
Java2OWL: A System for Synchronising Java and OWL

Hans Jürgen Ohlbach
Institute for Informatics, University of Munich, Munich, Germany

Keywords: Java, OWL, Translation, Semantic Programming.

Abstract: Java2OWL is a Java software library for synchronising Java class hierarchies with OWL concept hierarchies.
With a few extra annotations in Java class files, the Java2OWL library can automatically map Java class hier-
archies to OWL ontologies. The instances of these Java classes are automatically mapped to OWL individuals
and vice versa. OWL reasoners can be used as query processors to retrieve instances of OWL concepts, and
these OWL individuals are mapped to corresponding instances of the Java classes. Changes of the Java ob-
ject’s attributes are automatically mapped to changes of the corresponding attributes of the OWL individuals,
thus keeping Java and OWL synchronised. With minimal programming overhead the library allows one to
combine the power of programming (in Java) with the expressivity and the reasoning power of OWL. This
paper introduces the main ideas and techniques. The detailed documentation and the open source library itself
can be downloaded from http://www.pms.ifi.lmu.de/Java2OWL.

1 MOTIVATION

Object oriented programming languages like Java
combine the procedural aspects of programming with
some declarative-logical features contained in the
Java class hierarchy and the instance-class relation-
ship. Whereas the procedural aspects are as strong as
one can expect from modern programming languages,
the logical aspects are rather restricted. In particular

• the ontology, i.e. the logical structure, implicitly
contained in the class hierarchy of Java programs
is only accessible from within the program and
can not be exported to other systems;

• the instance-class relationship is fixed at the cre-
ation time of an object. Objects can not live in-
dependently of classes and can not change their
membership relation to classes;

• the class hierarchy in Java is a tree; no multiple
inheritance is possible;

• there is no logical reasoning available. This
means in particular that fine grained selection of
objects is difficult.

Nevertheless, these are desirable features, which is
indicated by the rising popularity of modelling lan-
guages like UML, and in particular by the more
and more widespread use of the logic-based Ontol-
ogy Working Language (OWL1). OWL is the W3C-

1OWL: http://www.w3.org/TR/owl2-overview/

standard for Description Logics (Baader et al., 2003;
Lutz, 2003). Its main features are

• one can define ontologies independently of any
particular application or programming language;

• the OWL-language is very expressive and more
features are being added as one learns how to ex-
tend the logical calculus for them;

• since it is logic based, various forms of reasoning
can be performed;

• the class hierarchy can be a DAG, thus, multiple
inheritance is allowed;

• individuals can live independently of classes.
Their membership relation with classes is deter-
mined by logical reasoning, and it can change
when new information about an individual be-
comes available;

• there are expressive languages which can be used
to pose complex queries to an ontology. They are
evaluated by logic reasoners.

The disadvantage of OWL is the lack of procedural
features; OWL is no programming language. For an
OWL ontology together with an A-Box (a set of in-
dividuals) one can draw all possible inferences, i.e.
compute the class hierarchy and the membership re-
lation of the individuals with the classes. After this,
however, the ontology becomes a static object which
can do nothing by itself.

15Ohlbach H..
Java2OWL: A System for Synchronising Java and OWL.
DOI: 10.5220/0004106400150024
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (KEOD-2012), pages 15-24
ISBN: 978-989-8565-30-3
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



An OWL ontology just living in a file system is
not of much use. Therefore application interfaces
(API) have been developed which allow programs to
load an ontology, access its data, manipulate the on-
tology, and save it back to files, all within ordinary
programs. The most recent one is the Java OWL API2

for OWL-version 2 (Horridge and Bechhofer, 2011),
developed as part of the CO-ODE project3 and the
TONES project4 in the Manchester University5. It al-
lows one to load, access and manipulate the structure
of OWL ontologies and to integrate them with OWL
reasoners.

Java programs using the OWL API for loading
ontologies have two class hierarchies in parallel, the
Java class hierarchy and the OWL class hierarchy. For
applications where these hierarchies are sufficiently
different, this is no problem. If, however, the class
hierarchies overlap, one gets a considerable synchro-
nisation problem. Overlapping class hierarchies are
of interest if one wants to add procedural features to
the classes. Since OWL has no procedural features,
the only choice is to define corresponding Java classes
with the corresponding methods.

As an illustrating example, consider the partial
modelling of university structures. There are peo-
ple, students, tutors, lecturers, professors, secretaries,
technical staff etc. There are programmes of study,
Bachelor, Master and PhD programmes. There are
lectures, seminars, excursions etc. There are scien-
tific areas, natural sciences, humanities, social sci-
ences etc. All this can be modelled in OWL, but
there is no chance to add procedural features to these
OWL classes. This can only be done in corresponding
Java classes. Combining Java classes and their meth-
ods with corresponding OWL classes as the basis of
OWL-reasoning, however, may turn out to be a very
useful thing. The Java methods do the computation,
and the OWL classes can in particular be used to se-
lect sets of individuals by determining the instances
of OWL concept expressions.

