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Abstract: Recently a generalized hidden Markov model (GHMM) was proposed for solving the problems of aleatory 

uncertainty and epistemic uncertainty in engineering application. In GHMM, the aleraory uncertainty is 

derived by the probability measure while epistemic uncertainty is modelled by the generalized interval. 

Given any finite observation sequence as training data, the problem of training GHMM is often encountered. 

In this paper, an optimization method for training GHMM, as a generalization of Baum-Welch algorithm, is 

proposed. The generalized convex and concave functions based on the generalized interval are proposed for 

inferring the generalized Jensen inequality. With generalized Baum-Welch’s auxiliary function and 

generalized Jensen inequality, similar to the multiple observations training, the GHMM parameters are 

estimated and updated by the lower and the bound observation sequences. A set of training equations and 

re-estimated formulas have been derived by optimizing the objective function. Similar to multiple 

observations (expectation maximization) EM algorithm, this method guarantees the local maximum of the 

lower and the upper bound and hence the convergence of the GHMM training process. 

1 INTRODUCTION  

Jensen inequality, named Johan Jensen in 1906, 

relates the value of a convex function of an integral 

to the integral of the convex function (Jensen, 1906). 

As an important mathematical tool it has been 

widely used, such as probability density function, 

statistical physics, information theory, and 

optimization theory. However it does not 

differentiate two kinds of uncertainties, namely, 

aleatory uncertainty is inherent randomness, whereas 

epistemic uncertainty is due to lack of knowledge. 

Epistemic uncertainty is significant and cannot be 

ignored. The generalized interval provides a valid 

method for solving epistemic uncertainty. Compared 

to the classical interval, generalized interval based 

on the Kaucher arithmetic (Kaucher, 1980) is better 

in algebraic properties so that the calculus can be 

simplified (Wang, 2011). 

As a generalization of hidden Markov model 

(HMM) (Rabiner, 1989), the (Generalized hidden 

Markov model) GHMM, which is based on the 

generalized    interval   probability,   are     stochastic 

models in capable of statistical learning and 

classification (Wang, 2011). The optimization of 

GHMM parameters is a crucial problem for the 

application of GHMMs, since it can create the best 

models for real phenomena. Similar to HMM, a 

generalized Baum-Welch algorithm can be adapted 

such that the result is the local maximum (Baum et 

al., 1970). 

In this paper, an optimization method, which is 

for training GHMM based on the generalized jensen 

inequality and the generalization Baum-Welch 

algorithm, is proposed. The classical convex 

functions, the classical concave functions, and the 

Jensen inequality are respectively developed by the 

use of generalized intervals. The parameters of 

GHMM are estimated and updated through 

generalized Baum-Welch algorithm. A generalized 

Baum-Welch’s auxiliary function is built up and the 

generalized Jensen inequality is used. Similar to the 

multiple observations training in HMM (Li et al., 

2000), the GHMM parameters are estimated and 

updated by given the lower and the bound 

observation sequences. A set of training equations 
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have been derived by optimizing the objective 

function. A set of GHMM re-estimated formulas has 

been derived by the unique maximum of the 

objective function. The proposed optimization 

method takes advantage of the good algebraic 

property in the generalized interval. This provides an 

efficient approach to train the GHMM.  

2 BACKGROUND 

2.1 Generalized Interval  

A generalized interval : [ , ]x xx , ( x,x  ) is 

defined by a pair of real numbers as x and x (Popova, 

2000, Gardenes, 2001). Let : [ , ]x xx , 

0, 0x x   x,x  and : [ , ]y yy , 0, 0y y   

( y, y  ) be interval variables, and let generalized 

interval function be      [ , ]t f t f tf (Markov, 

1979), where t is a real variable, then, the arithmetic 

operations of generalized intervals based on the 

Kaucher arithmetic are follows. 

