
A New Query Suggestion Algorithm for Taxonomy-based Search Engines

Roberto Zanon1, Simone Albertini2, Moreno Carullo1 and Ignazio Gallo2

17Pixel S.r.l., Binasco (MI), Italy
2Dipartimento di Scienze Teoriche e Applicate, University of Insubria, Varese, Italy

Keywords: Query Suggestion, Query Log, Query Session, User Experience.

Abstract: The objective of this work is the realization of an algorithm to provide a query suggestion feature in order
to support the search engine of a commercial web site. Starting from web server logs, our solution creates a
model analyzing the queries submitted by the users. Given a submitted query, the system searches the most
adequate queries to suggest. Our method implements an already known session based proposal enriching it
by exploiting specific information available in the current context: the category the user is browsing on the
web site and a solution to overcome the limits of a pure session based approach considering also similarity
between queries. Quantitative and qualitative experiments show that the proposed model is suitable in terms
of resources employed and user’s satisfaction degree.

1 INTRODUCTION

Search engines have assumed increasing importance
for the Internet users, becoming the main point of ref-
erence to access any other service or information on
the web. The users expect that these research systems
would provide increasing assistance and simplicity al-
lowing the user to reach his goal. For this reason all
the main search engines are going to introduce addi-
tional services in order to support the user such as,
automatic correction of the query, the suggestion of
related queries and the suggestion of related multime-
dia content.

Several research fields related to the study of the
user behavior grew, starting from the query analysis
(Mat-Hassan M., 2005), the classification of particu-
lar types of queries (Ortiz-Cordova A., 2012) to the
definition of similarity and correlation relations, and
so on. This is a difficult problem, because the queries
contain unstructured data; thus, they often are very
short or equivocal for a direct use. For example, in
an online store we can exploit the navigation path fol-
lowed by an user in order to infer its interests and to
enhance its experience providing suggestions that can
be used for presenting products the user may be inter-
ested in. With query suggestion we mean the task of
proposing a set of different possible alternative search
texts to a user who submitted a query, so that they
could help him reaching what he is looking for.

The field of Web Usage Mining studies techniques
for gathering information to profile the users, for ex-

ample analyzing the web server log and the applica-
tion level data for each user session (Srivastava and
Cooley, 2000; Pierrakos et al., 2003). Such infor-
mation allows to create algorithms able to predict the
need and the desires of users just analyzing their be-
havior and trying to reduce that information to an al-
ready known behavior pattern.

The objective of this work is the realization of
an algorithm for providing a query suggestion fea-
ture in order to support the search engine of a com-
mercial web site (Shoppydoo, 2012). The system de-
sign is based on models already proposed by the lit-
erature (Boldi et al., 2008; Cao et al., 2008). From
the literature we notice that there are two main ap-
proaches: document-based (Baeza-yates et al., 2004)
and session-based (Boldi et al., 2008). The first ap-
proach exploits the URLs the user clicks after hav-
ing subtimmed a query while the other is based on
the consecutiveness of the queries submitted within
each user session. The most studied and promising
approach for developing a query suggestion system
is the session based one (M.P. Kato, 2011). This ap-
proach states that when a user types a query q, then
the system should suggest the queries that previous
users submitted after having typed the same query
q. This method is justified by the behavior of the
users: when the first query they submit do not lead to
the expected results, they tend to restate it following
well known logical schemes like ”reformulation for
generalization“, ”reformulation for specialization“ or
”equivalent reformulation“ (Boldi et al., 2009).

151Zanon R., Albertini S., Carullo M. and Gallo I..
A New Query Suggestion Algorithm for Taxonomy-based Search Engines.
DOI: 10.5220/0004108001510156
In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval (KDIR-2012), pages 151-156
ISBN: 978-989-8565-29-7
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

Another aspect a query suggestion system could
follow is the exploitation of the context the user is ac-
tually browsing. So it is possible to classify the sys-
tems in context aware, like (Cao et al., 2008), and non
context aware. We can also say an algorithm is in-
cremental or non incremental, depending on whether
it modifies its internal structure as it is given a new
query or it has a fixed set-up and may be only queried
(Broccolo et al., 2010).

2 PROPOSED METHOD

Each query suggestion algorithm is composed by two
main modules: a background module which holds
and manages the data structures and an online process
which provides the suggestions to the front end ap-
plication and makes use of the underlying data struc-
tures.

Starting from the web server logs, the proposed
solution creates the first module in the following man-
ner:

1. Pre-processing. It parses the web server logs in
order to extract the queries and the related infor-
mation.

2. Creation of the sessions. A set of sessions is built,
that is a set of lists of queries performed by the
same user within a certain amount of time.