The Java2OWL library presented in this paper tar-
gets the synchronised coexistence of Java classes and
OWL classes. It makes it possible to exploit the
strengths of both systems without too much program-
ming overhead.

2 A TYPICAL WORKFLOW

A typical workflow in the development and applica-

2OWL API: http://owlapi.sourceforge.net/
3CO-ODE project: http://www.co-ode.org/
4TONES project: http://www.tonesproject.org/
5Manchester University: http://owl.cs.manchester.ac.uk/

tion of Java programs using the Java2OWL library
consists of two major phases:

1. the preparation phase, which consists of the pro-
gramming and the compilation phase,

2. the Java application phase which starts with the
steps a Java application has to perform in order to
work with the Java2OWL library.

2.1 The Preparation Phase

This phase consists of the following steps:

1. Background Ontology. Most applications which
want to use ontologies do not start from scratch,
but us already existing ontologies, or develop spe-
cialised ontologies for this application. Therefore
the Java2OWL library assumes the existence of
a “background ontology” with predefined classes
and properties. This background ontology can be
loaded into the Java2OWL-compiler which then
extends it with OWL classes generated from Java
classes.

2. Annotating Java Classes. Java classes which
are to be mapped to OWL classes must be an-
notated in a special way. The class-level anno-
tations control the generation of OWL classes and
the method-level annotations control the genera-
tion of the OWL-properties. Typically, the Java
class has getter methods, setter methods, and for
collection-valued attributes, adder and remover
methods. The annotations of the getter methods
are sufficient to tell the system how to access and
manipulate the Java-attributes and to synchronise
them with the OWL-properties.

3. Compiling the Extension Ontology. The anno-
tated Java classes are mapped to newly gener-
ated OWL classes which are added to the back-
ground ontology. The getter methods are mapped
to OWL-properties, either data properties, map-
ping objects to data types like integer, or object
properties, mapping objects to other objects. The
so extended background ontology is then saved as
“extension ontology”.

4. Extending the Extension Ontology.In some ap-
plications it may be necessary to manually extend
the extension ontology, for example by adding
special individuals. Therefore one can manipulate
the extension ontology outside the Java2OWL-
system in an almost arbitrary way before it is used
in the application program.

5. Injecting Synchronisation Code into the Java
Classes.Since Java classes and OWL classes co-
exist in the Java2OWL system, their instances also

KEOD�2012�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

16



coexist. This means, for each Java object which is
an instance of an annotated Java class, there is a
corresponding OWL individual. This OWL indi-
vidual should mirror the attributes of the Java ob-
ject. If the Java object changes its attributes, the
changes should automatically trigger changes of
the attributes of the OWL individual. The code
for forwarding the changes of the Java-attributes
to the OWL side must be contained in the setter,
adder and remover methods of the Java class. In
order to relieve the Java programmer from writ-
ing this “synchronisation code” the Java2OWL li-
brary contains a “Synchroniser” class which auto-
matically injects the “synchronisation code” into
the compiled Java classes. This can be done either
in a separate step after the ordinary Java compila-
tion, or it can be done “on the fly” in the class
loader.

2.2 The Java Application Phase

As soon as all the preparations have been successfully
completed, i.e. the Java application with the annotated
classes has been build and the extension ontology is
ready to be used, the application can start. These are
the typical steps, the application must do before its
main job can start:

1. Setting Up the System. This is simply done
by creating a J2OManager. The J2OManager it-
self creates all other components and installs a
default OWL-reasoner. One can create several
J2OManagers, but they are completely indepen-
dent of each other and do not interact with each
other.

2. Loading the Extension Ontology

3. Linking the Extension Ontology. In this step
the internal data structures are created which keep
track of the correspondences between Java classes
and OWL classes.

4. Creating Java-objects and OWL Individuals.
The system is now ready to create instances of
classes. It is possible to instantiate Java classes
and let the Java2OWL-system map them to OWL
individuals. The other direction is also possible.
OWL individuals contained in the A-Box of the
extension ontology can be mapped to instances of
the corresponding Java classes.

5. Keeping Java-objects and OWL Individuals
Synchronised. Changes to the attributes of in-
stances should only be done by calling setter,
adder, and remover methods of the Java-objects.
The injected synchroniser-code automatically for-
wards the changes to the OWL-side.

