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Abstract: This paper addresses the unrelated parallel machine scheduling problem with limited and differently-skilled 
human resources. Firstly, the formulation of a Mixed Integer Linear Programming (MILP) model for 
solving the problem is provided. Then, three proper Genetic Algorithms (GAs) are presented, aiming to 
cope with larger sized issues. Numerical experiments put in evidence how all GAs proposed are able to 
approach the global optimum given by MILP model for small-sized instances. Moreover, a statistical 
comparison among proposed meta-heuristics algorithms is performed with reference to larger problems. 

1 INTRODUCTION 

The parallel machine production system is a very 
common environment that can be found in many 
manufacturing situations. In the parallel machine 
scheduling problem, a set of n jobs has to be 
processed by only one out of m machines in parallel; 
minimizing makespan in such a system is a NP-hard 
problem as demonstrated by Garey and Johnson 
(1979). In the more general case of unrelated parallel 
machines, the processing time of each job depends 
on the machine it is assigned to, as workstations are 
supposed to be non-identical. The unrelated parallel 
machine system has been widely addressed in 
literature in the past few years; many techniques 
have been proposed for the resolution of this 
problem. In Kim et al. (2002) a Simulated Annealing 
approach is presented for the unrelated parallel 
machine problem with sequence dependent setup 
times. Ghirardi and Potts (2005) developed a 
Recovering Beam search Algorithm for minimizing 
makespan in an unrelated parallel machine system 
within a polynomial time, also in case of very large 
instances. Recently, Vallada and Ruiz (2011) 
developed a genetic algorithm for solving the 
makespan minimization problem within an unrelated 
parallel machine production system with sequence 
dependent setup times. 

Although in the last decades a number of studies 
have been presented with reference to the unrelated 
parallel machine issue, the effect of the human factor 

on this scheduling problem has not been properly 
addressed yet. Nevertheless, the impact of workforce 
on the performance of production systems has been 
widely discussed in the scheduling literature. 
Norman et al. (2002) considered the problem of 
assigning workers to manufacturing cells in order to 
maximize the effectiveness of the organization. In 
Celano et al. (2008) a first approach for solving the 
scheduling problem of unrelated parallel 
manufacturing cells with limited human resource is 
given, through the development of an integrated 
simulation framework that studies the effect brought 
on system performances by the variation of workers 
employed within the production shop. 

In this paper, an unrelated parallel machine 
problem with limited and differently-skilled human 
resources is addressed with reference to the 
makespan minimization objective. To this aim, a 
Mixed-Integer Linear Programming Model (MILP) 
and three different Genetic Algorithms (GAs) are 
proposed. 

The remainder of the paper is organized as 
follows. In Section 2 the problem statement is 
reported. In Section 3 the description of a MILP 
model able to optimally solve small instances of the 
aforementioned problem is given. Section 4 
illustrates the genetic algorithms developed. In 
Section 5 obtained results are discussed. Finally, 
Section 6 concludes the paper. 
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2 PROBLEM STATEMENT 

The proposed unrelated parallel machine problem 
can be stated as follows. Let us consider a set N of n 
jobs that has to be worked in a production stage 
made of a set M of m parallel machines, aiming at 
the minimization of the total completion time, i.e., 
makespan. Each job has to be processed by only one 
machine before the exit from the system is allowed. 
Setup operations performed on a given workstation 
by a single worker must precede each job processing 
on the same workstation. A team W of w workers is 
assumed to be committed to these operations being, 
in general, w m ; this means that operators 
represent a critical resource. In addition, each 
worker is featured by a certain skill level, on the 
basis of which he is able to perform setup operations 
slower or faster than his colleagues. 

After setup operation, the job remains on a given 
machine until its own processing has been 
completed, as pre-emption is not allowed. Setup 
times are assumed to be sequence-independent; 
nevertheless, being the machines unrelated and the 
workers differently-skilled, setup times depend both 
on the worker selected for performing setup 
operations and the machine actually processing the 
job. In addition, processing times depend also on the 
machines jobs are assigned to. 

3 MILP MODEL 

A first goal of the proposed research has consisted in 
the development of a Mixed Integer Linear 
Programming (MILP) model, aiming to both 
optimally solve a set of small instances of the 
problem in hand and validate performances of the 
provided GAs. In the following, mathematical 
formulation is reported. 

