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1Escola Superior de Tecnologia, Instituto Politécnico de Castelo Branco, Ava do Empresário, Castelo Branco, Portugal
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Abstract: In this paper we present an evolutionary approach to the part-of-speech tagging problem. The goal of part-of-
speech tagging is to assign to each word of a text its part-of-speech. The task is not straightforward, because a
large percentage of words has more than one possible part-of-speech, and the right choice is determined by the
surrounding word’s part-of-speeches. This means that to solve this problem we need a method to disambiguate
a word’s possible tags set. Traditionally there are two groups of methods used to tackle this task. The first
group is based on statistical data concerning the different context’s possibilities for a word, while the second
group is based on rules, normally designed by human experts, that capture the language properties. In this
work we present a solution that tries to incorporate both these approaches. The proposed system is divided
in two components. First, we use an evolutionary algorithm that for each part-of-speech tag of the training
corpus, evolves a set of disambiguation rules. We then use a second evolutionary algorithm, guided by the
rules found earlier, to solve the tagging problem. The results obtained on two different corpora are amongst
the best ones published for those corpora.

1 INTRODUCTION

The words of a language are grouped by lexical cat-
egories, normally designated by part-of-speech tags
or word classes, such as nouns, verbs, adjectives,
and adverbs. These categories represent the type
of functions that words can assume in a sentence.
The process of classifying words into their parts-of-
speech, and labeling them accordingly, is known as
part-of-speech tagging, POS tagging, or, simply, tag-
ging. Tagging is a very important task in natural lan-
guage processing (NLP), because it is a necessary step
in a large number of more complex processes like
parsing, machine translation, information retrieval,
speech recognition, etc. In fact, it is the second step
in the typical NLP pipeline, following tokenization
(Steven Bird and Loper, 2009).

An important aspect of this task is that the same
word can assume different functions depending on
how it is used in the sentence, more specifically de-
pending on it’s surrounding words (context). For in-
stance, the wordfly can assume the function of a
noun, or averb, depending on how we choose to use
it on a sentence:The fly is an insectandHow insects

fly is a very complex subject. These means that in or-
der to assign to each word of a sentence it’s correct
tag, we have to consider the context in which each
word appears.

A part-of-speech tagger processes a sequence of
words and attaches a part-of-speech tag (from a pre-
defined tag set) to each word. Most current taggers are
based on statistical models defined on a set of param-
eters whose values are extracted from texts marked
manually. The aim of such models is to assign to each
word in a sentence the most likely part-of-speech, ac-
cording to its context, i.e, according to the lexical cat-
egories of the words that surround it. In order to do
this, statistics on the number of occurrences of differ-
ent contexts, for each word part-of-speech assignment
possibilities, are collected.

The simplest stochastic tagger, called the unigram
tagger, makes decisions based only on the word itself.
It assigns the tag that is most likely for one particular
token. The training step just investigates all the words
presented in the training corpus, and saves the most
frequent tag for each word. The tagger then works
like a simple lookup tagger, assigning to each word
the tag learned on the training step. A n-gram tagger
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is a generalization of a unigram tagger whose context
is the current word together with the part-of-speech
tags of then− 1 preceding tokens. In this case, the
training step saves, for each possible tag, the number
of times it appears in every different context presented
on the training corpus.

Since the surrounding words can also have various
possibilities of classification, it is necessary to use a
statistical model that allows the selection of the best
choices for marking the entire sequence, according to
the model. These stochastic taggers, usually based
on hidden markov models, neither require knowledge
of the rules of the language, nor try to deduce them.
Therefore they can be applied to texts in any lan-
guage, provided they can be first trained on a corpus
for that language.

Other type of taggers are rule-based systems, that
apply language rules to improve the tagging’s accu-
racy. The first approaches in this category were based
on rules designed by human linguistic experts. There
are also attempts to automatically deduce those rules,
with perhaps the most successful one being the Brill
Tagger (Brill, 1995). The Brill’s system automatic ex-
tract rules from a training corpus, and applies them in
a iterative way in order to improve the tagging of the
text. The results presented by Brill on the Wall Street
Journal data set, with a closed vocabulary assumption,
(97.2%) are among the bests results obtained so far in
this task. Brill’s rules are called transformation rules,
and they allow to consider not only the tags that pre-
cede one particular word, like the traditional proba-
bilistic taggers, but also the tags of the words that fol-
low it.