3. Construction of the model. The algorithm builds
the data structures for representing the sessions
in order to efficiently mine all the information
needed for the suggestions.

4. Pruning of the data structures. The algorithm
must reduce the dimension of the data structures.

The second module of the algorithm inspects the
data structures previously generated applying a rank-
ing function, returning the suggested queries given a
query q.

(Baeza-yates, 2007) presents an analysis of the
processes that could be used to generate the data
model which represents the queries and their rela-
tions. In the proposed work we followed an approach
inspired by the word graph and session graph. The
development took into account that the system must
be generic in order to have the possibility to use it also
in other websites but, on the other hand, as much spe-
cific as we can to exploit all the available information
from the available query logs.

The proposed solution is inspired by (Boldi et al.,
2008) but with some important differences. The first
difference is that we are in a context where the objects
to query are grouped into categories: the goal is to

provide a query suggestion system for a website that
lists commercial products sold by several merchants.
So we have an implicit taxonomy and it is possible
to exploit additional information considering the user
is given the possibility to select a category to browse
within and to submit queries for only that category.
The category information is optional but it is a power-
ful tip for the system in order to select the suggested
queries: it allows our algorithm to distinguish queries
that would be syntactically indistinguishable. How-
ever, the concept of categories is also present in fields
different from the price comparison: for example, a
similar information is exploited by Yahoo! directo-
ries1. Another important difference is that, in addi-
tion to suggest the queries that belongs to the subtree
which starts with the given query, it selects also the
queries that follow the queries with the search string
similar to the input search text. The similarity among
strings is not usually considered sufficient because of
the short length and ambiguity of the queries: anyway
in this setting it is possible to adopt this approach be-
cause the majority of the queries is associated with a
category known in advance, which gives a semantic
contribution to the process.

Following the classification given by (Broccolo
et al., 2010), we can consider our algorithm as
an incremental session-based non context-aware ap-
proach.

2.1 Creation of the Sessions

The process starts analyzing the log files from the web
server. The fields that are considered when filtering
the log are the query string and the category id, ex-
tracted from the URL parameters; the user id if avail-
able or the IP address; the timestamp. Log entries
different from searches or originated by bots are not
considered.

A logical session is a sequence of queries with the
same user id and where for each pair of queries, they
were submitted not far more than thirty minutes.

Our system exploits the session information in or-
der to create a query graph which models the con-
secutiveness relation of the queries with, in addition,
another graph on the same set of queries which mod-
els the similarity among the search texts. An index is
mainteined in order to provide fast access to the nodes
of the graph.

2.2 Creation of the Query Graph and
the Index

The query graph is similar to the query flow graph
1http://dir.yahoo.com/

KDIR�2012�-�International�Conference�on�Knowledge�Discovery�and�Information�Retrieval

152

Algorithm 1: Building of the query graph and the indexes.
Require: set of sessions
Ensure: query index Iq and category index Ic

Iq new HashTable fquery indexg
Ic new HashTable fcategory indexg
for all session 2 sessions do

for all consecutive couples of queries (q1;q2) 2 session do
query node add or get node if already exists from Iq given
(h(q1);q1)

add next node q2 to query node
It Ic(h(q1:category)) if exists or a new hashTable
for all term 2 q1:search text do

add (term;q1) to It if the entry don’t exists
end for

end for
end for
return Iq, Ic

presented in (Boldi et al., 2008). It is represented by
an adjacency list, where each node is a unique cou-
ple <category, query string>. Two nodes are linked
by an edge if the two queries appear at least in a ses-
sion consecutively and the weight on the edges are
integer values which mean the number of times the
two queries appear consecutively in a session. An
hash table is used in order to efficiently access the list,
with a hash function on the couples <category, query
string> as key. The indexes allows to trace back to a
node of the graph starting from the couple <category,
term>, where term is a word of the query. It is re-
alized using two hash tables: a category hash table
where the key is a function on the category id and
the value is another hash table nested in the first one.
This is a hash table of terms where the values are sets
of queries which contains that term.

Algorithm 1 shows the pseudocode of the proce-
dure for building the indexes and the query graph. It
takes linear time in the number of the queries. Con-
cerning this, we can notice that all the operations on
the hash tables with the hash function h need constant
time and the inner loop on the terms in the search text
can be assumed upper bounded because, as we can see
in section 3, the average number of terms per query is
2 and in the 99% of the queries, they contain less than
6 terms.

After having constructed the graph, it is recom-
mended to prune it removing all the edges which have
a low weight or the nodes with a small amount of oc-
currences for essentially two reasons: it should re-
move useless information that could undermine the
quality of the results and for performance issues as
logs always grow, so will do the data structures.