Indices  

, 1,2, ,j l n   jobs 

1, 2, ,i m   machines 
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, , ;  k j l j l   

max jC C  j  (6)

 0;1ikjX   , ,i k j (7)

 0;1jlQ   ,j l  (8)

Constraint (1) ensures that each job is assigned to 
one and only one machine, and that its setup is 
performed by one and only one worker. Constraint 
(2) forces the setup completion time of each job to 
be equal or greater than the actual setup time of the 
job itself. Constraint (3) states that, after setup 
completion, the processing time must elapse before 
the job can be considered definitively completed. 
Through the couple of constraints (4) is imposed 
that, if two jobs are assigned to the same machine, 
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no overlap between that is allowed (i.e., one job 
must be completed before setup of the other one is 
started, or vice versa). Similarly, constraints (5) 
avoids overlapping of setup operations performed by 
the same worker (i.e., setup of one job must be 
completed before setup of the other one is started, or 
vice versa). Constraint (6) forces the makespan to be 
equal or greater than the completion time of each 
job. Finally, through constraints (8) and (9), the 
binary variables are defined. 

4 PROPOSED GENETIC 
ALGORITHMS 

The MILP model proposed is able to optimally solve 
small instances of the problem at issue. 
Nevertheless, it cannot be employed for larger 
examples, because of the high computational burden 
required. In order to solve a set of large-sized 
instances of the aforementioned problem, three 
different meta-heuristic procedures based on genetic 
algorithms (GAs) have thus been developed. In the 
following subsections, a detailed description of 
proposed GAs is reported. 

4.1 Permutation-based GA 

A first approach towards the resolution of the 
aforementioned problem by means of GAs consisted 
in the development of a genetic algorithm equipped 
with a permutation-based encoding scheme, 
hereinafter PGA. In such procedure, each 
chromosome directly describes the order in which 
jobs have to be processed in the manufacturing 
stage, while the assignment of jobs to machines and 
workers is performed by the decoding procedure, on 
the basis of a time-saving rule. Below, a detailed 
description of such algorithm is provided. 

4.1.1 Encoding/Decoding Scheme 

In PGA, each solution is represented by a 
permutation of n elements, where n is the number 
of jobs to be scheduled in the manufacturing stage. 
More in detail, let (l) be the job on the l-th position 
of the considered permutation (l=1,2,…,n) to be 
scheduled on an unrelated parallel machine 
production system with m machines and w workers 
(w m ); Sik(l) denotes the time required by worker k 
(k=1,2,…,w) to perform setup of job (l) on machine 
i (i=1,2,…m), while Ti(l) indicates processing time 
of job (l) on machine i. The decoding procedure 

considers jobs in the order they appear in the 
permutation and assigns them to the couple 
machine-worker that can complete them earlier than 
any other. Thus, indicating with TMi the time at wich 
machine i is ready to accept a new job, and with TWk 
the time at which worker k is ready to start a new 
setup operation after all jobs preceding (l) in the 
permutation have been scheduled, the completion 
time C(l) is calculated as follows: 
 

C(l)=  ( ),
min ik li k

E   (9)

where Eik(l) indicates the estimated completion time 
of job (l) if processed on machine i with setup 
performed by worker k, calculated according to the 
following formula: 
 

 ( ) ( ) ( )max ;ik l i k ik l i lE TM TW S T      (10)

Then, denoting with i* and k* respectively, the 
machine and the worker to which job (l) is assigned 
(i.e., those minimizing Eik(l)), quantities  TMi* and 
TWk* are updated as follows: 
 

TMi*= C(l) (11)

TWk*=C(l)- Ti*(l) (12)

Lastly, after the aforementioned procedure has been 
performed for all jobs in the permutation, the 
makespan is calculated according to the following 
formula: 
 

 max ( )max l
l

C C  (13)

4.1.2 Selection, Crossover and Mutation 
Operators 

With regards to selection mechanism, the well-
known roulette-wheel scheme (Michalewicz, 1994) 
has been adopted, assigning to each solution a 
probability of being selected inversely proportional 
to makespan value. A position-based crossover 
(Syswerda, 1991) has been employed for generating 
new offspring from a couple of selected parents. 
With reference to mutation procedure, a simple swap 
operator (Oliver, 1987) has been chosen. The 
algorithm has also been equipped with an elitist 
procedure which copies the best two individuals of 
each generation into the new population. Finally, a 
total number of makespan evaluations has been set 
as stopping criterion for the algorithm. 

4.2 Multi-encoding GA 

The proposed PGA allows considerably limited 
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computational burdens, because of the very simple 
encoding exploited. Nevertheless such algorithm 
moves over a space which cannot embrace the 
entirety of solutions, as the decoding procedure may 
define, for each permutation, one and one only 
scheme regarding assignment of jobs to machines 
and workers. A second approach towards the 
resolution of the proposed problem by means of 
GAs, consisted thus in the development of a genetic 
algorithm, hereinafter MGA, equipped with a multi-
encoding scheme able to describe a wider solution 
space compared to PGA. In such procedure, two 
arrays for driving the assignment of jobs to 
machines and workers, respectively, are added to job 
permutation in the chromosome structure. Below, a 
detailed description of such algorithm is provided. 