6. Reclassification of Instances. OWL is logic
based. Therefore OWL reasoners can derive infor-
mation which was only implicitly contained in the
OWL ontology generated from the Java side. This
derived information can then be mapped back to
the Java side. There are two typical situations
where this can occur:

• An Object’s Class May Be Changed. Consider
a Java classStudent with attributesemester,
and a subclassFreshman whose semester is
frozen to the value 1. An instance of the
Java classStudent whose semester is set to 1
should now become an instance ofFreshman.
This is not directly possible in Java. In the
Java2OWL-system, however, the Java-objects
are contained in wrapper-objects. Therefore
it is possible to exchange a Java-object in-
side a wrapper object with another Java ob-
ject. In theStudent/Freshman-example this
would be performed by creating an instance of
Freshman and transferring all non-static fields
of theStudent-instance to the newFreshman-
instance. The newFreshman-instance then re-
places theStudent-instance inside the wrapper
object.

• An Object’s Attributes May Be Changed. Con-
sider a Java class with atransitivehas-Part at-
tribute. If this is mapped to OWL then an OWL
reasoner can derive the transitive closure of the
has-Part relation. Mapped back to Java the
has-Part attribute is automatically filled with
the transitive closure of thehas-Part relation.

The application program can ask the Java2OWL-
system at any time to do this reclassification of
instances whose attributes have been changed.

3 JAVA CLASS HIERARCHY
VERSUS OWL CLASS
HIERARCHY

The intrinsic Java ontology which is implicitly con-
tained in the Java class hierarchy is simpler than the
OWL ontology: mono-inheritance causes the Java
class hierarchy to be become a tree, and the con-
structor mechanism for generating new instances of
classes causes Java objects to be an instance of ex-
actly one Java class. In contrast to this, OWL has
multi-inheritance, and OWL individuals may be in-
stances of several classes. Mapping a Java ontology to
an OWL ontology is therefore not problematic. This
part of the Java2OWL library is purely technical.

Java2OWL:�A�System�for�Synchronising�Java�and�OWL

17



The Java2OWL library, however has three further
features which are more problematic:

• it can map OWL individuals back to Java objects,

• it can attach attributes to Java objects, which
are not foreseen in the Java class definition, and
which must therefore be immediately forwarded
to the OWL side,

• it can reclassify Java objects when further infor-
mation becomes available.

If OWL individuals are to be mapped back to Java ob-
jects, we have to deal with the problem that an OWL
individual may be an instance of several OWL classes.
Therefore one can not just create an instance ofone
particular Java class as corresponding Java object. If
extra attributes can be attached at Java objects by for-
warding them to the OWL side, this may cause a new
situation. For a Java objecto as an instance of the Java
classC which corresponds to a unique OWL objecto′

as instance of the OWL classC′ the OWL instance
o′ may suddenly become an instance of other OWL
classes, and therefore there is no longer this unique
correspondence betweeno ando′. The problem turns
up when the Java object is reclassified to incorporate
the new information.

The solution to these problems in the Java2OWL
library so far isexperimentalbecause no real applica-
tion where these problems turned up have been tried.
The solution is to encapsulate the correspondences
between Java objects and OWL individuals inindi-
vidual wrappers. An individual wrapper encapsulates
an OWL individual together withseveralJava objects.

The typical example which illustrates the
multi-inheritance phenomenon is the OWL class
Amphibious-Vehicle as subclass ofShip and
Surface-Vehicle. Since in Java there can not
be a classAmphibious-Vehicle extending Ship
andSurface-Vehicle, there is a problem. In Java
one could in principle define eitherShip as a class
and Surface-Vehicle as an interface, and then
define a classAmphibious-Vehicle extendingShip
and implementingSurface-Vehicle, or the other
way round. In this case, however, there can not
be instances ofSurface-Vehicle, which might
not be a good idea. Therefore when mapping an
Amphibious-Vehicle instance from OWL to Java,
Java2OWL creates an individual wrapper containing
a Java Ship instance and a Java Surface-Vehicle
instance. It takes care that the common attributes of
both Java objects are pointer-equal.

Even when multi-inheritance is avoided at the
OWL side, there can be situations where an OWL
individual must be mapped to several Java objects.
As an example consider a Java classStudent and a

Java classTeacher which have nothing to do with
each other, except that theTeacher class has an at-
tributeteaches (some students). BothStudent and
Teacher are mapped to the OWL ontology. Now sup-
pose,James is an instance ofStudent, and we add
the extra information thatJames is not only a student,
but teaches another studentTom. This information is
not attached to the Java objectJames, but forwarded
to the corresponding OWL individualJames’. At this
moment,James’ becomes an instance of the OWL
classTeacher’. If this information is mapped back
to the Java side, besides the Java objectJames as
instance of the Java classStudent, we need also
an instance, sayJames-Teacher, of the Java class
Teacher. Both Java objects can be wrapped in an
individual wrapper, which at first glance, solves the
problem.

