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Abstract: In order to improve the mechanical qualities of a concrete, various kinds of fibers are added to the concrete. 
In the studies, polypropylene (PP) fibers are employed as a fiber type. It has a significant place in the 
researches that PP fibers not only improve the mechanical qualities of the concrete under normal 
temperatures, but also prevents the bursting of the concrete with the internal vapour compression under high 
temperatures. The distributions and locations of the fibers in the concrete and the variables employed for 
experimental proceedings affect the mechanical results. This makes it difficult to link the obtained results to 
each other. In order to establish a complicated link, it is inevitable to create a learning mechanism. In this 
study, multilayered perceptrons (MLP) and radial basis function artificial neural network (RBFNN) models 
were used and their flexure strengths were sought to be predicted. Both of the neural network models put in 
a successful performance and enabled the prediction of the experimental results with a satisfying 
approximation. 

1 INTRODUCTION 

It is practically not possible to empirically state the 
effects of locations of the fibers, homogeneity of the 
fibers and the different temperatures on the 
mechanical qualities of a concrete. Therefore, it is 
complicated to predict the behaviours of the concrete 
with similar qualities by the data in hand. To model 
and anticipate the complicated systems depending 
on the input-output data and/or unknown behaviours, 
methods to develop mathematical models in various 
fields of civil engineering have been employed 
(Astrom and Eykhoff, 1971).  

In this study, bending tensile strengths of the 
concrete with PP fiber addition are predicted using 
the multilayered perceptron neural network and 
radial basis function artificial neural network 
models. For both of the models, the same input, 
validation, and testing data were used. Addition of 
split tensile strength obtained through experimental 
studies to the variables on which experimental 
proceedings were applied in the entry parameters 
made it more difficult to link between the input-
output data. Ultimately, the performance of the two 

different artificial neural network models was found 
to be satisfying. 

2 EXPERIMENTAL PROCEDURE 

The samples produced during the experimental study 
comprised of members with 40 MPa characteristic 
compressive strength and in the C35/45 concrete 
class (TS EN 206/1, 2002). Samples were cured in 
periods of 7,28 and 90 days and made ready. In 
addition to the room temperature (24.5 ºC), five 
more temperature effects of 100 ºC, 200 ºC, 400 ºC, 
600 ºC and 800 ºC were employed. The samples 
under the room temperature were assessed as the 
reference samples for the other temperature effects.  
Following the heating period, the temperature in the 
oven was left to cool by itself with its lid closed until 
it decreased to room temperature in order to keep the 
experimental samples from exposing to the effects of 
abrupt temperature changes. Table 1 and Table 2 
shows the 216 cylinder and prismatic samples 
according to each fiber type, volumetric fiber ratio, 
and cure period and temperature value.  
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Table 1: Cyclindrical Samples. 

Cyclindrical Samples (150x300mm) 

Day 
Temp. 
(°C) 

Polypropylene Fiber Ratio 
(% Volumetrical) 

FP ; MFP 
  0.0 0.1 0.2 0.3 0.4 0.5 

7, 
28, 
90 

24.5 1 1 1 1 1 1 
100 1 1 1 1 1 1 
200 1 1 1 1 1 1 
400 1 1 1 1 1 1 
600 1 1 1 1 1 1 
800 1 1 1 1 1 1 

Total 2x6x3x6=216 

Table 2: Prismatic Samples. 

Prismatic Samples (150x150x750mm) 

Day 
Temp. 
(°C) 

Polypropylene Fiber Ratio 
(% Volumetrical) 

FP ; MFP 
  0.0 0.1 0.2 0.3 0.4 0.5 

7, 
28, 
90 

24.5 1 1 1 1 1 1 
100 1 1 1 1 1 1 
200 1 1 1 1 1 1 
400 1 1 1 1 1 1 
600 1 1 1 1 1 1 
800 1 1 1 1 1 1 

Total 2x6x3x6=216 

3 EXPERIMENTAL RESULTS 

Addition of polypropylene fibers improved the 
bending strength of the sample until 200ºC, but in 
the samples that had been exposed to higher 
temperatures, the change in the fiber ratio had no 
contribution. With the increase in the cure period of 
the sample, bending strength of the samples 
increased. In the Figures 1-3 the bending strengths 
of the prismatic samples for 7, 28 and 90 days are 
given respectively.  