2.3 Creation of the Similarity Graph

A typical problem encountered by session based sys-

Algorithm 2: Search for similar queries.
Require: input query q, number of queries to return k, category index Ic

Ensure: list of similar queries similarq

It Ic[category(q)] fterm index for the categoryg
similarq /0

for all term 2 terms(q) do
if It contains term then

append all the queries from It [h(term)] to similarq

end if
end for
sort similarq by similarity with q.
return the first k queries in similarq

tems, which exploits query logs, is the high percent-
age of single queries or couples of queries that are
present together in the logs.

The problem of the sparsity of the queries
emerges: given an input query, it is likely that the sys-
tem will have few or no information about it. This
is a typical issue of session based systems which ex-
ploits the query logs. In order to solve it the proposed
algorithm also takes into account the similar queries
already processed by the system. We say two queries
are similar if they belong to the same category and
have a similar search text. In order to measure the
similarity between search texts the algorithm makes
use of the Jaccard similarity coefficient (Tan et al.,
2005) on the set of words of the search text, not con-
sidering the stopwords.

The procedure for computing the similarity mea-
sure is shown in Algorithm 2. It obtains the term
hash table It for the category associated with the input
query q and, for each term in the query, it adds the
set of queries having this term to the set of all similar
queries. Then, this list similarq is sorted by similarity
in respect to the input query calculating the Jaccard
similarity measure. Finally the algorithm returns the
first k queries in that list. The complexity of this algo-
rithm depends on the number of similar queries Ns. It
needs O(Ns � log(Ns)) as it is the time for sorting the
similar queries.

In order to avoid running the Algorithm 2 for each
input query in the online phase, the system build a
graph on the same set of nodes of the query graph
defining new non oriented edges which represents the
similarity relations among queries. This is very close
to the index adopted by (Cao et al., 2008) for find-
ing the queries given a query represented as a vec-
tor in the selected url space. It allows to look for
the queries similar to the input search text when it is
already present in the graph: this situation happens
about half the time. Defining Np as the number of
nodes in the graph (after the pruning) and Ns the aver-
age number of similar queries per query, the similarity
graph building process takes O(Np �Ns � log(Ns)).

A�New�Query�Suggestion�Algorithm�for�Taxonomy-based�Search�Engines

153

Algorithm 3: Search for related queries.
Require: input query q, max number of recommended queries m, query and

category indexes Iq, Ic

Ensure: set of queries related

related /0

if Iq contains q then
similar similar queries for Iq[q]

else
similar = f ind similar(Ic;q;k) fAlgorithm 2g

end if
for all q0 2 similar do

related related[next queries of q0

end for
sort related by the ranking function r
return the first m entries in related

2.4 Online Query Suggestion

Algorithm 3 shows how the online phase works.
Given an input query q it acts as follow.

1. Search for the queries similar to q. The algorithm
looks for the node N̂q in the query graph, either if
it exists or not. If it exists, the algorithm selects
the queries in the children nodes of N̂q.

2. It selects all the nodes N̂s which represent a the
queries similar to q, following the edge of the
similarity graph. It selects the queries from the
nodes next to N̂s and add them to a set as candi-
date queries for the suggestion.

3. The set of candidate queries is ordered by a rank-
ing function r and the first m queries are returned.
The adopted ranking function sums the normal-
ized weights of the link in the similarity graph and
the weight on the link in the query graph that al-
lowed to get to it. In case of equality, the queries
are ordered by the number of occurrences in the
query logs.

In the worst case the complexity of Algorithm 3 de-
pends on the call to Algorithm 2, that is f ind similar
in the listing. This call takes O(Ns � log(Ns)). The
number of queries related can be considered constant
as it is k �Nn, where Nn is the number of subsequent
nodes for a node in the query graph and k is the max-
imum number of similar queries for each node. Since
the graph is sparse, Nn can be considered constant, so
the time for ordering the queries in the related set is
constant too.

3 EXPERIMENTS

An evaluation conducted on two datasets with dif-
ferent characteristics is fundamental for verifying the

generic nature of the proposed system. The two
datasets have the following differences:

1. Number of queries per day. Shoppydoo has about
200.000 queries per day, while Trovaprezzi about
one million.

2. Typologies of queries. The users of Shoppydoo
are usually more specialized, so the queries are
more focused into some categories and they are
more correct and precise. On the other hand,
Trovaprezzi is for the most used by inexperienced
users, so the queries are more equally distributed
among several categories. Anyway, these queries
are sometimes “wrong” as they contain words
with no meaning or lead to no results.