Brill conduced experiments with two types of
transformation rules: nonlexicalized transformation
rules, which contemplate only the tags that surround
one particular word, and lexicalized transformation
rules, which consider the words itselves.

Considering Brill’s work, it seams that a model
based on rules can be more flexible, since it allows
to consider not only the tags that precede but also
the tags that follow one particular word. Information
about the words itselves can also be used. Moreover,
the format of the information collected, in the form of
rules, is easier to analyze than a extreme high number
of probabilistic values.

More recently, several evolutionary approaches
have been proposed to solve the tagging problem.
These approaches can also be divided by the type
of information used to solve the problem, statistical
information (Araujo, 2002; Araujo, 2004; Araujo,
2006; Araujo, 2007; Araujo et al., 2004; Alba et al.,
2006), and rule-based information (Wilson and Hey-
wood, 2005). Shortly, in the former, an evolutionary

algorithm is used to assign the most likely tag to each
word of a sentence, based on a context table, that basi-
cally has the same information that is used in the tra-
ditional probabilistic approaches. Notwithstanding,
there is an important difference related with the con-
text’s shape, i.e they also take into account context in-
formation about the tags that follow a particular word.

On the other hand, the later is inspired by the
Brill’s tagger. In this case a genetic algorithm (GA)
is used to evolve a set of transformations rules, that
will be used to tag a text in much the same way as the
Brill’s tagger. While in Araujo’s work the evolution-
ary algorithm is used to discover the best sequence of
tags for the words of a sentence, using an informa-
tion model based on statistical data, in Wilson’s work
the evolutionary algorithm is used to evolve the infor-
mation model, in the form of a set of transformation
rules, that will be used to tag the words of a sentence.

There are also some other aspects that can be used
to determine a word’s category beside it’s context in
a sentence (Steven Bird and Loper, 2009). In fact, the
internal structure of a word may give useful clues as
to the word’s class. For example,-nessis a suffix that
combines with an adjective to produce a noun, e.g.,
happy→ happiness, ill → illness. Therefor, if we en-
counter a word that ends in-ness, it is very likely to
be a noun. Similarly,-ing is a suffix that is most com-
monly associated with gerunds, likewalking, talking,
thinking, listening. We also might guess that any word
ending in-ed is the past participle of a verb, and any
word ending with ’s is a possessive noun.

In this work we investigate the possibility of us-
ing an evolutionary algorithm to evolve a set of dis-
ambiguation rules, that contemplate not only con-
text information, but also some information about the
word’s morphology. This rules are not transformation
rules like Brill’s or Wilson’s rules, but a form of clas-
sification rules, which try to generalize the context
information that is used in probabilistic taggers. We
look at the problem as a classification problem, where
the classes are the different part-of-speeches, and the
predictive attributes are the context information, and
some aspects about the words’ internal structure. Our
goal is to achieve a model that captures both of the
advantages of statistical and rule based systems.

The tagging itself is also made by a second evolu-
tionary algorithm, that uses the disambiguation rules
to find the most likely sequence of tags for the words
of a sentence. So, our system is composed by two
steps. First, a set of disambiguation rules are discov-
ered by an evolutionary algorithm, and than an evolu-
tionary tagger is used to tag the words of a sentence,
using the rules found in the first step.

The rest of the paper is organized as follows:
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Section 2 describes the evolutionary algorithm used
to discover the disambiguation rules. In section 3
we present the evolutionary tagger and the results
achieved. Finally, Section 4 draws the main conclu-
sions of this work.

2 EVOLUTIONARY ALGORITHM
FOR DISAMBIGUATION RULES
DISCOVERY

In this section we describe the use of a genetic algo-
rithm to discover a set of disambiguation rules that
solve the part-of-speech tagging problem. The algo-
rithm works on a set of annotated texts. We will ap-
proach the problem as if we were trying to solve a
classification problem, by discovering a set of classifi-
cation rules. The motivation for using a genetic algo-
rithm (GA) in this task, is that genetic algorithms are
robust, adaptive search methods that perform a global
search in the space of candidate solutions. As a result
of their global search, they tend to cope better with
attribute predictions than greedy data mining methods
(Freitas, 2003).

We begin by selecting the predictive attributes that
we will use, then discuss the aspects that concern the
individuals’ representation, genetic operators, selec-
tion and, finally, the fitness function.

2.1 Attribute Selection

Our aim is to discover a set of rules that take into con-
sideration not only context information but also infor-
mation about the words’ morphology. For the context,
we decided to consider the same information that was
used in the work of Brill (Brill, 1995) and (Wilson and
Heywood, 2005). Thus, we consider six attributes:

• The lexical category of the third word to the left.