Under high temperature values, bending strength 
decreased also together with the increase in the fiber 
ratio. Therefore, it can be stated that the local 
caverns created by the melting PP fibers in the 
sample adversely affect the behaviour of a member 
when bending. The Multifilament Polypropylene 
(MFP) fibers did not contribute to the bending 
strengths of the samples under the room temperature 
and 100 ºC as much as the Flament (FP) fibers did. 
As the MFB fiber ratio increased, the bending 
strength was observed to decrease. However, the 
bending strength of the samples with MFP above 
200ºC temperature values was measured to be higher 
than those with FP fibers. 

 

Figure 1: Flexural Strength of Prismatic Samples-7 Days. 

 
Figure 2: Flexural Strength of Prismatic Samples-28 Days. 

4 ARTIFICIAL NEURAL 
NETWORK MODELS 

For the prediction of the experimental data obtained 
from the study, MLP artificial neural network model 
and RBF neural network models were used. 
Considering the error values and determination 
coefficients between the observed and predicted 
data, the performance of the models were evaluated 
together.  

In the first place, the experimental parameters to 
be used in the models were identified and then the 
training, validation and testing data were classified. 
A total of 512 samples with different fiber types, 
fiber ratios, and cure periods and which were 
exposed to different temperature effects were 
evaluated. Of the 512 samples, 216 were cylinder 
samples with a size of 150x150x300 each and the 
other 216 were prismatic samples with a size of 
150x150x300mm each produced with the same 
concrete mixture. Therefore, in the applications, 
evaluations were made for the compression strengths 
of 216 cylinder samples and the bending tensile 
strength of the prismatic samples with the same 
materialistic qualities. 

In each model, considering the same input 
parameters, 5 input parameters were used. Under the 
light of these data, the prediction for 1 output 
parameter was made and its error ratio and 
correlations were evaluated. The input parameters 
were set as the fiber type used to prepare the sample  
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Table 5: Error values for MLP performance. 

Hidden Layer 
Number of first 

layer neuron 
Transfer Function 

R2 MSE RMSE MAE MARE 

3 6 tansig-logsig-logsig-tansig 0.9734 0.6990 0.8361 0.5594 14.7446 

2 5 logsig-logsig-tansig 0.9804 0.5099 0.7140 0.5063 14.6786 

1 6 tansig- logsig 0.9826 0.4614 0.6793 0.5095 18.4026 

 
mixtures (Ft), the split tensile strength of the 
cylinder samples (sfc), volumetric fiber ratio in the 
mixture (FR), temperature (T), and cure period (Cp).  

The output parameter is the bending strength of 
the prismatic samples (Md). The 216 data used in 
themodel were classified with random selection 60% 
reserved for training, 20% for validation and 20% 
for testing phases. In order to make the models learn 
the same data and predict the same test data, the 
same training, validation and testing data were used 
in both models.  

The data used in the artificial Neural networks 
were normalized first and then scaled. 

4.1 Multilayer Perceptron (MLP) 

 
Figure 3: Example architecture for one of the MLP 
models. 

For the design of MLP model, the number of 
neurons in the hidden layer, activation (transfer) 
function and the learning algorithm are of 
importance. In the study, the MLP neural network 
model was created in three forms using 3,2 and 1 
hidden layers (Figure 4). The table 5 shows the 
transfer function between the input layer and first 
two hidden layers and the transfer functions whereby 
the best prediction results were obtained between the 
input layer and hidden layers. The transfer function 
for the output layer is called “purelin”. As for the 
learning function, it is the “trainlm” function which 
updates its tendency values and weights according to 
Levenberg-Marquart optimization. “Trainlm” is a 
very quick learning function but needs a great deal 
of memory for analysis (Matlab Software, R2009b).  

