
Synthesis of Software from Logical Constraints

Kevin Lano and Shekoufeh Kolahdouz-Rahimi
Dept. of Informatics, King’s College London, London, U.K.

Keywords: Model-driven Development, Agile Development, Software Synthesis.

Abstract: This paper presents the case for constraints (requirementsformalised as logical assertions) as the key starting
point for software development. We describe how system development from such constraints can be auto-
mated.

1 INTRODUCTION

Software development methodologies such as Model-
driven Architecture (MDA) and Model-driven De-
velopment (MDD) have placed increasing emphasis
upon the modelling of systems at a level which ab-
stracts from specific platforms and implementation
technologies, and even from the details of particular
design strategies.

In this paper we describe an MDD approach based
on synthesis of executable systems from constraints
and declarative models, termedconstraint-driven de-
velopment(Lano, 2008).

2 CONSTRAINT-BASED
SPECIFICATION

A unifying concept across many kinds of software
system is the notion ofconstraint preservation(or
invariant preservation): the system purpose can be
characterised as being to maintain the truth of some
properties relating real-world elements (people, ar-
tifacts, devices) and their representations within the
system, and to maintain properties that inter-relate
these representations.

For example:

1. A reactive controller for a lift system must main-
tain invariants for safety (if a lift is moving, its
doors must be closed) and performance (the re-
sponse time of the lift system to respond to a re-
quest should not exceed 5 minutes).

2. An online banking system should maintain data
integrity invariants for its persistent data storage
(that each account has a valid primary owner, that
customers must have valid ages and names, etc),
and invariants relating the stored data to the real

world elements they represent (each real-world
customer has an entry in the stored data which ac-
curately represents their personal attributes such
as name and address, etc, and vice-versa).

3. A machine translation system should ensure that
the sentences and texts that it outputs (eg., in Rus-
sian derived from English input) has the same se-
mantics as the input natural language sentences
and text.

4. A software development tool which allows co-
construction of UML class diagrams and state ma-
chine diagrams should maintain consistency be-
tween these models (eg., the transitions in the
state machine for a class must be triggered by op-
erations or events of the class).

In each case, we could represent the intention of
the system as the maintenance of some set

C1, ...,Cn

of constraints. Sometimes these constraints are ex-
plicit and defined as part of the requirements analysis
of the system (eg., cases 1 and 4 above), but more of-
ten they remain implicit and are not usually expressed
as system requirements (eg., cases 2 and 3).

Constraints and invariants, despite their appar-
ently static nature, are more fundamental than
behaviour-based descriptions of a system, because
system behaviour can be derived and deduced from
the constraints, whilst the reverse is not generally true.

If some event occurs which causes or may cause
the violation of a constraint, then the system must re-
act/respond to this event in such a manner as to pre-
vent the violation.

For example:

1. If the lift door sensor indicates that the doors are
open, the lift motor actuator should be set off.

355Lano K. and Kolahdouz-Rahimi S..
Synthesis of Software from Logical Constraints.
DOI: 10.5220/0004101903550358
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 355-358
ISBN: 978-989-8565-19-8
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



2. If a new customer is accepted by the online bank,
their details should be added correctly to the per-
sistent data store.

3. If a new input text is presented to the translation
system, its output text must be a semantically cor-
rect translation of the input.

4. If the set of operations of a class are altered on the
class diagram editor (eg., by deletion of an opera-
tion), then the state machine must change accord-
ingly (eg., all transitions triggered by the deleted
operation should be removed).

If the constraints are sufficiently complete and ex-
plicit, then the precise action required in response to
each potentially constraint-breaking event can be au-
tomatically deduced.

3 A SPECIFIC
CONSTRAINT-BASED
METHODOLOGY: UML-RSDS

UML-RSDS is a model-based development approach
with the following principles:

• Systems should be specified at a high level of
abstraction, to promote reuse. The abstract
specifications arecomputation-independent mod-
els(CIMs) in terms of the MDA, and are based on
the system constraints, expressed in UML models
such as class diagrams, use cases, state machines
and interactions.

• The generation of a design and implementation
from the specification should be automated as far
as possible, so that correct executable systems can
be rapidly developed from abstract specifications,
and so that changes to the executable versions of
the system can be carried out in an agile manner
by modifying the specification and regenerating
the code.

The approach is supported by an extensive
toolset (http://www.dcs.kcl.ac.uk/staff/kcl/uml2web)
which has been applied to a wide range of software
systems over 15 years (Lano et al, 2003b; Lano and
Kolahdouz-Rahimi, 2011a).