• The lexical category of the second word to the left.

• The lexical category of the first word to the left.

• The lexical category of the first word to the right.

• The lexical category of the second word to the
right.

• The lexical category of the third word to the right.

For the words’ morphology information we de-
cided to include the following attributes:

• The word is capitalized.

• The word is the first word of the sentence.

• The word ends withed or ing or es or ould or ’s
or s.

• The word has numbers or ’.’ and numbers.

The possible values for each of the first six at-
tributes are the values of the corpus tag set from which
the evolutionary algorithm will extract the rules. This
set will depend on the annotated corpus used, since
the set of used labels will vary for different annotated
corpora. The last four attributes are boolean, and so
the possible values are simply 0 and 1.

2.2 Individuals

Genetic algorithms for rule discovery can be divided
into two dominant approaches, based on how the rules
are encoded in the population of individuals. In the
Michigan approach each individual encodes a single
rule, while in the Pittsburgh approach each individual
encodes a set of prediction rules. The choice between
these two approaches depends strongly on the type
of rules we want to find, which in turn is related to
the type of data mining task we are interested to. In
the case of classification tasks, we are interested in
evaluating the quality of the rule set as a whole, as
opposed to the individual assessment of a rule. That
is, the interaction between the rules is important and
therefore, for classification, the Pittsburgh approach
seems to be more natural (Freitas, 2003). Examples
of GAs following the Pittsburgh’s approach are Gabil,
(De Jong et al., 1993), GIL, (Janikow, 1993).

In our work, we are interest in a set of rules that
will not be used for a standard classification prob-
lem, but will help the disambiguation task necessary
to solve the tagging problem. In this sense, the Pitts-
burgh’s approach seems to be more appropriate. How-
ever there is an important question to consider when
we adopt this type of representation, and that concerns
the size of the individuals. We could adopt a tradi-
tional fixed length representation, or we could adopt
a non standard variable length representation. In the
first case, the problem is to define which size to con-
sider, since we usual don’t know how many rules are
necessary for a certain classification task. In the other
hand, in the non standard variable length represen-
tation, there is a very difficult problem to deal with,
which concerns the control of the individuals’ length.
Individuals tend to grow through the evolutionary al-
gorithm generations, making it increasingly slower -
this problem is the well known bloat problem.

Since we will have a very large training set, and
therefore the algorithm will be very time consuming,
we have chosen to adopt the Michigan’s approach, so
that we don’t have to deal with the bloat problem.
However, we didn’t consider all the population as a
set of rules representing a solution to the classification
problem. Instead, we adopted a covering algorithm
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approach, i.e, we run the genetic algorithm as many
times as necessary to cover all the positive examples
of the training set, evolving a rule in each run. After
each execution ends, we store the rule represented by
the best individual in the population. We also update
the training set, removing all the positive examples
that were covered by the best individual obtained in
that run (see algorithm 1).

Algorithm 1: Covering Algorithm. sp and sn represent the
sets of positive and negative examples. ps and gm give the
population size and the maximum number of generations.

Require: sp,sn, ps,gm
Ensure: set o f rules

while sp 6=∅ do
best rule⇐ GeneticAlgorithm(sp,sn, ps,gm)
sp⇐ RemoveExamples(sp,best rule)
set o f rules⇐ Add(set o f rules,best rule)

end while

Algorithm 2: Genetic Algorithm. sp and sn represent the
sets of positive and negative examples. ps and gm give the
population size and the maximum number of generations.

Require: sp,sn, ps,gm
Ensure: bestRule

pop=GenerateInitialPop(ps)
while gm 6= 0 do

Evaluate(pop)
mating pool⇐ Selection(pop)
new pop⇐Crossover(pop)
new pop⇐ Mutation(new pop)
best old ⇐ GetBestInd(pop)
worst⇐ GetWorstInd(new pop)
pop⇐ Replace(worst,bestold,new pop)
gm⇐ gm−1

end while
best ind ⇐ GetBestInd(pop)
best rule⇐ Fenotypel(best ind)

In our approach each individual represents a rule
of the form IF Antecedent THEN Consequent,
whereAntecedentconsists of a conjunction of predic-
tive attributes andConsequentis the predicted class.
In the next sections we explain how we encode the
antecedent and consequent of a rule.