The Figures 4, 5, and 6 show the performance of 
the model depending on the values predicted during 
the training, verifying and testing phases and the 
correlation between the targeted values  

The Figure 7 presents the fluctuation graph 
between the values obtained during the testing phase 
and the targeted values. 

 

Figure 4: MLP correlation of training. 

 

Figure 5: MLP correlation of validation. 

 

Figure 6: MLP correlation of testing. 
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Figure 7: Coherence between target and predicted values 
for MLP. 

4.2 Radial Basis Function ANN 
(RBFNN) 

30 neurons have been used in this model. 

 

Figure 8: Typical Radial Basis Function ANN 
(Alexandridis et al., 2012). 

Table 6 shows the error values obtained from the 
radial basis neural networks 

Figures 9, 10 and 11 present the performance 
depending on the correlation between the values 
predicted during the training, verifying and testing 
phases and targeted values. 

Table 7 states the obtained results from the 
models and experimental data. Moreover, Table 8 
states the mean absolute errors between the real and 
predicted values for each data. 

Table 6: Error values for RBFNN performance. 

RBFNN 
Testing 

R2 MSE RMSE MAE MARE 
0.9581 0.6456 0.8035 0.5572 14.5678 

 

Figure 9: RBFNN correlation of training. 

 

Figure 10: RBFNN correlation of validation 

 

Figure 11: RBFNN correlation of testing. 

Table 7: Obtained results from the models and 
experimental data. 

Model R2 MSE RMSE MAE MARE 

MLP 
Testing 

0.9734 0.5099 0.7140 0.5063 14.6786 

RBFNN 
Testing 

0.9581 0.6456 0.8035 0.5572 14.5678 

5 CONCLUSIONS 

This study followed the transformations in the 
mechanical qualities of the concrete with 
polypropylene fiber addition when exposed to 
temperature and evaluated this transformation via 
artificial neural networks. The link between the 
transformation in the split tensile strength, cure 
period, fiber type and temperature parameters and 
bending strength has been provided. 

Both of the models performed well in predicting 
the experimental data of the bending strength. The 
single hidden layer used in the multi layered model 
created a fairly good correlation between the data. 
However,  as  the  error   margin  for  predicting   the 
small values within the target values was wide, mean 

0

5

10

15

20

25

0 20 40 60

Target…

Size	of	Testing

Fl
ex
ur
al

St
re
ng
th

‐5

5

15

25

0 5 10 15 20 25

Y
1

T1

RBFNN	Training	
R²=0.9855

0

5

10

15

20

25

0 5 10 15 20 25

Y
2

T2

RBFNN	Validation	
R²=0.9750

Y2=0.98T2+0.13

0

5

10

15

20

25

0 5 10 15 20 25

Y
3

T3

RBFNN	Testing
R²=0.9581

Y3=0.94T3+0.46

          Best Fit 
          Y=T 

           Best Fit 
           Y=T

           Best Fit 
           Y=T 

IJCCI�2012�-�International�Joint�Conference�on�Computational�Intelligence

614



 

absolute relative error was found to be relatively 
higher. When two hidden layers were used, smaller 
MARE and MAE values were obtained. Three 
hidden layers led to a decrease in the correlation and 
to an additional increase in the errors. However, 
error values were smaller than those in the single 
hidden layered model. As the number of the hidden 
layers increased, it caused the predictions to diverge 
from the target as it increased the amount of weight 
coefficients.  

The mean absolute relative error values obtained 
from the radial basis function neural network model 
were lower. As such, it can be said that the model is 
more successful in predicting the small target values 
with less errors. However, the higher numbers of 
mean absolute and square errors implicates that the 
performance of the model was a little bit worse. As 
the data to be predicted by the models were 
randomly arrayed, there occurred an abrupt increase 
or decrease between the previous values and the 
following values. These changes led to a decrease in 
the prediction performance and an increase in the 
model errors. The error ratios of the radial basis 
network resulting from these abrupt data changes 
were lower than the multilayered network.  

Both of the neural network models used in this 
study performed successfully and enabled the 
prediction of experimental values with satisfying 
approximation. 
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