4.2.1 Encoding/Decoding Scheme 

In order to illustrate the encoding procedure 
exploited by MGA, let us use the same nomenclature 
defined for PGA. Thus, assuming to have n jobs to 
be scheduled on an unrelated parallel machine 
system with m workstations and w workers (w m ), 
each chromosome is represented by the following 
substrings: 

 a permutation ’of n elements;  

 an array ’’ of n integers ranging from 0 to m, 
driving the assignment of jobs to machines; 

 an array ’’’ of n integers ranging from 0 to w, 
driving the assignment of jobs to workers. 
 

In order to introduce the decoding procedure, let 
’(l) be the job on the l-th position of the 
permutation ’ (l=1,2,…,n); i indicates the element 

at position ’(l) of array ’’; k  indicates the element 
at position ’(l) of array ’’’. Sik'(l) denotes the time 
required by worker k (k=1,2,…,w) to perform setup 
of job ’(l) on machine i (i=1,2,…m) while Ti'(l) 
indicates processing time of job ’(l) on machine i. 
TMi and TWk denote times at which machine i and 
worker k, respectively, are ready to start a new setup 
operation after all jobs preceding ’(l) in the 
permutation have been scheduled.  

The decoding procedure considers jobs in the 
order they appear in permutation ’ and uses 
information from arrays  ’’ and ’’’ to perform the 
assignment of jobs to machines and workers; if no 
information is given by one or both arrays (i.e. if 

i =0 and/or k =0), the same time-saving rule of 
PGA is used. Hence, completion time C’(l) is 
calculated as follows: 

 

C’(l)= 
 
 
 

'( )

'( )

'( )

'( )
,

             if  0 and 0

min     if  0 and 0

min     if  0 and 0

min     if  0 and 0
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 (14)

where Eik’(l) indicates the estimated completion time 
of job ’(l) if processed on machine i with setup 
performed by worker k, calculated according to the 
following formula: 

 '( ) '( ) '( )max ;ik l i k ik l i lE TM TW S T      (15)

According to such decoding procedure, the job is 

assigned to machine i  if 0i  , and to worker k if 

0k  ; if not obtainable from arrays ’’ and ’’’, 
machine and worker for processing job ’(l) are 
chosen as those minimizing the estimated 
completion time according to formula (14). Thus, 
denoting with i* and k* respectively, the machine 
and the worker to which job ’(l) is assigned, 
quantities  TMi* and TWk* are updated as follows: 
 

TMi*= C'(l) (16)

TWk*=C'(l)- Ti*'(l) (17)

Lastly, after the aforementioned procedure has been 
performed for all jobs, the makespan is calculated 
according to the following formula: 
 

 max '( )max l
l

C C  (18)

4.2.2 Selection, Crossover and Mutation 
Operators 

The same roulette-wheel mechanism exploited in 
PGA has been adopted for selecting chromosomes, 
assigning to each solution a probability of being 
selected inversely proportional to makespan value. 
Crossover procedure has been performed by 
separately managing the mating between the three 
parts of the parent structures (i.e., permutation 
substrings, machine assignment arrays, worker 
assignment arrays), with three distinct probabilities 
pcross’, pcross’’, pcross’’’. Crossover between 
permutation substrings of two parents has been 
executed through a position-based operator as in 
PGA. With reference to arrays driving the 
assignment of jobs to machines and workers, a 
simple uniform crossover operator (Syswerda, 1989) 
has been employed. Similarly to crossover, mutation 
procedure has been performed by separately 
managing the three parts of the chromosome, using 
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three distinct probabilities pmut’, pmut’’, pmut’’’. 
Mutation of the permutational substring of 
chromosomes has been performed through the same 
swap operator exploited in PGA. With reference to 
assignment arrays, a simple uniform mutation 
operator (Michalewicz, 1994) has been adopted. The 
elitist procedure employed in PGA has been used as 
well. Lastly, the same criterion of PGA has been 
chosen for stopping the algorithm, i.e. the total 
number of makespan evaluations. 

4.3 Hybrid GA 

The last approach for solving the proposed problem 
through the employment of proper GAs consisted in 
the development of a hybrid genetic algorithm, 
hereinafter HGA, combining both the 
aforementioned meta-heuristics. In such technique, a 
first optimization phase is performed by PGA; then, 
after a proper encoding conversion procedure is 
executed, MGA is launched to complete the second 
part of the algorithm. Through this method, the 
space of solutions is quickly probed into as first, by 
means of the “smart encoding” adopted by PGA; 
then, a refined research is executed by MGA, 
equipped with a more accurate encoding scheme. 
The encoding conversion procedure occurs when a 
fixed percentage of the total number of makespan 
evaluations has been reached by PGA. It operates by 
adding two assignment arrays to all chromosomes of 
the last population obtained. 