There is, however, a further problem. Sup-
poseJames does not teach another studentTom, but
James teaches himself,James. The Java instance
James-Teacher has an attributeteaches of type
Student. This attribute has to be filled with James,
but which James, theStudent instanceJames or the
Teacher instanceJames-Teacher? In this case it is
clear by the type of theteaches attribute, that the
Student instanceJames is the only Java object which
can be put into theteaches attribute. In other exam-
ples, however, there may be several choices. The cur-
rent implementation is such that it takes the first one
whose Java class fits the class of the attribute. Only
practical applications can show what is really needed
in these situations.

4 COMPONENTS OF THE
LIBRARY

This section gives a brief overview of the main com-
ponents of the system.

4.1 Annotated Java Classes

The first aspect a programmer who wants to use
Java2OWL is confronted with, is the structure of the
Java classes to be mapped to OWL classes. The fol-
lowing restrictions to the structure of the Java classes
are important:

• There must be a constructor method with an
empty argument list. It is used when OWL in-
dividuals are mapped to Java objects.

• All attributes which are to be mapped to OWL-
attributes must be accessible by getter, setter,
adder and remover methods.

KEOD�2012�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

18



• The mapping of Java classes to OWL classes
is controlled by special annotations of class and
method definitions.

4.1.1 The Class-level Annotation

A simple example illustrates the annotation of classes:

@J2OWLClass(name = "Person",
OWLSuperClasses = "LivingThing")

public class TestPerson {...}

The name-attribute Person causes the mapping
of the Java classTestPerson to a newly cre-
ated OWL classPerson. The OWLSuperClasses-
attribute LivingThing causes the generated OWL
classPerson to become a subclass of the OWL class
LivingThing, which must be part of the background
ontology.

Besides name and OWLSuperClasses, three
further attributes can be used in the annota-
tion: EquivalentClass, synchronise andnaming.
EquivalentClass with an OWL class expression in
Manchester Syntax6 as value causes the generated
OWL class to be equivalent to the given class expres-
sion. synchronise triggers the insertion of synchro-
niser code into the setter, adder and remover methods.
naming controls the assignment of names to the gen-
erated OWL individuals.

4.1.2 The Method Level Annotations

The Java2OWL annotations control the mapping of
Java-attributes to OWL-properties. OWL distin-
guishes two kinds of properties:

OWLDataProperty: these describe basic datatype-
valued attributes of individuals. OWL has a num-
ber of basic data types built-in, for example, in-
teger, float, double, etc., but also strings. Exam-
ples could be a string-valuedname-attribute, or an
integer-valuedage-attribute.

OWLObjectProperty: these describe relations be-
tween OWL individuals. Examples are the
hasPart relation between physical objects, or the
hasParent relation between persons.

Both property types can befunctional or non-
functionali.e. relational. Functional properties have
a single value, whereas relational properties can have
any number of values, including no values at all.

On the Java side there are the instance-variables
which, depending on their type, can take primitive
data types as values, references to other Java-objects,

6Manchester Syntax: http://www.w3.org/2007/OWL/
wiki/ManchesterSyntax

but also references to container objects like sets, ar-
rays etc. It is good Java practice to keep the instance
variables private and to access them with getter and
setter methods. Therefore the mapping from Java-
attributes to OWL-properties is specified by annotat-
ing getter methods instead of the instance variables.
Java2OWL assumes the following conventions:

getter Methods: They have no arguments and usu-
ally return the value of a private variable. Since
Java is strongly typed, the return type of the get-
ter methods can be used to determine the kind
of OWL-property to be generated. The following
cases are distinguished:

• The return type of the getter method is a primi-
tive data type or the typeString. In this case a
functionalOWLDataProperty is generated.

• The return type of the getter method is an ar-
ray or a container class for primitive data types
or strings. In this case arelational OWLDat-
aProperty is generated.

• The return type of the getter method is a
Java2OWL annotated Java class. In this case
a functionalOWLObjectProperty is generated.

• The return type of the getter method is an array
or a container class for a Java2OWL annotated
Java class. In this case arelational OWLOb-
jectProperty is generated.

setter Methods: Setter methods usually overwrite
the value of a private variable. They are called
with at least one argument and need not return a
value. The type of thefirst argumentmust be such
that it accepts the result of the corresponding get-
ter method.

adder Methods: Collection-valued attributes, arrays
or collections, need not change the whole set at
once, but add single elements one by one. Adder
methods therefore take an element of the collec-
tion as first argument and add it to the set.

remover Methods: remover methods for collection-
valued attributes take an element of the set as first
argument and remove it from the set.

clearer Methods: clearer methods for collection-
valued attributes empty the whole collection at
once.