2.2.1 The Rule’s Antecedent

A simple way to encode the antecedent of a rule (a
conjunction of conditions) in an individual is to use
a binary representation. Let’s assume that a given
attribute can takek discrete values. We can encode
these values usingk bits. Thei-th attribute value, with

(i = 1, ....,k), is part of the rule condition if and only
if the ith bit equals 1.

For instance, let’s assume that we want to repre-
sent a rule antecedent that takes only one attribute into
consideration, let’s say,WeatherCondition, whose
possible values areSunny, Raining, Foggy, and
Windy. Thus, a condition involving this attributes
may be encoded at the expense of four bits. The inter-
pretation of a sequence like 1001 would result in the
following antecedent:

IF ,WeatherCondition=
”Sunny” OR WeatherCondition= ”Windy”

As we have seen, this type of representation al-
lows conditions with disjunctions. If we want to in-
clude a new attribute, we just need to include the se-
quence of bits required to encode the respective val-
ues. The representation can thus be extended to in-
clude any number of attributes, assuming that all are
connected by logical conjunction. An important fea-
ture of this type of representation concerns the situ-
ation where all bits of a given attribute are 1. This
means that any value is acceptable for that particu-
lar attribute, which in terms of interpretation indicates
that this attribute should be ignored.

As we saw above, for our particular problem, we
have a relatively large number of possible values for
most of the attributes considered. Thus, a represen-
tation such as the one described above would lead to
very long individuals. For this reason we adopted a
slightly different representation, inspired by the rep-
resentation used by Wilson.

For each of the first six attributes we used six bits.
The first bit indicates whether the category should or
should not be considered, and the following five bits
represent the assumed value of the attribute in ques-
tion. We adopted a table of 29 entries, and used the
binary value represented by five bits to index this ta-
ble. If the value exceeds the number 29, we used the
remainder of the division by 29. The extra bit for
each attribute allows us to ignore, in the antecedent
of the rule, a given attribute, as in the previous rep-
resentation when all the bits are 1. The remaining
attributes were encoded by nine bits, each one indi-
cating whether the property is, or is not, present. In
short, each individual is composed by 6×6+9= 43
bits.

Like in the standard representation, the attributes
are linked by logical conjunction. However, the rules
do not contemplate internal disjunctions between dif-
ferent allowable values for a given attribute. Never-
theless, this knowledge can be expressed by different
rules for the same class.
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2.2.2 The Rule’s Consequent

In general, there are three different ways to represent
the predicted class in an evolutionary algorithm (Fre-
itas, 2003). One way is to encode it into the genome
of the individual, opening the possibility of subject-
ing it to evolution (De Jong et al., 1993; Greene and
Smith, 1993). Another way is to associate all indi-
viduals of the population to the same class, which is
never modified during the execution of the algorithm.
Thus, if we are to find a set of classification rules to
predictk distinct classes, we need to run the evolu-
tionary algorithm, at leastk times. In eachi-th exe-
cution, the algorithm only discover rules that predict
the i-th class (Janikow, 1993). The third possibility
consists in choosing the predicted class in a more or
less deterministic way. The chosen class may be the
one that has more representatives in the set of exam-
ples that satisfy the antecedent of the rule (Giordana
and Neri, 1995), or the class that maximizes the per-
formance of the individual (Noda et al., 1999) . We
adopted the second possibility, so we didn’t need to
encode the rule’s consequent. Since we used a cover-
ing approach, we run the covering algorithm for each
class independently.

2.2.3 Initial Population

50% of the individuals of the initial population were
randomly generated and the other half were obtained
by randomly choosing examples from the set of pos-
itive examples. These examples were first converted
to the adopted binary representation and then added
to the population.

2.3 Training Set

We used the Brown Corpus to create the training sets
that we provided as input to the evolutionary algo-
rithm. The examples considered were extracted from
90% of the corpus. For each word of the corpus we
collected the values for every attribute included in the
rule’s antecedent, creating a specific training exam-
ple. Then, for each tag of the tag set, we built a train-
ing set composed by positive and negative examples
of the tag. Usually, the set of positive (negative) ex-
amples of a class is composed by examples that do
(do not) belong to that particular class. However in
our case we are not interested in finding typical clas-
sification rules, our goal is not to solve a classification
problem, we just need rules that allow us to choose
the best tag from a set of possible tags. This set is
not all the tag set, but a subset of it, usually composed
by a few number of elements. When we have a word
that has only one possible lexical class, the tagging is

straightforward. The problematic words are the ones
that are ambiguous. Thus, our training set only in-
cludes examples corresponding to ambiguous words.
With this in mind, we decided to use as positive exam-
ples of a classci only the examples concerning words
that are ambiguous and are tagged with classci in the
training corpus. As negative examples we consider
every example that correspond to a word that could
be used asci , but is tagged with a class different from
ci .