+ = [ + , + ]x y x yx y . (1) 

- = [ - , - ]daul x y x yx y . (2) 

= [ , ]x y x y  x y . (3) 

= [ , ]daul x y x y  x y , 0, 0y y  . (4) 

log = [log ,log ]x xx , 0, 0x x  . (5) 

     d [ d , d ]t t f t t f t t  f . (6) 

     ,d t dt d f t dt d f t dt 
 

f . (7) 

      
0

lim
x

t t t daul t t
x  


   


f f f  (8) 

The less than or equal to partial order 

relationship between two generalized intervals is 

defined as 

[ , ] [ , ]x x y y x y x y     . (9) 

2.2 Generalized Hidden Markov Model 

The GHMM is a generalization of HMM in the 

context of generalized interval probability theory. 

The generalized interval probability is based on the 

generalized interval with a form of probability. In 

GHMM, all probability parameters of HMM are 

replaced by the generalized interval probabilities. 

The boldface symbols have generalized interval 

values. 

A GHMM is characterized as follows. The 

values of hidden states are in the form of 

1 2{ , , , }NS S S S  , where N is the total number of 

possible hidden states. The hidden state variable at 

time t is 
tq , where : [ , ]t t tq qq . The M possible 

distinct observation symbols per state are 

1 2{ , , , }MV v v v . The generalized observation 

sequence is in the form of  1 2, , , TO o o o  where 

to  is the observation value at time t. Note that the 

observations have the values of generalized intervals. 

Equivalently the lower bound sequence 

 1 2 TO o ,o , o  and upper bound sequence can be 

viewed separately, where, the value of 
to  and to  

(t=1,…,T) can be any of 
1 2{ , , , }Mv v v .  

Let pro[ , ]t t tq q q  and pro[ , ]t t to o o  be real-

valued random variables.    ij N N
A a  is the state 

transition interval probability matrix, 

 1ij t j t iq S | q S  pa , (1 )i, j N   is the 

interval probability of the transition from state 
iS  at 

time t to state 
jS  at time t+1.  ( )j N M

k


B b  is the 

observation interval probability matrix. 

   |j t k t jk o v q S  pb ,  1 ,1j N k M     

is the interval probability of observations in state jS  

at time t.  
1i N

π π  is the initial state interval 

probability distribution,  1i iq S p ,  1 i N  . 

The compact GHMM is denoted as  λ A,B,π . 

Similar to classical HMM, the GHMM is usually 

used to solve three basic problems in real 

applications. The training problem of the GHMM is 

the crucial one. Its goal is to optimize the model 

parameters so that we can obtain best models for real 

phenomena. The proposed generalized Baum-Welch 

algorithm, as a generalization of Baum-Welch 

algorithm in the context of the generalized interval 

probability, provides an efficient approach to train 

GHMM. The generalized Baum-Welch algorithm is 

based on the generalized Jensen inequality which is 

introduced in the following section. 
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3 GENERALIZED JENSEN 

INEQUALITY 

3.1 Generalized Convex Function 

Following the definition of interval function by 

Markov, a generalized convex function is defined as 

following (Markov, 1979) 

A generalized interval function  tf  is in the 

domain of the generalized interval , where t is a 

real variable, 
1 2,t t   if 

     1 1 2 2 1 1 2 2+t t t t f r r r f r f  (10) 

Where 111 : [ , ]r rr , 222 : [ , ]r rr , 11 0, 0r r  , 

22 0, 0r r  , and 
1 2 [1,1] r r .  tf  is named as 

generalized convex function in the generalized 

interval  .  

Under the same assumption condition as 

generalized convex function, if 

     1 1 2 2 1 1 2 2+t t t t f r r r f r f  (11) 

 tf  is named as generalized concave function in 

the generalized interval , especially, when 

  logt tf (t>0), then, 
 2

2

2
0

d t
t

dt
  

f
,  tf is 

named as a strict generalized concavity of log 

function. 

3.2 Generalized Jensen Inequality 

For a generalized convex function  tf , numbers 

1 2, , , nt t t… in its domain, and := [ , ]iii r rr , 

0, 0iir r  ( 1,2, , )i n …  ,
1

= [1,1]
n

i

i

r , the 

generalized Jensen inequality can be stated as  

 
1 1

n n

i i i i

i i

t t
 

 
 

 
 f r r f  (12) 

A mathematical induction is adopted to prove 

formula (12). 