For each attribute to be mapped there must be exactly
one annotated getter method which returns the entire
set of values, either a single object if there is just one
value, i.e. the attribute is functional, or an array or a
collection of objects if there are multiple values.

For each attribute there is a particular group of get-
ter, setter, and optionally adder and remover methods
which belong together. Therefore it is convenient to

Java2OWL:�A�System�for�Synchronising�Java�and�OWL

19



annotate the getter methods only and specify in the
annotation the other methods belonging to the group.

A typical example for an annotated getter method is

@J2OWLProperty(name = "hasName",
setter="setName")

public String getName() {
return name;}

public void setName(String name) {
this.name = name;}

The specification of@J2OWLProperty is:

public @interface J2OWLProperty {
String name() default "";
boolean local() default false;
String setter() default "";
String adder() default "";
String remover() default "";
String clearer() default "";

boolean transitive() default false;
boolean symmetric() default false;
boolean asymmetric() default false;
boolean reflexive() default false;
boolean irreflexive() default false;
boolean total() default false;
int atleast() default -1;
int atmost() default -1;
boolean addRangeAxiom() default true;}

The meaning of these attributes is:

name: is the name of the corresponding OWL-
property.

local: If this flag is set to true then the generated
name is prefixed with the class name.

setter, adder, remover: These are the comma sepa-
rated names of the corresponding methods which
are responsible for the same attribute.

clearer: This must be the name of a parameter-
less method which empties collection valued at-
tributes.

transitive, symmetric, asymmetric, reflexive,
irreflexive: These are properties of OWLObject-

Properties.

total: If this flag is set to true it enforces that the
functional properties is total, but only for the
OWL class generated from this particular Java
class.

atleast, atmost: They specify the minium and maxi-
mum number of role fillers for relational proper-
ties.

addRangeAxiom: If addRangeAxiom is true then
corresponding range type axiom is specified for
the OWL-property generated from the getter
method.

4.2 The Java2OWL Compiler

The Java2OWL compiler, implemented in the class
J2OCompiler, generates OWL classes from anno-
tated Java class files. For the preparation phase it has
a main method such that it can be called to generate
the extension ontology from a given list of compiled
Java classes.

The program reads the background ontology, cre-
ates an extension ontology, reads the class files, anal-
yses its annotations, fills the extension ontology with
the translated Java classes and saves the extension on-
tology. Error messages are printed to System.out.

Notice that not all Java class files to be translated
need to be given as input. For a given class C to
be compiled to OWL the J2OCompiler automatically
translates the following classes:

• all annotated superclasses of C,

• all annotatedstatic inner classes of C,

• all annotated range type classes of the annotated
getter methods in C.

In the application phase (see Sect. 2.2) its meth-
ods can be used to link the Java classes with the OWL
classes i.e. to build the internal data structures neces-
sary for managing the correspondences between Java
and OWL.

4.2.1 Compile Time Errors

TheJ2OCompiler analyses annotated Java class and
combines the extracted structures with the back-
ground ontology. In this step it tries to detect as many
programming errors as possible.

Here are examples for errors it can detect:

• Inconsistencies in the annotations of getter meth-
ods. For example, a relation can not be declared
reflexive and irreflexive at the same time.

• Java data types which can not be mapped to OWL
data types:
The Java data types which can be mapped to
OWL data types are the primitive Java data types
boolean, byte, short, int, long, float, double and
the String type. All other built-in Java data types,
for example BufferedString, are not mapped to
OWL data types. A specification like

@J2OWLProperty(name = "hasName")
public BufferedString getName() {

return name;}

KEOD�2012�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

20



therefore causes an error.

• Classes without necessary Java2OWL annota-
tions:
Consider a classPerson with a getter method

@J2OWLProperty(name = "hasAddress")
public Address getAddress() {

return address;}

This causes a functional Object Property
hasAddress to be created, which maps indi-
viduals of typePerson to individuals of type
Address. If there is no classAddress in the
background ontology and the Java classAddress
is not annotated, the relationhasAddress makes
no sense in the extension ontology.

TheJ2OCompiler can of course not detect all errors
which may course trouble at run time. Therefore run
time error handling is also necessary (see Sect. 4.4.2).

4.3 Synchronisation between Java and
OWL

4.3.1 Java to OWL Synchronisation

Java to OWL synchronisation means that changes to
attributes of Java objects are forwarded to the corre-
sponding OWL individuals. The Java2OWL library
provides two different possibilities to do this:

Life Synchronisation. This means that all changes
to the attributes of Java objects are immediately
forwarded to the corresponding OWL individual.
This is only possible if the annotated Java classes
got ‘synchroniser code’ injected. Life Synchroni-
sation can be turned on and off at any time. This
can be done at class level, i.e. for all instances of
a given class. The activation/deactivation of class
level life synchronisation can be overwritten by
activating/deactivating it for single objects.