3. Session identifier. On Shoppydoo the users are
identified by IP address, while on Trovaprezzi by
HTTP session ID. In the first case it is more dif-
ficult to obtain accurate user sessions because the
queries from the same IP can be from several dif-
ferent users.

4. Length of the sessions. On Shoppydoo, a ses-
sion last 2,5 queries in average, while 3 queries
on Trovaprezzi.

For all the experiments we used a system with 2,4Ghz
32 bit CPU with 4Gb of RAM.

By analyzing the logs we noticed that about the
50% of the queries has a search text which appears
only once, while the 6% appears two times. The
amount of queries that are unique or that have few oc-
currences justifies the employment of methods to find
similar queries in order to compute the suggestions.

The queries are very short and tend to be com-
posed by two words. The 99% of all the queries
have less then 6 words. This characteristic allowed us
to consider constant the number of words per query
while presenting the algorithms in Section 2.

In order to analyze the complexity of the algo-
rithm we considered a collection of queries that goes
from the queries submitted in a day to the set of
queries submitted within eight days for Shoppydoo
(240k to 1,8m queries), and a set of queries up to two
days for Trovaprezzi (up to 2,4m queries).

3.1 Temporal Complexity

Figure 1 shows the time needed for building the query
graph and for pruning it. In this experiment we choose
to eliminate the links in the query graph that have uni-
tary weight, that is the links between queries appear
as consecutive in the sessions only once. The same
graph shows the time necessary to create the similar-
ity graph. The maximum number of links per node is
set to 16, that is the double of the number of suggested

KDIR�2012�-�International�Conference�on�Knowledge�Discovery�and�Information�Retrieval

154

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500

S
e
c
o
n
d
s

Thousands of queries

Shoppydoo QG
Trovaprezzi QG
Shoppydoo SG
Trovaprezzi SG

Figure 1: Time needed to build the query graph (QG) along
with the indexes for the two datasets and the time needed
for the similarity graph (SG) on both the datasets.

 0.0000

 0.0010

 0.0020

 0.0030

 0.0040

 0.0050

 0.0060

 0.0070

 0.0080

 0 500 1000 1500 2000 2500

S
ec

on
ds

Thousands of queries

Shoppydoo
Trovaprezzi

Figure 2: Online time necessary to generate the suggestions
varying the number of analyzed queries.

queries the online phase would return in a reasonable
setup.
Finally, in Figure 2 we can see the average time taken
by the online phase. This value has been calculated
using 500 different queries that do not belongs to the
set of queries used to build the underlying model.
Even if we built the graph with an increased number
of queries it would be possible to maintain constant
this times with a pruning or with a simplification of
Algorithm 2 used to find the similar queries, for ex-
ample modifying it to look for them only in the simi-
larity graph and not searching for the similar queries
if we do not find the entry in the query index as re-
ported in Algorithm 3.

3.2 Quality Evaluation

In order to evaluate the results of the query suggestion
algorithm we adopted two metrics similar to what it
is possible to find in literature: the coverage, which
indicates for how many input queries the algorithm
returns at least a minimum amount of suggestions,
and the quality, which denotes how many suggestions
which are useful to the user we obtain. It was not pos-
sible to confront the proposed solution with the eval-

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 0 500 1000 1500 2000 2500

%

Thousands of queries

Shoppydoo
Trovaprezzi

Figure 3: Coverage as the number of queries increases.

uations available in literature because we do not use
a unique dataset. Thus, we chose to use different pa-
rameters for the evaluation for example the number of
required suggestions in order to consider the results
satisfactory, or which input query to employ in the
quality tests. Regarding this last issue, our tests use
random queries taken from the set of all the queries
available from the web server log and do not select,
for example, the most frequent ones.

For the evaluation of the coverage we used 500
queries selected randomly from the logs. A set of
suggested queries is considered sufficient if it con-
tains at least eight suggestions. We chose this num-
ber because the main search engines display a number
of suggestions close to the chosen one. For instance,
Google and Bing display eight suggestions while Ya-
hoo from three up to ten.

The employed hardware for the following evalua-
tions is the same described in the header of this sec-
tion with, in addition, a 64 bit Intel Xeon 2,66Ghz
system with 8Gb of RAM used to perform the offline
phase, that is the building of the data structures.

The experiments conducted led to the results pre-
sented in Figure 3. Another experiment was run using
the queries for five days from Trovaprezzi, reaching a
coverage of 37,2%.