Proof. When n=2, formula (12) is a defined form of 

generalized convex function, thus it is correct. 

If n=k,  
1 1

k k

i i i i

i i

t t
 

 
 

 
 f r r f  now we need to prove 

that formula (12) is also correct when n=k+1 

 

1

1

1
1

1 1

1 1 1( ) ( )

k

i i

i

k
k k

i i k k k k

i k k k k

t

t t t
dual dual








 

  

 
 
 

  
         





f r

r r
f r r r

r r r r

 

 

   

1
1

1 1

1 1 1

1

1 1

1

1

1

( )
( ) ( )

( )

( ).

k
k k

i i k k k k

i k k k k

k

i i k k k k

i

k

i i

i

t t t
dual dual

t t t

t




 

  



 







 
    

  

  









r r
r f r r f

r r r r

r f r f r f

r f

 

Thus, we can obtain that formula (12) is correct for 

all i ( 1,2, , )i n … . 

It is a simple corollary that the opposite is true 

for generalized concave function transformations, 

the generalized interval formula is  

 
1 1

n n

i i i i

i i

t t
 

 
 

 
 f r r f  (13) 

4 OPTIMIZATION METHOD IN 

TRAINING PROCESS OF A 

GHMM 

The training problem of GHMM is that given the 

observation sequence  1 2 T, , ,O o o o… , we adjust 

the model parameters A,B,π  to maximize the lower 

and the upper bound of ( )|p O λ . Similar to the 

training of HMM, we can choose  λ A,B,π  so 

that the lower and the upper bound of ( )|p O λ are 

both locally maximized by using an iterative 

procedure of the generalized Baum-Welch algorithm. 

The optimization method is based on the following 

two lemmas similar to inference of HMM re-

estimation formulas (Levinson et al., 1983). 

Lemma 1: Let :[ , ]ii iu uu  , 0, 0, 1, ,iiu u i S    

be positive interval real numbers, and let 

:[ , ]ii iv vv , 0, 0, 1, ,iiv v i S    be nonnegative 

interval real numbers such that [0,0]i

i

v . Then 

from the generalized concavity of the log function 

and the generalized Jensen inequality, it follows that 

 

log .log

1
. log log

i

i i i

ii k i

i k

i i i i

ik

k

dual dual dual

dual
dual

 
 

  
 
 

 
  

 




 




v
u v

u u u

u v u u
u

 
(14) 
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Here every summation is from 1 to S. 

Lemma 2: If 0, 1, ,i i N c , then subject to the 

constraint 
1

1
N

i

i

t


 , the generalized interval function 

is 

 
1

log
N

i i

i

t t


f c  (15) 

We can obtain its unique global maximum when  

1

N

i i i

i

t dual


 c c  (16) 

The proof of formulas (16) is similar to Lagrange 

method (Levinson et al., 1983) 

  0i

i

ii i

t dual t
x dualx

  
      

f
c

   (17) 

Multiplying by 
it and summing over i, we can obtain 

i

i

c  , so formula (16) can be derived. 

4.1 Auxiliary Interval Function 

In order to train the GHMM, the lower bound 

observation sequence  1 2 TO o ,o , o , for 

example, is used as the input of auxiliary interval 

function  ,l
Q   , which is defined as following.       

Let l

iu be the joint interval probability 

 : , |l

i O pu Q   which is depended on model  , 

and let l

iv  be the same joint interval probability 

 : , |l

i O pv Q   which is depended on model  , 

where  1 2
, , ,

T
Q q q q , then  

 |l

i

i

O pu  ,  |l

i

i

O pv   
(18) 

Let auxiliary interval function  ,l
Q    (Levinson et 

al., 1983) be 

     , , | log , |l O Op p
Q

Q Q Q     
(19) 

Let formula (18) substitute into formula (14) of 

Lemma 1 

 
 

 
    

|
log

|

1
. , ,

|

O

dual O

dual
dual O

  
 

p

p

p
Q Q





   


 
(20) 

In  formula (20), we  can obtain    | |O Op p   if 

   , ,l lQ Q    , i.e., if we can find a model   

that makes the right-hand side of formula (20) 

positive, we can find a way to improve the model  . 