Block Synchronisation. This means that changes to
the attributes of Java objects are not forwarded to
OWL for a while, and at some time the application
decides to do this ‘en bloc’ for all attributes of the
object.

4.3.2 The Java2OWL Synchroniser

The J2OSynchronizer-class is used to insert extra
‘synchroniser code’ into the setter, adder, remover
and clearer methods of the compiled Java class files.
It can be used in two ways:

• the J2OCompiler calls it when a corresponding
flag is set,

• the J2OSynchronizerAgent calls it in its
premain-method. This causes a further trans-
former to be installed in the class loader. This
transformer calls the J2OSynchronizer to inject
the synchronizer code when a compiled class is
loaded.

The bytecode manipulation for injecting the
synchroniser code has been programmed with the
Byte Code Engineering Library7 (Apache Commons
BCELTM) (Dahm, 1999). An alternative would have
been to use AspectJ8 (Colyer et al., 2004). With the
BCEL-library, however, certain optimisations of the
byte-code were possible, which were not supported
by AspectJ.

4.4 The J2OOntology Manager

TheJ2OOntologyManager is a kind of interface be-
tween the OWL API and the application. The OWL
API consists of three main components:

• the OWLOntologyManager which stores all the
data belonging to an ontology,

• a OWLDataFactory which creates the structures
necessary to interact with the ontology,

• a reasoner. There can be several reasoners, but
only one can be active within a J2OManager at
any time.

The current version of the Java2OWL library supports
three reasoners, HermiT (Birte Glimm et al, 2010),
Pellet (Sirin et al., 2007) and FaCT++ (Tsarkov and
Horrocks, 2006).

Since the interaction with the OWL API is some-
times quite cumbersome, theJ2OOntologyManager
hides the pecularities of the OWL API. Its main tasks
are:

• loading and saving ontologies;

• setting up reasoners;

• getting information about the components of the
ontology;

• making changes to the extension ontology.

• querying the ontology with expressions in Manch-
ester Syntax. OWL individuals as answers to the
queries are automatically mapped to Java objects.

4.4.1 The Interaction with the OWL API

The OWL API stores information about an ontology
in two ways:

7http://commons.apache.org/bcel/
8AspectJ: http://www.eclipse.org/aspectj/

Java2OWL:�A�System�for�Synchronising�Java�and�OWL

21



• The OWLOntologyManager in the OWL API it-
self has an internal representation of the ontology.
Various interface method can access this informa-
tion.

• The reasoner must of course also have an internal
representation of the ontology. Since reasoners
in different programming languages are available
(FaCT++, for example, is written in C++), the in-
formation about the ontology must be forwarded
from theOWLOntologyManager to the reasoner.

Changes to an ontology are therefore done in three
steps:

1. Logical axioms are created and stored in a list.
This does not yet change the ontology itself at all.

2. TheOWLOntologyManager is asked to apply the
changes, i.e. to integrate the axioms into the on-
tology.

3. The new information is forwarded to the rea-
soner. This may either be done as soon as the
OWLOntologyManager integrates a new axiom, or
the changes may be buffered and made effective
at a later step. In this case the ontology may
have become inconsistent before the reasoner has
a chance to check it. TheJ2OOntologyManager
makes sure that whenever the reasoner is asked to
do something, the buffer is first flushed to the rea-
soner.

4.4.2 Sources of Inconsistencies in the Extension
Ontology

Inconsistency is not a relevant notion in an ordinary
programming context. Therefore it is a reasonable
question to ask where inconsistencies in Java2OWL-
managed ontologies can come from. Certain sources
of inconsistencies, which can be detected by the com-
piler, have been discussed in Sect. 4.2.1. In this sec-
tion we discuss inconsistencies which may show up at
run time.

Here are some examples for inconsistencies:

• Inconsistencies between the background ontology
and the annotations of getter methods:
In a background ontology, one might for example
specify afunctionalpropertyhasName, and in a
Java class a getter method. An annotated getter
method may be

@J2OWLProperty(name = "hasName")
public String[] getNames() {

return names;}

where the return type is an array. This is not in-
consistent with the functionality ofhasName as
long as the result of thegetNames()-method has

just a single element. As soon as thegetNames()-
method returns a longer array, it becomes incon-
sistent with the required functionality ofhasName.
This is a case where a compiler could issue a
warning, but the situation may be intended and
there may be no problem at run time.

• Constraint Violations:
The annotation

@J2OWLProperty(name = "hasFriend",
atmost = 3)

public Set<Person> getFriends() {
return friends;}

specifies that one can have at most three friends.
If getFriends() returns a set with more than
three friends, this contradicts the constraint
atmost = 3.