2.4 Fitness Function

Rules must be evaluated during the training process
in order to establish points of reference for the evolu-
tionary training algorithm. The rule evaluation func-
tion must not only consider instances correctly classi-
fied, but also the ones left to classify and the wrongly
classified ones. To evaluate our rules we used the well
knownFβ-measure:

Fβ = (1+β)2×
precision× recall

(β2× precison)+ recall
(1)

precision=
TP

TP+FP
(2)

recall =
TP

TP+FN
(3)

where:

• TP - True Positives = number of instances cov-
ered by the rule that are correctly classified, i.e.,
its class matches the training target class;

• FP - False Positives = number of instances cov-
ered by the rule that are wrongly classified, i.e.,
its class differs from the training target class;

• FN - False Negatives = number of instances not
covered by the rule, whose class matches the
training target class.

TheFβ-measure can be interpreted as a weighted
average of precision and recall. We usedβ = 0.09,
which means we put more emphasis on precision than
recall.

2.5 Genetic Operators and Selection

Since our representation is a typical binary represen-
tation, we didn’t need to use special operators. We
used a traditional two point crossover and binary mu-
tation as genetic operators. In the two point crossover
operator, two crossover points were randomly se-
lected, and the inner segments of each parent were
switched, thus producing two offsprings. The muta-
tion operator used was the standard binary mutation:
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if the gene has the allele 1, it mutates to 0, and vice
versa. We used a mutation probability of 0.01 and a
0.75 crossover probability. These values were empir-
ically determined.

For the selection scheme we used a tournament se-
lection of size two withk= 0.8. We also used elitism,
preserving the best individual of each generation by
replacing the worst individual of the new population
by the best of the old one (see algorithm 2).

2.6 Experimental Results

We developed our system in Python and used the re-
sources available on the NLTK (Natural Language
Toolkit ) package in our experiences. The NLTK
package provides, among others, the Brown corpus
and a sample of 10% of the Penn Treebank corpus.
It also provides several Python modules to process
those corpora. Since different corpora use different
formats for storing part-of-speech tags, the NLTK’s
corpus readers were very useful, by providing a uni-
form interface.

As we said before, tagged corpora use many dif-
ferent conventions for tagging words. This means that
the tag sets vary from corpus to corpus. To extract the
disambiguation rules from a set of annotated texts, we
need to run our algorithm for each of the tags belong-
ing to the tag set. However, if we want to test the
resulting rules in a different corpus, we will not be
able to measure the performance of our tagger, since
the corpus tag set may be different. To avoid this,
we decided to use thesimplify tags=Trueoption of
thetaggedsentencemodule of NLTK corpus readers.
When this option is set toTrue, NLTK converts the
respective tag set of the corpus used to a uniform sim-
plified tag set, composed by 29 tags. This simplified
tag set establishes the set of classes we use in our al-
gorithm. We ran the covering algorithm for each one
of the classes that had ambiguous words in the train-
ing corpus. There were 20 lexical classes in these
conditions and for each one we defined the respective
sets of positive and negative examples. We used 90%
of the Brown corpus to extract the examples used to
discover the disambiguation rules, using the process
described in the previous section. This resulted in a
total of 61113 examples.

In the next table (1) we present for each class the
number of distinct examples (negative and positive)
used. Each one appears at least one time in the train-
ing corpus. To construct the training set of positive
and negative examples for each class, we reduced the
number of distinct examples by eliminating those that
were less frequent. This reduction is intended to make
the algorithm faster, by eliminating examples that are

not meaningful or even just noise. It is worth noting
that each example has associated the number of times
it occurs in the training corpus. This way we guaran-
tee that the statistical information of each instance is
not lost.

Table 1: TP (TN) column shows the number of distinct pos-
itive (negative) examples that where found in the training
corpus for each of the 20 tags considered; SP (SN) shows
the number of distinct positive (negative) examples that
were used in the discovery of the disambiguation rules. This
simplification results from eliminating the less frequent ex-
amples.