In the end, we evaluate the quality of the queries
that are suggested by the proposed algorithm. The
evaluation is performed by humans using a web ap-
plication designed for this purpose. The user who
utilizes the application is asked if he considers the
suggestions related to the original query he submit-
ted or not. Thirty people were involved in this task
and we collected about 150 opinions. The 70,1% of
these expressed a positive judgment about the corre-
lation of the suggested queries with the original one
and its usefulness.

The underlying model was built using five days of
queries from the log of Trovaprezzi, that is about 6
million queries.

The proposed system returns bad results espe-

A�New�Query�Suggestion�Algorithm�for�Taxonomy-based�Search�Engines

155

cially if it is given long and inaccurate queries. As the
length of the query increase, the system is not able to
find equal or at least very similar queries in the graph,
so the suggested queries are too generic in respect to
the original intent of the user or they lacks of correla-
tion.

Taking a look to the queries that led to good sug-
gestions, we noticed they are manly specific product
names, product types and brands. For this kind of
queries the system is able to reformulate the search
texts for specialization, equivalent reformulation and
parallel movement.

The web application devised to evaluate the qual-
ity has also been employed for measuring the re-
sponse times of the query suggestion system, logging
the time taken for generating the page with the sug-
gestions. The average time has been 0,0059 seconds,
which allows to employ the system in an online real
time environment.

4 CONCLUSIONS

The initial objective was the realization of a solution
in order to enhance the search feature in an web ap-
plication for price comparison implementing a query
suggestion system. We realized a system that could
take advantage from all the available data about the
queries submitted to the web sites, while keeping a
generic approach as much as possible, in order to al-
low the proposed solution to be applicable even on
different search engines.

The implemented system is considered satisfac-
tory in respect to the requirements we had set. This
is confirmed by the experiments where, given 6 mil-
lions queries from a web site logs, the users consider
the suggestions good, measuring a quality of 70% and
a coverage of 37%, which are the queries which lead
to at least eight suggestions.

Thus the performance are good, as the system in
the online phase need about 1,3Gb of memory and it
responds with a latency less then one hundredth of
second.

The most promising possible future developments
involve two aspects of the system. Firstly, the im-
provement of the ranking function, adding more pa-
rameters to consider clicks and relations among sug-
gested queries and click-through rates, thus consider-
ing a linear combination of more factors rather than
just adding the normalized weights from the graphs.
Secondly, the definition of different similarity mea-
sures in place of the Jaccard index.

REFERENCES

Baeza-yates, R. A. (2007). Graphs from Search Engine
Queries.

Baeza-yates, R. A., Hurtado, C. A., and Mendoza, M.
(2004). Query Recommendation Using Query Logs
in Search Engines.

Boldi, P., Bonchi, F., Castillo, C., Donato, D., Gionis, A.,
and Vigna, S. (2008). The query-flow graph: model
and applications. In International Conference on In-
formation and Knowledge Management, pages 609–
618.

Boldi, P., Bonchi, F., Castillo, C., and Vigna, S. (2009).
From ”dango” to ”japanese cakes”: Query reformula-
tion models and patterns. In Web Intelligence, pages
183–190.

Broccolo, D., Frieder, O., Nardini, F. M., Perego, R., and
Silvestri, F. (2010). Incremental Algorithms for Effec-
tive and Efficient Query Recommendation.

Cao, H., Jiang, D., Pei, J., He, Q., Liao, Z., Chen, E., and Li,
H. (2008). Context-aware query suggestion by mining
click-through and session data. In Knowledge Discov-
ery and Data Mining, pages 875–883.

Mat-Hassan M., L. M. (2005). Associating search and nav-
igation behavior through log analysis. Journal of the
American Society for Information Science and Tech-
nology, 56(9):913–934.

M.P. Kato, T. Sakai, K. T. (2011). Query session data vs.
clickthrough data as query suggestion resources. In
ECIR 2011 Workshop on Information Retrieval Over
Query Sessions.

Ortiz-Cordova A., J. B. (2012). Classifying web search
queries to identify high revenue generating customers.
Journal of the American Society for Information Sci-
ence and Technology. cited By (since 1996) 0; Article
in Press.

Pierrakos, D., Paliouras, G., Papatheodorou, C., and Spy-
ropoulos, C. D. (2003). Web usage mining as a
tool for personalization: A survey. User Mod-
eling and User-Adapted Interaction, 13:311–372.
10.1023/A:1026238916441.

Shoppydoo (2012). http://www.shoppydoo.it.
Srivastava, J. and Cooley, R. (2000). Web usage mining:

Discovery and applications of usage patterns from
web data. SIGKDD Explorations, 1:12–23.

Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Introduc-
tion to Data Mining. Addison Wesley.

KDIR�2012�-�International�Conference�on�Knowledge�Discovery�and�Information�Retrieval

156