4.4.3 Checking the Consistency of the Extension
Ontology

Checking for inconsistencies by the reasoner is an ex-
pensive operation. Therefore it is a strategic decision
when to check the consistency of the extension ontol-
ogy. During development and debugging it is useful
to find inconsistencies as early as possible. To this
end, theJ2OManager can be put intodebug mode.
It causes each change to the ontology to be immedi-
ately forwarded to theOWLOntologyManager and to
the reasoner and to ask the reasoner to immediately
check the consistency.

If the system is not in debug mode then changes
to the ontology are buffered as long as possible.
The changes to the ontology are forwarded to the
OWLOntologyManager and to the reasoner

• either when the reasoner is asked to compute some
information,

• or when new information overwrites old informa-
tion, and it is necessary to retrieve the old in-
formation in order to generate the corresponding
remove-axioms.

4.5 The J2OClass Manager

The classJ2OClassManager manages the correspon-
dences between the Java classes and the OWL classes.
To this end it has two auxiliary data structures:

ClassWrapper which stores the pair [Java Class,
OWL Class] together with information about the
mapped attributes.

PropertyWrapper which stores the correspon-
dences between the Java getter, setter, adder,
remover and clearer methods on the one side, and

KEOD�2012�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

22



the corresponding OWL-property on the other
side.

If the J2OClassManager is asked to get for a Java
class the correspondence to the OWL class it does not
return an OWL class, but aClassWrapper. From the
ClassWrapper one can get the OWL class. The same
holds for the attributes.

4.6 The J2OIndividual Manager

The J2OIndividualManager manages the corre-
spondences between the Java objects and the
OWL individuals. The main purposes of the
J2OIndividualManager are therefore

• mapping Java objects to OWL individuals and
vice versa and

• synchronising the Java object’s attributes with the
corresponding OWL properties.

The correspondences between Java objects and
OWL individuals are encapsulated in the class
IndividualWrapper. Individual wrappers are actu-
ally the object level front end to the OWL ontology.
Each individual wrapper contains one OWL individ-
ual and, due to multi-inheritance of OWL one or more
corresponding Java objects. The most important op-
erations, an individual wrapper can perform are:

• activating/deactivating life synchronisation

• block synchronisation with OWL

• reclassification of the Java objects,

• attaching extra attributes to the objects which are
not foreseen in the Java class definitions. These
attributes are actually attached at the OWL indi-
vidual in the OWL ontolgoy.

5 PERFORMANCE OF THE
SYSTEM

A thorough performance analysis of the Java2OWL
system is not really possible. The input are Java pro-
grams and OWL ontologies, and there is no clear out-
put which can be measured. Moreover, a significant
part of the system is the OWL reasoner, and this is not
under control of the Java2OWL system. The com-
plexity of the OWL reasoning tasks depends on the
OWL constructs used in the application. The com-
plexity classes range from polynomial to undecidable.
Typical examples are in the PSPACE range, which
means that heuristics have an important influence on
the behaviour of the reasoners.

The few experiments whose results are listed be-
low might give a rough impression on the perfor-
mance of the various parts of the system. They have
been performed with a Java classStudent, with at-
tributesname andsemester and a subclassFreshman
which are students in the first semester. The classes
have been translated to OWL and then a number of
measurements have been performed.

In all experiments a sequence of lists ofStudent
instances have been created, and for each list a certain
operation has been performed. The time it took to per-
form the operation on the list has been measured, and
divided by the length of the list. The resulting times
in milliseconds indicate the time it took to perform
a single operation. The lengths of the lists are 2000,
..., 10000. The measurements were done with a Dell
notebook with a 2.2 GHz dual core processor.

Java to OWL Axioms. Each Student has been
translated to OWL axioms, but the axioms are not
yet integrated into the ontology. The times in mil-
liseconds per operation are:

size 2000 4000 6000 8000 10000
ms 0.19 0.04 0.01 0.032 0.0055

It is not clear why the times are so different. One
effect could be the Just-in-Time compilation of
Java which after a while decides to compile the
Java methods into native machine code.