Class TP TN SP SN
ADV 25420 99481 1194 8366
VD 17689 23200 484 683
TO 13754 10363 1895 1248
CNJ 21838 22387 1822 2151
PRO 13998 4411 1235 339
VG 8107 3176 145 83
DET 46427 40160 4648 2622
VN 21400 19790 669 683
N 66576 92770 2582 6336

UH 209 10499 198 866
P 66750 37380 7055 3613

NUM 5199 837 416 40
EX 2070 471 192 26
V 18474 63185 477 3046
NP 4185 11219 165 1182

VBZ 2773 8380 38 179
WH 2748 8512 233 822
ADJ 28466 29652 1065 1182
FW 279 25130 279 2990

MOD 5308 541 591 25

The genetic algorithm was run with a population
size of 200 individuals for a maximum of 80 genera-
tions. These values were established after some pre-
liminary experiments. The number of rules that re-
sult in the best tagging, discovered by the algorithm
for each of the 20 ambiguous classes, are presented
in table 2. A total number of 2834 rules were found.
The list below shows some examples of the discov-
ered rules:

• If Following tag isADJ andSecond Following
tag isN THEN DET with Precision= 0.976 and
TP= 4702.

• If Previous tag isV andFollowing tag isN THEN
DET with Precision= 0.981 andTP= 1720.

• If Previous tag isV andends with -ed THEN VN
with Precision= 1 andTP= 753.

• If Following tag isV THEN TO with Precision=
1 andTP= 7113.
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Table 2: Number of rules discovered by the genetic algo-
rithm for each of the 20 ambiguous classes considered.

Class Number of Rules
ADV 396
VD 179
TO 5
CNJ 378
PRO 177
VG 43
DET 421
VN 62
N 364

UH 6
P 289

NUM 42
EX 13
V 121
NP 67

VBZ 15
WH 67
ADJ 196
FW 42

MOD 15

3 EVOLUTIONARY TAGGER

In the previous section we presented an evolutionary
algorithm designed to discover a set of sets of disam-
biguation rules for a predefined set of tags. Each set is
composed by a certain number of rules, and each rule
has associated a precision value and the total number
of positive examples covered by that rule (including
repetitions).

We now want to use these rules so that we can
mark the words of a sentence with the appropriate
part-of-speech. Therefore, if we want to decide which
tag to choose for a particular word, from the set of
possible tags for that word, we should be able to do
that by applying the set of rules previously found.

We could do this by applying the correspondent
sets of rules to the particular word, choosing the class
indexing the set which includes the best rule. Thus,
if we want to tag the wordwi , andwi can be tagged
with one of the tags of the setSi, for each possible tag
tk ∈ Si , we should apply the correspondent set of dis-
ambiguation rulesRtk to wi . The best tag should be the
one that indexes the set which includes the best rule.
To measure the rule’s quality, we could use the prod-
uct between the precision value and the total number
of positive examples covered by that rule.

However, the decision we need to make so that

we can solve the tagging problem, does not only con-
cerns which tag is the best for a particular word, but
also the best sequence of tags to mark a sequence of
words. Since one tagging decision affects the tagging
choices for all the word’s neighbors, we need to use
a method that could give us the optimal sequence of
choices. We used an approach similar to the one pre-
sented in (Araujo, 2002). However, instead of using
the training table, we use the disambiguation rules.
Our tagger receives as input a non annotated sentence,
a dictionary with all the words present in the corpus
(and their possible tags), and a set of sets of disam-
biguation rules. The tagger returns the same sentence
with each word associated with a tag.

An important aspect of the tagging problem, be-
sides the existence of ambiguous words, is the pos-
sibility of occurring unknown words. In this work
we adopt a closed vocabulary assumption, i.e. there
are no unknown words in the test set. Our goal is to
compare our results to the ones achieved by the three
approaches presented earlier, based on the same as-
sumptions. However, we designed the evolutionary
tagging algorithm to be able to deal with this possi-
bility.