Related tools and methodologies are xUML
from Abstract Solutions Ltd. (http://www.kc.com)
and Perfect Developer from Escher Technologies
(http://www.eschertech.com/products/). Specifica-
tions in these approaches however require the explicit
definition of operations as actions or pseudocode,
which are effectively detailed designs at the platform-
independent modelling (PIM) level in MDA terms.
UML-RSDS also supports direct design at this level,

but in addition it provides a higher level of abstrac-
tion at the level of constraints, and this is the recom-
mended style of specification in UML-RSDS.

A simple system specification in UML-RSDS
consists of a system data model defined by a UML
class diagram and system functionalities defined by
use cases, with various constraints, expressed in a
simplified form of the UML constraint language,
OCL:

1. Class invariants.

2. Global constraints of a class diagram.

3. Operation pre and postconditions.

4. Use case pre and postconditions.

5. State machine state invariants. and transition
guards.

For example, we could have a class diagram such
as that of Figure 1, with a global constraint defining
that the value ofx for a particularA object is the sum
of thezvalues of its attachedC objects:

x= br.cr.z.sum

A B

C

z : Integer

br

*

cr*

x : Integer

Figure 1: Composition of associations.

Changes tobr, cr andzmay affect the truth of the
constraint, and hence will require some response code
to re-establish the constraint. Such response code
can be mechanically calculated using the concept of
weakest precondition. The weakest precondition of a
constraintCn with respect to an action or activityact
is denoted by[act]Cn, and is the most general con-
dition prior to execution ofact which is sufficient to
ensure thatCnholds after performingact.

We consider the following basic incremental
changes to a model:

• setatt(v) – Set the value of attributeatt to v

• setrole(v) – Set the value of association endrole
to v

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

356



• addrole(vx) – Add vx to the collection-valued as-
sociation endrole

• removerole(vx) – Removevx from the collection-
valued association endrole

• setrole(i,vx) – Set thei-th element of a sequence-
valued association endrole to vx.

Table 1 shows examples of wpc calculations for
these different kinds of operation, for local class in-
variantsP of the class to which the operation belongs.

Table 1: Local constraint wpc calculations.

Operation act Weakest precondition[act]P
setatt(v) P[v/att]
addrole(vx) P[(role∪{vx})/role]
removerole(vx) P[(role−{vx})/role]
setrole(i,vx) P[(role⊕{i 7→ vx})/role]

In the example specification,br is a local feature
of A, so the calculations of Table 1 apply to give the
condition

x= v.cr.z.sum

which must be established in order thatsetbr(v) re-
establishes the constraint.

In other words, the code ofsetbr(v) must perform
both its basic action

br = v

and the additional action

x= v.cr.z.sum

derived from the constraint. These actions can be per-
formed in parallel or sequentially in either order, as
neither action writes to data read by the other.

We can derive similar change-propagation code
for addbr(vx) andremovebr(vx).

More interesting, and more challenging, is the
case of actions which affect non-local (ie., global)
constraints. For this example, changes tocr and to
z are in this category. The response to such changes
is performed in a class calledController, which has
access to all objects of the system. In this class are
operationssetatt(obj : C,v : T) which applysetatt(v)
to object obj, addrole(obj : C,vx : D) which apply
addrole(vx) to obj, and removerole(obj : C,vx : D)
which applyremoverole(vx) to obj.

Globally, a constraintP based on classA has the
meaning that for all instances ofA, P holds:

A→forAll(P)

Table 2 shows the response code for such global
operations, whereA→forAll(P) contains the modified
featuref of the operation, and this is not a local fea-
ture of the classA upon which the constraint is based.

Table 2: Global operation wpc calculations.

Operation act Weakest precondition[act]P
setatt(ob,v) A→forAll(ob∼ self implies

P[((ref −{ob}).att∪{v})/ref .att])
setrole(ob,v) A→forAll(ob∼ self implies

P[((ref −{ob}).role∪v)/ref .role])
addrole(ob,vx) A→forAll(ob∼ self implies

P[(ref .role∪{vx})/ref .role])
removerole(ob,vx) A→forAll(ob∼ self implies

P[((ref −{ob}).role ∪
(ob.role−{vx}))/ref .role])

In the second, third and fourth cases,role is a many-
valued association end.

In each case the conditionob∼ self expresses that
the objectob is reachable via associations of the sys-
tem fromself, a specific object ofA. ref is the nav-
igation route fromself to role, ie, role occurs in an
expressionref .role in P. The computation is iterated
over all the occurrences of the feature inP.