Java to OWL Indivdiduals. In this experiment the
translated Student instances are integrated as
OWL individuals into the OWL ontology. The
times in milliseconds per operation are:

size 2000 4000 6000 8000 10000
ms 0.39 0.16 0.016 0.011 0.03

Java to OWL Individuals with Consistency Test.
In this experiment the translated Student in-
stances are integrated as OWL individuals into
the OWL ontology, and each time a consistency
test is performed by the OWL reasoner. All three
reasoners are tried. The times in milliseconds per
operation are:

size 2000 4000 6000 8000 10000
FaCT++ 0.14 0.046 0.013 0.07 0.09
Pellet 0.13 0.076 0.064 0.077 0.1
HermiT 0.17 0.120 0.037 0.031 0.09

Java-OWL Synchronisation. This time the
Student instances which have been mapped
to OWL get their semester changed to 1, and this
is forwarded to the ontology. It does not involve
OWL reasoning. The times in milliseconds per
operation are:

size 2000 4000 6000 8000 10000
ms 0.07 0.012 0.0077 0.11 0.0075

Java2OWL:�A�System�for�Synchronising�Java�and�OWL

23



Querying OWL. In this experiment we take the
Student instances whose semester had been
changed to 1, and map them to OWL individu-
als. Afterwards the OWL reasoner is asked to re-
trieve all instances of the OWLFreshman class.
All three reasoners are tried. The operation is
much more expensive than the previously inves-
tigated operations. Therefore only much smaller
lists of Student instances are tried. The times in
milliseconds per operation are:

size 200 400 600 800 1000
FaCT++ 0.455 0.187 0.167 0.22 0.18
Pellet 7.57 8.02 12.3 15.3 22.4
HermiT 5.14 10.0 17.12 27.8 37.6

For this class of examples FaCT++ is about 20
times faster than the other reasoners. Since OWL
reasoning is a heuristically controlled search there
may well be other classes of examples where the
other reasoners are faster.

OWL to Java. In this experiment theStudent in-
stances whose semester had been changed to 1,
and which had been mapped to OWL individu-
als are deleted, and afterwards reconstructed as
Freshman instances form the OWL individuals.
The times in milliseconds below indicate how
long it took to turn an OWL individual into a Java
object.

size 2000 4000 6000 8000 10000
ms 0.119 0.13 0.222 0.198 0.238

Reclassification. In this experiment theStudent in-
stances whose semester had been changed to 1 are
reclassified toFreshman instances. All three rea-
soners are tested. The times in milliseconds per
operation are:

size 200 400 600 800 1000
FaCT++ 1.11 0.43 0.29 0.29 0.3
HermiT 5.48 9.49 16.22 25.73 35.08
Pellet 7.58 13.13 16.36 20.05 29.24

Again, FaCT++ is much faster than the other rea-
soners.

The times vary quite a lot with the different lengths of
the lists. An important observation is, however, that
the times per operation do not depend much on the
size of the data. Sometimes the operations become
even faster with increased amounts of data.

6 SUMMARY

This paper gives a short introduction into the
Java2OWL library for synchronising Java with OWL.
A more substantial description is contained in the

technical report (Ohlbach, 2012). It can be down-
loaded from http://www.pms.ifi.lmu.de/Java2OWL.
From this website one can also download the library
itself, and even the whole NetBeans project.

The system has not yet been tested in a real appli-
cation. It is planned to use it for a university wide
information system. It is quite clear that real ap-
plications will require further changes to the library.
Suggestions for improvements may be E-mailed to
ohlbach@lmu.de.

REFERENCES

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and
Patel-Schneider, P. F., editors (2003).The Description
Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press.

Birte Glimm et al (2010). Optimising ontology classifi-
cation. In Patel-Schneider, P. F., Pan, Y., Hitzler,
P., Mika, P., Zhang, L., Pan, J. Z., Horrocks, I., and
Glimm, B., editors,Proc. of the 9th Int. Semantic
Web Conf. (ISWC 2010), volume 6496 ofLNCS, pages
225–240, Shanghai, China. Springer.

Colyer, A., Clement, A., Harley, G., and Webster, M.
(2004). Eclipse AspectJ : Aspect-Oriented Program-
ming with AspectJ and the Eclipse AspectJ Develop-
ment Tools. Addison-Wesley.

Dahm, M. (1999). Byte code engineering. InProceedings
JIT’99, pages 267–277. Springer-Verlag, Springer-
Verlag.

Horridge, M. and Bechhofer, S. (2011). The OWL API:
A Java API for OWL ontologies. Semantic Web,
2(0):11–21.

Lutz, C. (2003). Description Logics with Concrete
Domains—a survey. InAdvances in Modal Logics
Volume 4. King’s College Publications.

Ohlbach, H. J. (2012). Java2OWL – a system for synchro-
nising Java and OWL. Technical Report PMS-FB-
2012-02, Institute for Informatics, University of Mu-
nich.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz,
Y. (2007). Pellet: A practical OWL-DL reasoner.Web
Semantics, 5(2):51–53.

Tsarkov, D. and Horrocks, I. (2006). FaCT++ Descrip-
tion Logic reasoner: System description. InProc. of
the Int. Joint Conf. on Automated Reasoning (IJCAR
2006), volume 4130 ofLecture Notes in Artificial In-
telligence, pages 292–297. Springer.

KEOD�2012�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

24