3.1 Representation

An individual is represented by a chromosome made
of a sequence of genes. The number of genes in a
chromosome equals the number of words in the input
sentence. Each gene proposes a candidate tag for the
word in the homologous position. For example, con-
sider the input sentence: ”The cat sat on the mat.” A
possible individual would be represented by a chro-
mosome made of six genes, such as the one below:

g1 g2 g3 g4 g5 g6

DET N VD P DET N

To evaluate the individual we need to apply the
disambiguation rules. However, as we discussed in
the previous section, our rules have six attributes
related with the word context, and other nine at-
tributes concerning some morphological properties of
the words. Therefore, so that we can apply the dis-
ambiguation rules, we need to extract the needed at-
tributes from the input sentence and from the tags
proposed by the genes. This way each pairwi/gi
gives rise to a 15-tuple of properties with the follow-
ing alignment:

1. The lexical category proposed by the third gene to
the left;

2. The lexical category proposed by the second gene
to the left;
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3. The lexical category proposed by the first gene to
the left;

4. The lexical category proposed by the first gene to
the right;

5. The lexical category proposed by the second gene
to the right;

6. The lexical category proposed by the third gene to
the right;

7. True if the homologous word is capitalized, false
otherwise;

8. True if the homologous word is the first word of
the sentence, false otherwise;

9. True if the homologous word ends withed, false
otherwise;

10. True if the homologous word ends withing, false
otherwise;

11. True if the homologous word ends withes, false
otherwise;

12. True if the homologous word ends withould, false
otherwise;

13. True if the homologous word ends with’s, false
otherwise;

14. True if the homologous word ends withs, false
otherwise;

15. True if the homologous word has numbers or ’.’
and numbers, false otherwise.

When there is no gene (no corresponding word) in
one of the positions contemplated in the context, we
adopted an extra tag named ’None’. This can happen
with the first three and last three genes of the individ-
ual.

We adopted a symbolic representation, i.e. the
possible alleles of a gene are the the tags of the tag
set adopted for the corpus in which the experiences
will be executed. However, the allowed alleles of a
gene are only the ones that correspond to the possible
tags of the word the gene represents.

The initial population is generated by choosing,
for each gene, one of the possible tags for the corre-
sponding word. If the word is not in the dictionary, the
algorithm chooses randomly one of the classes whose
rule set has a rule which covers the example defined
by the 15-tuple of the corresponding gene. If none of
the rules cover the 15-tuple, the algorithm chooses by
default the classN, which is the most frequent lexical
class in the english language.

3.2 Genetic Operators and Selection

We used a typical one point crossover with a 0.8 prob-
ability. The mutation operator randomly chooses an-

other allele from the set of possible alleles for the par-
ticular gene and was applied with a 0.05 probability.
Again, if the word is unknown, the sets of rules will
be used to determine which ones include a rule that
covers the 15-tuple, and one of the possibilities will
be randomly chosen and assigned to the correspond-
ing gene. We adopted a tournament selection of size
two with k = 0.7 and also used elitism, replacing the
worst individual of each new population with the best
of the old one. All the values were empirically deter-
mined in a small set of preliminary experiments.

3.3 Fitness Function

The performance of an individual is measured by the
sum of the performances of his genes. Let’s consider
ti to be the lexical category proposed by the genegi
for the wordwi , and pi to be the 15-tuple of prop-
erties determined bygi. If Rti represents the set of
disambiguation rules for the lexical categoryti , and
RPi ⊂ Rti the set of all rulesrk ∈ Rti that cover the
15-tuplepi , the evaluation ofgi , is defined by

FG(gi) =

{

max{P(r)×TP(r)|r ∈ RPi} i f RPi 6=∅

Prob(ti ,wi) otherwise
(4)

whereP(r) gives the precision of ruler, TP(r)
gives the number of examples of the training corpus
covered byr and Prob(ti ,wi) the probability of the
wordwi appearing with tagti in the corpus.

The fitness of an individuali with n genes is given
by:

Fitness(i) =
n

∑
j=1

FG(g j) (5)

3.4 Experimental Results

We tested our evolutionary tagger on 12006 words of
the Penn Treebank corpus and on 7527 words of the
Brown corpus. We achieved an accuracy of 96.9%
on the Pen Treebank of the Wall Street Journal cor-
pus and a 96.49% accuracy on the Brown corpus (ta-
ble 3). We ran the evolutionary tagger with a popu-
lation of 20 individuals, during 30 generations. The
experiments that we performed show that the evolu-
tionary tagger usually finds a solution very quickly.
In fact the difficulty level of the tagging task depends
on the number of ambiguous words of the sentence
we want to tag. Although it is possible to construct
sentences in which every word is ambiguous (Hindle,
1989), such as the following:

Her hand had come to rest on that very book.
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Table 3: Results achieved by the Evolutionary Tagger on the Penn Treebank corpus and on the Brown corpus, along with the
results achieved by the approaches more similar to the one presented here.