Clearly, the largest guaranteed improvement by this 

method results for  , which maximizes  ,l
Q   , 

and hence maximizes the lower and the upper bound 

of  |Op  .  

4.2 Training of the Lower and the 
Upper Bound  

Similar to Baum-Welch algorithm in HMM 

(Levinson et al., 1983), the training formulas can be 

inferred as following. 

      

1 1

1

1 1

log , | log | . | ,

log log log ( )
t t t

T T
l l l

t

t t

O O

O




 



   

p p p

q q q q

Q Q Q

a b

  



 (21) 

Substituting this into formula (19), and re-grouping 

terms in the summations according to state 

transitions and observations, it can be seen that 

  ( )
1

1 1 1 1 1

, log log log
N N N N N

l l l
l l l

ij j k i
ij jk

i i i i t    

    Q c a d b e    (22) 

Where 

   
1 1

1 1

, | . ( , ) | . ( , )
T T

l l l

ij t t
t t

O i j O i j
 

 

   p p
Q

c Q     (23) 

   
1, 1,

, | . ( ) | . ( )
t tk k

T T

l l l

jk t t
t o v t o v

O j O j
   

   p p
Q

d Q     
(24) 

   
1 1 1

, | . ( ) | . ( )l l lO i O i p p
Q

e Q     
(25) 

Where  l

t i, jξ  is the lower interval probability of 

being in state 
i

S  at time t and in state 
j

S  at time t+1, 

( )l

t iγ is the lower interval probability of being in 

state 
i

S  at time t, 
1( )l iγ  is the lower interval 

probability of being in state 
i

S  at the beginning of 

the observation sequence. 

Thus, ,l l

ij jkc d  and 1

l
e  are the expected values of 

1

1

( , )
T

l

t

t

i j




 , 
1,

( )
kt

T
l

t

t o v

j
 

  , and 
1
( )l i , respectively, 

based on model  . 

According to formulas (16),  ,l
Q   is 

maximized if only if 
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   
1 1

1 1

l T T
l ij l l
ij

t tl
t tij

j

i, j dual i
dual

 

 

  


ξ γ
c

a
c

 
(25) 

   ( )

1 1t k

T T
l

l l l l
j k

jk jk t t
k t ,o v t

dual j dual j
  

   γ γb d d  
(26)  

 
1 1 1

l
l l l

i

i

dual i  = γe e  (27) 

Where 
l

ija , ( )

l

j kb  and
l

i  are respectively the lower 

state transition probability, the lower observation 

probability, and the lower initial state probability 

used in the form of the generalized interval. 

These are regarded as the lower bound re-

estimation formulas. The maximum value of 

 ,l
Q    can be reached by the lower bound re-

estimation formulas. And hence the maximum value 

of  |Op   is also obtained. 

By the same method, we can obtain the upper 

bound re-estimation formulas (28) ~ (30). The 

maximum value of  ,u
Q    can be reached by the 

upper bound re-estimation formulas. And hence the 

maximum value of  |Op   is also obtained. 

   
1 1

1 1

T T
u

u u u u
ij

ij ij t t
j t t

dual i, j dual i
 

 

   ξ γa c c  (28) 

   ( )

1 1t k

T T
u

u u u u
j k

jk jk t t
k t ,o v t

dual j dual j
  

   γ γb d d  
(29)  

 
1 1 1

u
u u u

i

i

dual i  = γe e  (30) 

Where 
u

ija , ( )

u

j kb and
u

i  are respectively the upper 

state transition probability, the upper observation 

probability, and the upper initial state probability 

used in the form of the generalized interval. 

4.3 Training of the GHMM  

According to the concept of multiple observation 

sequences (Li et al,. 2000),  1 2 TO o ,o , o  and 

 1 2, , , TO o o o  are regarded as two 

independence observation sequences, a group of 

GHMM re-estimation formulas can be defined 

according to the EM algorithm as follows. 