5 NUMERICAL EXAMPLES AND 
COMPUTATIONAL RESULTS 

In order to assess the performances of proposed GAs 
in solving the unrelated parallel machine problem 
with limited and differently-skilled human 
resources, a comparison between the proposed meta-
heuristics and the MILP model developed has been 
performed on a benchmark of small-sized test cases. 
A total of 8 classes of problems have been generated 
by combining the following factors:  
 number of jobs (n): 2 levels (8, 10); 
 number of machines (m): 2 levels (4, 5); 
 number of workers (w): 2 levels (2, 3). 

 

For each class, 10 instances have been generated 
letting vary, with uniform distribution, processing 
times in the range [1, 99] and setup times in the 
range [1, 49]. Thus, a total of 80 problems has been 
created. For each problem, the global optimum has 
been found through the resolution of the MILP 

model executed on a IBM ILOG CPLEX® 
Vers.12.2 (64 bit) platform. Then, the whole set of 
instances has been solved by the proposed GAs, with 
all parameters tuned after a proper calibration phase 
and termination criterion set at 10,000 makespan 
evaluations. The Relative Percentage Deviation 
(RPD) from the global optimum has been computed 
for each problem, according to the following 
expression: 

 

GA BEST
100

BEST
sol sol

sol

RPD


   (19)

 

where BESTsol is the global optimum obtained 
through the resolution of the mathematical 
programming model, and GAsol is the best solution 
provided by a given genetic algorithm after the 
stopping criterion is reached. Table 1 shows average 
RPDs obtained, grouping results by number n of 
jobs. Results show how all proposed GAs are able to 
closely approach the global optimum with a limited 
computational burden, as the amount of time 
required by all meta-heuristics for solving a given 
problem is, on, average, lower than 4 seconds.  

Table 1: Average performances of GAs on small test 
cases. 

Number of jobs 
(n) 

 Average RPD 
 PGA MGA HGA 

8  4.368 2.532 3.676 
10  3.883 3.416 3.204 

Average  4.126 2.974 3.440 

 

After having validated the performances of 
proposed GAs, a wider set of large-size instances 
has been created in order to carry out a comparison 
among the three methods proposed. To this end, 36 
new classes of problems have been generated by 
combining the following factors: 
 number of jobs (n): 4 levels (20, 40, 60, 100); 
 number of machines (m): 3 levels (10, 15, 20); 
 number of workers (w): 3 levels (5, 8, 10). 
 

For each class, 10 problems have been generated 
letting processing time vary in the range [1, 99] and 
setup times in the range [1, 49]. Thus, a total of 360 
problems has been created. All problems have been 
solved five times by each GA. The performance 
index chosen was the same RPD reported in 
equation (19), considering as BESTsol the best 
solution obtained by GAs for a given problem; 
results obtained are reported in Table 2. 

In order to infer some conclusion over the 
statistical significance of differences between 
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performances of meta-heuristics proposed, an 
analysis of variance (ANOVA) (Mongomery, 2007) 
has been performed. Figure 1 shows the LSD 
intervals (=0.05) regarding RPDs obtained by each 
algorithm. It can be seen how HGA outperforms the 
other meta-heuristics on large size instances, with a 
statistically significant difference. 

Table 2: Average performances of GAs on large test cases. 

Number of jobs 
(n) 

 Average RPD 

 PGA MGA HGA 

20  2.015 2.395 1.980 
40  3.952 3.914 3.534 
60  3.141 4.000 2.534 
100  2.809 2.372 2.217 

Average  2.979 3.170 2.566 

 

 

Figure 1: LSD plot for proposed GAs. 

6 CONCLUSIONS 

In this paper, the unrelated parallel machines 
scheduling problem with limited and differently-
skilled human resources has been addressed with 
regards to the makespan minimization objective. As 
first, a MILP model has been developed, in order to 
assess the performances of three Genetic Algorithms 
(GAs) properly developed for the problem at issue. 
Then, these latter procedures have been tested on a 
wider set of large-sized instances, in order to carry 
out a comparison among them. Results obtained 
show how an hybrid approach, which combines two 
GAs exploiting different encodings, outperforms the 
single-encoding algorithms from which it is derived. 
Statistical analysis confirms the significance of 
difference between performances obtained, thus 
giving evidence of the effectiveness of the proposed 
hybrid procedure. 

Further research should involve the consideration 
of sequence-dependent setup times of jobs to be 
scheduled in the manufacturing system. 
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