Tagger Corpus Train Test Accuracy
Evolutionary Tagger Brown 61113 7527 96.5
Evolutionary Tagger Penn Treebank WSJ - 12006 96.9

Wilson’s Penn Treebank WSJ 600000 - 89.8
Brill’s Penn Treebank WSJ 600000 150000 97.2

Araujo’s Brown 185000 2500 95.4

those situations are not the most common. After
counting the number of ambiguous words that ap-
pear in the sentences of the 10% of the Brown corpus
we reserved for testing the tagger, we observed that,
in average, there are 6.9 ambiguous words per sen-
tence. This explain the considerable low number of
individuals and generations needed to achieve a solu-
tion. We could argue that in those conditions the use
of a genetic algorithm is unnecessary, and that a ex-
haustive search could be applied to solve the problem.
However, we can not ignore the worst case scenario,
where, like we see above, all the words, or a large ma-
jority of the words, on a very long sentence may be
ambiguous. Furthermore, we observed that the sen-
tence average size of the Brown corpus is of 20.25
tokens, with a maximum of 180. The largest number
of ambiguous words on a sentence belonging to this
corpus is 68. Even for the smallest degree of ambi-
guity, with only two possible tags for each word, we
have a search space of 268, which fully justifies the
use of a global search algorithm such as a GA.

The results achieved show that there are no sig-
nificant differences on the accuracy obtained by the
tagger on the two test sets used. At this point, it is
important to recall that the disambiguation rules used
on the tagger were extracted from a subset (differ-
ent from the test set used in this experiments) of the
Brown corpus. Which bring us to the conclusion that
the rules learned on step one are generic enough to be
used on different corpora, and are not domain depen-
dent.

4 CONCLUSIONS

We described a new evolutionary approach to the part-
of-speach tagging problem that achieved results com-
parable to the best ones found in the area bibliogra-
phy. Although there are other approaches to this prob-
lem that use, in some way, evolutionary algorithms, as
far as we know this is the first attempt that uses these
algorithms to solve all aspects of the task. In the pre-
vious works the evolutionary approach was applied in
two different ways:

• to perform the tagging (Araujo, 2002). Here the
evolutionary algorithm was oriented by statistical
data, that was collected in much the same way as
in the statistical approaches;

• to discover a set of transformation rules (Wilson
and Heywood, 2005). Here the tagging is not done
by the evolutionary algorithm. The author uses an
evolutionary algorithm to discover a list of trans-
formations rules, that is then used to perform the
tagging in a deterministic way.

In our approach to the problem, we used an evolution-
ary algorithm to discover a set of disambiguation rules
and then used those rules to evaluate the sequences of
tags for the words of a sentence, with the sequences
being evolved by another evolutionary algorithm.

When we first begun to research this problem, we
concluded that there were two main approaches. The
most frequent were based on statistical data collected
from a training corpus, concerning the words’ left
context (the tags appearing left of a word); the oth-
ers were based on rules: disambiguation rules, gen-
erally constructed by human experts, and transforma-
tion rules, firstly presented by Brill. Our intention was
to capture the positive aspects of this two main ap-
proaches. We wanted to use rules since they are more
flexible in terms of the kind of information we can
use to solve the disambiguation problem, and are also
more comprehensible than pure statistical data. How-
ever, we couldn’t ignore the good results presented by
the statistical approaches. And this led us to the idea
of transforming the statistical data in a set of disam-
biguation rules.

We wanted to generalize the statistical informa-
tion normally used on the traditional approaches, and,
simultaneously, include other type of information,
presenting it in a way that could be easily interpreted,
i.e. in the form of rules. This generalization was
achieved by the discovery of the disambiguation rules,
with the statistical information being reflected on the
quality measure of each rule. Our expectations were
that this generalization could reduce the size of the
data needed to do the disambiguation in the tagging
task and that the information acquired would be less
domain dependent than in previous approaches.
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We tested our approach on two different corpora:
in a test set of the corpus used to discover the disam-
biguation rules, and on a different corpus. The results
obtained are among the best ones published for the
corpora used in the experiments. Also there were no
significant differences between the results achieved in
the subset belonging to the same corpus from which
we defined the training set, used to discover the rules,
and the results obtained on the sentences of the other
corpus. This confirms our expectations concerning
the domain independence of the obtained rules.

Although we consider our results very promising,
we are aware of the necessity of test our approach
with a larger tag set, and to apply it to more corpora.
We intend to test the tagger on other languages, as
well. We also think that this approach could be ap-
plied to other natural language processing tasks like
noun phrase chunking and named-entity recognition.
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