       
1 1 1 1

1 1 1 1

T T T T

l u l u
ij

t t t t
t t t t

i, j i, j dual i + i
   

   

 
   

 
   ξ ξ γ γa

 
(31) 

       ( )

1 1 1 1t tk k

T T T T

l u l u
j k

t t t t
t ,o v t ,o v t t

j j dual j j
     

 
   

 
   γ γ γ γb

 
(32)  

    1 1

1

2
l u

i i i= γ γ  (33) 

Where ija , ( )j kb  and i  are the state transition 

interval probability, the observation interval 

probability, and the initial state interval probability, 

respectively. 

The training model parameters { }, ,λ A B π  can 

be obtained by re-estimation formulas (31) ~ (33). 

With  1 2 TO o ,o , o  and  1 2, , , TO o o o  

regarded as two independence observation 

sequences, we can define 

     | := | |O Op p pO     (34) 

     | := | |O Op p pO     (35) 

According to the inference of the lower and the 

upper bounds re-estimation formulas, 

   | |p pO O  can be also obtained for the 

values of interval probabilities are between 0 and 1. 

The re-estimation formulas are derived by 

Lagrange interval method which guarantees the 

convergence of the GHMM training process. The 

local maxima can be derived by the iterative 

procedure of GHMM re-estimation formulas. 

The iterative procedure for finding the optimal 

model parameters is: 

 Choose an initial model  λ A,B,π . 

 Choose the generalized observation sequence 

 1 2 TO o ,o , o ,  1 2, , , TO o o o . 

 Obtain the training model { }, ,λ A B π  which 

is determined by formulas (31 ~ 33). 

 If local or global optimal of both ( )p |O λ  and 

( )p |O λ       | : | , |p p 
 

p O O O    

are reached, then stop; otherwise, go back to 

step 3) and use λ  in place of λ . 

The final result ( )|p O λ  is so called a maximum 

likelihood estimation of GHMM. 

4.4 Case Studies 

In order to demonstrate the convergence of the 

proposed the optimization method for training 

GHMM, a training model of tool wear is studied. 

The experimental bench is illustrated in Figure 1.  
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Figure 1: Experimental bench for cutting processing. 

The cutting tests were conducted on Mikron 

UCP800 Duro, which is a five axis machining centre. 

The thrust force was measured by a Kistler 9253823 

dynamometer. The resulting signals are converted 

into output voltages and then these voltage signals 

are amplified by Kistler multichannel charge 

amplifier 5070. Force signals were simultaneously 

recorded by NI PXIe-1802 data recorder. A 300M 

steel work piece material was adopted. The spindle 

speed was kept constant at 1000rpm and the feed 

rate was 400mm/min. The cutting depth 2mm and 

wide 2mm was adopted. A real time cutting signal 

with a dull tool processing is shown as Figure 2. 

 

Figure 2: The cutting processing in time domain. 

Time domain signals are considered as general 

error ±5%, and then the wavelet packet 

decomposition is used. The root mean square values 

of the wavelet coefficients at different scales were 

taken as the feature observations vector. The training 

procedure for finding the optimal model is carried 

out. The convergence curve of log likelihood is 

shown as Figure 3, and hence the convergence of the 

GHMM training process can be obtained. 

 

Figure 3: The training convergence curve. 

5 CONCLUSIONS 

Two kinds of uncertainties in engineering 

application can be encountered. The aleraory 

uncertainty is derived by the probability measure 

while the epistemic uncertainty is modelled by the 

generalized interval in GHMM. In this paper, the 

generalized convex and concave functions based on 

the generalized interval are proposed for inferring 

the generalized Jensen inequality. An optimization 

method for training GHMM, as a generalization of 

Baum-Welch algorithm, is proposed. The 

observation sequence is viewed separately as the 

lower and the bound observation sequences. The 

generalized Baum-Welch’s auxiliary function and 

generalized Jensen inequality are used. Similar to 

HMM training, a set of training equations has been 

derived by optimizing the objective function. The 

lower and upper bound re-estimated formulas have 

been derived by unique maximum of the objective 

function. With a multiple observation concept, a 

group of GHMM re-estimation formulas has been 

derived. According to multiple observations EM 

algorithm, this method guarantees the local 

maximum of the lower and upper bound and hence 

the convergence of the GHMM training process. 
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