are necessary, Evaluation Techniques
Framework which defines a number of techniques
to be applied to software components evaluation,
Evaluation Process in charge of defining a set of
techniques, metrics, models and tools to assess and
certify software components, to establish an
evaluation standard for components and finally
Metrics Framework responsible for defining a set
of measures to monitor the properties of components
and control the evaluation process.

3.5 Design by Contract

Design by Contract (Meyer, 1992) is an approach
and method of software design. It is based on the
legal definition of contracts which binds both parties
and highlights the interest to precisely specify the
interfaces behavior of a software component in
terms of preconditions, post conditions and
invariants.

The contract based approach provides proofs of
non-functional and quality properties without
requiring the full formality of proof-directed and
mathematical development. This approach is
particularly appropriate in the component-based
context. In fact, a pre-condition on the parameters of
an operation or a service defines a contract that the
required/given component agrees to respect.
Conversely, post-conditions on the return types of a
required component define the customer's
expectation from the service provider.

Beugnard (Beugnard et al., 1999) proposed a
classification of contracts into four categories: basic
contracts that ensure the possibility of running the
system properly, behavioral contracts that improve
trust in the system functionalities, synchronization
contracts that specify synchronization strategies and
policies, and finally QoS contracts which is the
highest level and specify quality of service
attributes.

Many contract extensions have been proposed
for other programming and modeling languages like
UML (Weis et al., 2001), (Warmer and Kleppe,

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

194

2003) Java and C#.
For component-based systems, Messabihi et al.

(Messabihi et al., 2010) proposed multilevel
contracts for components, however no complete
contract feature has been proposed for service
component until now.

It is important that quality is considered during
all stages of the development lifecycle of the
software. In fact, the contract-based approach allows
both defining the desired quality properties and
verifying and validating their accuracy.

4 OUR CONTRIBUTION

Dependability is a major requirement of the modern
systems which consists of the system's ability to
offer a trusted service.

To meet these requirements, we choose a
contractual approach. Indeed, within the component
and service paradigms, contracts have become a part
of their definition (Szyperski, 1998):

A software component is a unit of composition
with contractually specified interfaces and explicit
context dependencies only. A software component
can be deployed independently and is subject to
composition by third parties.

A contract defines the constraints between
components that is to say, the rights and obligations
between the service provider and the client. It has
the advantage of expressing the conditions of use of
a service by clarifying the obligations and benefits
of stakeholders.

Unlike mathematical evaluation and prediction
techniques, the contract-based approach is a light-
weight formal method for spefiying and designing
quality-driven systems, it can be introduced in a
early stage during the design phase.

To our knowledge, there is still no research work
for introducing the concept of contract in service
component based systems in order to manage and
handle quality requirements.

Our future work will focus on proposing a
framework for quality-driven Service Component
Architecture by including, among others, the notion
of contract for handling quality properties. The
defined quality and safety contracts will become part
of the design specification.

5 CONCLUSIONS

This work presented a literature review of main
techniques and models for modelling and verifying

quality-driven systems, we concluded that contract-
based approach is very suitable for component-based
systems in general and service component based
systems in particular.

Contracts is a design approach for describing
both functional and non-functional properties of
complex and quality-driven systems, it also involves
synchronization and Quality of Service (QoS)
aspects.

As a continuation of this work, a framework
should be presented and adapted to Service
Component Architecture for safety-critical and
quality sensitive systems.

REFERENCES

Alvaro, A., Almeida, E. S., Meira, S. R. L., 2010. A
software component quality framework. In ACM
SIGSOFT Software Engineering Notes 35, 1–18.

Alvaro, A., Almeida, E. S., Meira, S. R. L., 2005. A
Software Component Certification: A Survey, In the
31st IEEE EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA),
Component-Based Software Engineering Track.

Anderson, T., Lee, P., 1981. Fault Tolerance: Principles
and Practice. Prentice-Hall, Englewood Cliffs, NJ.

Andreou, A. S., Tziakouris, M., 2007. A quality
framework for developing and evaluating original
software components. In the Information & Software
Technology.

Barber, G., SCA Policy Framework Specification,
http://www.osoa.org/display/Main/SCA+Policy+Fram
ework.

Beisiegel, M., 2007, Service Component Architecture
Specification, http://www.osoa.org/display/Main/Hom
e.

Beugnard, A., Jezequel, J., Plouzeau, N., and Watkins, D.
1999. Making components contract aware. In IEEE
Computer 32(7):38–45.

Cai, X., Lyu, M. R., Wong Roy Ko, K.-F., 2000.
Component-Based Software Engineering: Technolo-
gies, Development Frameworks, and Quality Assuran-
ce Schemes. International Journal of Software Engi-
neering and Knowledge Engineering.

Councill, B., Heineman, G. T., 2000. Component-Based
Software Engineering and the Issue of Trust. In
Proceedings of the 22nd International Conference on
Software Engineering. ACM Press.

Ding, Z., Chen, Z., Liu, J., 2008. A Rigorous Model of
Service Component Architecture. Electr. Notes Theor.
Comput.

Du, D., Liu, J., Cao, H., 2008. A rigorous model of
contract-based service component architecture. In
CSSE (2). IEEE Computer Society.

Isaksen, U., Bowen, J. P., Nissanke, N., 1997. System and
Software Safety in Critical Systems. Technical Report
RUCS/97/TR/062/A, Department of Computer Science,
The University of Reading, UK.

Toward�a�Quality-driven�Service�Component�Architecture�-�Techniques�and�Models

195

Messabihi, M., André, P., Attiogbé, C., 2010. Multilevel
contracts for trusted components. In Javier Camara,
Carlos Canal, and Gwen Salaun, editors, WCSI,
volume 37 of EPTCS.

Meyer, B., 1992. Applying “design by contract”.
Computer.

Meyer, B., 2003. The Grand Challenge of Trusted
Components. In Proceedins ICSE 2003, IEEE
Computer Society Press.

Mohamed, A., Zulkernine, M., 2009. A Comparative
Study on the Reliability Efforts in Component-Based
Software Systems, Technical Report No. 2009-559,
School of Computing, Queen's University, Kingston,
Ontario, Canada.

Moore, R., Lopes, J., 1999. Paper templates. In
TEMPLATE’06, 1st International Conference on
Template Production. SciTePress.

Papazoglou, M. P., Georgakopoulos, D., 2003. Service-
Oriented Computing. Communications of the ACM.

Software Engineering Institute, CMMI site, available at
www.sei.cmu.edu/cmmi.

Szyperski. C., 1998, Component Software: Beyond
Object-Oriented Programming. ACM Press and
Addison-Wesley, New York.

Warmer, J., Kleppe, A., 2003. The Object Constraint
Language: Getting Your Models Ready for MDA, 2nd
edition, Addison-Wesley.

Weis, T., Becker, C., Geihs, K., Plouzeau, N., 2001. A
UML Meta-model for Contract Aware Components, In
Proceedings of UML 2001, Springer.

Zhang, L-J., Zhang, J., Design of Service Component
Layer in SOA Reference Architecture, 2009. In 33rd
Annual IEEE International Computer Software and
Applications Conference.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

196