In the example specification, this results in the fol-
lowing response code inaddcr(bx,crxx):

A→forAll(bx : br implies
x= (br.cr∪{crxx}).z.sum)

This defines afor loop over the instances ofA. Only
the elements ofA linked tobx via br need to modify
their x values to maintain the global constraint: other
instances ofA cannot be affected by the change to
bx.cr.

In some cases a fixpoint computation is needed to
enforce a constraint. An example is the calculation of
the maximum inheritance depth in a class diagram. If
generalisations have an integer attributedepthto ex-
press their depth in the inheritance hierarchy, this fea-
ture is characterised by the two constraints:

Generalization→forAll(g |
g.general.generalization.size= 0 implies

g.depth= 1)
Generalization→forAll(g |

g.general.generalization.size> 0 implies
g.depth = 1+

g.general.generalization.depth.max)

Sincedepthis both read and written in the second
constraint, a fixpoint iteration is used to enforce it.

From the computed response codes, complete
Java implementations of the operations of individual
classes and the controller class can be synthesised.
These operations are guaranteed to maintain the in-
variants (assuming the correctness of the Java virtual
machine, the operating system and hardware, etc).

In some cases a constraintCn cannot be used to
produce executable response code, but instead it is
maintained by checking if application of an operation

Synthesis�of�Software�from�Logical�Constraints

357



op with particular parameter values would break the
constraint:

[op(pars)]not(Cn)

and if so, refusing the request for the operation. That
is, [act]Cn is taken as apreconditionof the operation,
whereact is the basic effect of the operation.

In general, given an operationop with basic code
act, and a constraintCn, the UML-RSDS tools will
identify if (i) opcan invalidateCn, and if so, whether
(ii) response code or a precondition should be used to
react to or prevent this invalidation.

The first check for a match between an operation
and a constraint is:

(I) : wr(act)∩ rd(Cn) 6=∅

ie., some feature or entity updated byop is read by
Cn, or

(II ) : wr(act)∩wr(Cn) 6=∅

ie., both the operation and constraint write to the same
entity or feature.

In some cases (eg.,addbrand a constraints⊆ br
with br 6∈ rd(s)) the operation cannot invalidate the
constraint, despite the apparent data conflict.

If (I) holds and (II) does not, and ifop definitely
affectsCn, then if Cn has an explicit operational in-
terpretation as an activitystat(Cn), then this activity
is added to the code ofop to restoreCn, as described
above. IfCn does not have an operational form, then
[act]Cn is added instead as a precondition ofop.

If (II) holds and op affectsCn, then [act]Cn is
added as a precondition ofop.

4 EVALUATION

The UML-RSDS approach has been used for sub-
stantial applications, such as the specification and
implementation of model slicing tools (Lano and
Kolahdouz-Rahimi, 2011b) and migration of UML
1.4 models to UML 2.1 (Lano and Kolahdouz-
Rahimi, 2010). The constraint-based specifications
are usually more concise than procedural specifica-
tions in languages such as Kermeta (Drey et al, 2009),
and have been shown to be more comprehensible
(Kolahdouz-Rahimi et al, 2012).

REFERENCES

Drey, Z. and Faucher, C. and Fleurey, F. and Mahe, V. and
Vojtisek, D., Kermeta Language Reference Manual,
https://www.kermeta.org/docs/KerMeta-Manual.pdf,
April, 2009.

Kolahdouz-Rahimi, S. and Lano, K. and Pillay, S. and
Troya, J. and Gorp, P. V.Goal-oriented measurement
of model transformation methods, submitted to Sci-
ence of Computer Programming, 2012.

Lano, K. and Clark, D. and Androutsopoulos, K.Formal
specification and verification of railway systems using
UML, FORMS 2003.

Lano, K. and Clark, D. and Androutsopoulos, K.RSDS: A
subset of UML with precise semantics, L’ Objet, vol.
9, no. 4, pp. 53–73, 2003.

Lano, K. Constraint-driven development, Information and
Systems Technology, 50, 2008, pp. 406–423.

Lano, K. and Kolahdouz-Rahmi, S.Model migration trans-
formation specification in UML-RSDS, TTC 2010.

Lano, K. and Kolahdouz-Rahimi, S.Model-driven develop-
ment of model transformations, ICMT 2011, 2011.

Lano, K. and Kolahdouz-Rahimi, S.Slicing techniques for
UML models, Journal of Object Technology, vol. 10,
pp. 11: 1–49, 2011.

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

358


