Data Dimensioning for Delay Differentiation Services in Regular Plans for Mobile Clients

John Tsiligaridis

Heritage University, Math and Computer Science, 3240 Fort Road, Toppenish, WA, 98948, U.S.A.

Keywords: Broadcasting, Broadcast Plan, Mobile Computing.

Abstract: The broadcast problem including the plan design is considered. The data are inserted and numbered into customized size relations at a predefined order. The server ability to create a full, regular Broadcast Plan (RBP) with single and multiple channels after some data transformations is examined. The Basic Regular Algorithm (BRA) prepares an RBP and enables users to catch their items while avoiding wasting energy by their devices. In the case of multiple channels a dynamic grouping solution is proposed, called the Partition Value Algorithm with Less Dimension (PVALD), under a multiplicity constraint. In order to provide an RBP under relative delays a Dimensioning Algorithm (DA) is developed. The DA, with the criterion of ratio, offers the differentiation of service. This last property, in addition to the self-monitoring, and self-organizing, can be offered by servers today providing also channel availability and lower energy consumption by using a smaller, number of channels, of equal bandwidth. Simulation results are provided.

1 INTRODUCTION

An efficient broadcast schedule program minimizes the client expected delay, which is the average time spent by a client before receiving the requested items. The expected delay is increased by the size of the set of data to be transmitted by the server. A lot of work have been done for the data dissemination with flat and skewed design (Acharya et al., 1995, Yee et al., 2002, Ardizzoni et al., 2005, Bertossi et al., 2004). For the flat design when the cycle becomes large the users have to wait for long until they catch the data in case they had lost them For the skewed design, the most previously. frequently requested data items should be put in fast channels whereas the cold data can be pushed to slow channels. Various methods have been developed to partition the data according to their popularity using dynamic programming (Yee et al., 2002), and the heuristic algorithm VFk (Peng et al., 2000). The minimum time broadcast problem has been addressed by computing the minimum degree spanning tree of directed acyclic graphs in (Yao et al., 2008). The Min-Power broadcast problem in wireless ad hoc networks has been answered by assigning transmission range to each node (Hashemi et al., 2007).

When the broadcast cycle has long size, the flat

scheduling needs many channels to avoid the user delay. The regular design with the equal spacing property (Acharya et al., 1995) can provide broadcasting for single and multiple channels with average waiting time less than the one of the flat design. It also offers channel availability, and less energy consumption while there is no need for use of channels with different speeds.

For the regular design, the system works with a number of channels that could be of the same speed. The users of all sets, except for the last one, can get their data from the same channel. Only the users of the last set (the most unpopular set) have to switch to another channel. The data are considered homogenous or heterogeneous with multiples of a basic size. Data can be sent by a single channel or a set of channels. In this work the dynamic grouping solution is developed by examining the possibility of filling up an area starting from less values especially from the cold set (the less dimension principle, LDP).

In this paper, we study the problem of finding the number of channels that can send a group of data, while ensuring equal spacing of repeated instances of items. The PVALD algorithm provides a dynamic solution using the less dimension principle with constraints. The constraints can be applied with the use of certain criteria. The DA can

Tsiligaridis J.

DOI: 10.5220/0004119500690074

ISBN: 978-989-8565-23-5

Copyright © 2012 SCITEPRESS (Science and Technology Publications, Lda.)

Data Dimensioning for Delay Differentiation Services in Regular Plans for Mobile Clients.

In Proceedings of the International Conference on Data Communication Networking, e-Business and Optical Communication Systems (DCNET-2012), pages 69-74

discriminate the services according to relative delays and provide the appropriate RBP. Both PVAMD and DA provide servers with new approaches for service discrimination. The paper is organized as follows. In Section 2, the model description is given. In Sections 3, 4, and 5 the BRA, the PVALD, and DA are developed, respectively. Finally, simulation results are provided in Section 6.

2 MODEL DESCRIPTION

2.1 The Relations in the Broadcasting Plan

In our approach we consider three sets S_i (i=1,2,3) with their sizes S_{is} so that $S_{3s} \geq S_{2s} \geq S_{1s}$. The possibility of providing full BP (it does not include any empty slot) is examined iteratively using relations starting from the last level of hierarchy S_3 . The number of S_i items (or items of multiplicity (it_mu_i)) will be sent at least one from S_3 , while for the other two sets at least two. Given the size S_{3s} , S_{2s} , S_{1s} from the integer divisions of S_{3s} , using array (arr), we can create a set of relations S_{div} (j< S $_{3s}$), with different number of relations (n_rel) and subrelations in each set (i-subrelation, i=1,2,3). We create a set of relations including their subrelations by considering items of different size from each set. In this work it is considered that each relation has three or four *subrelations*.

The following definitions are essential:

Definition 1: The size (or horizontal dimension) of a relation (s_rel) is the number of items that belong to the relation and it is equal to the sum of the size of

the three subrelations (s_rel= $\sum_{i=1}^{3} s_{-} sub_i$). The

number (or vertical dimension) of relations (n_rel) with s_rel define the *area of the relations (area_rel)*. *Example 1:* The relation A=(a, b, c, d, f) has the following three subrelations starting from the end one; the 3-subrelation (f) with s_sub₃ = 1, the 2-subrelation (b,c,d) with s_sub₂ = 3, and the 1-subrelation (a) with s_sub₁ =1. The s_rel=5. The *integrated relation dimension (id)* can be described as id [1,2] or simply [1,2].

Definition 2: The area of the *i*-subrelation $(area_i_sub)$ is defined from its size (s_sub_i) and the number of the relations (n_rel) that are selected. It is given by $(s_sub_i) \ge (n_rel)$.

Example 2: From a relation with s_rel=5 and if n rel=5 then the area of this relation is 5x 5. Hence

there are 25 locations that have to be completed.

Example 3: If two relations are: (1,2,3,5,6,7), (1,3,4,8,9,10) with s_sub₃=3, s_sub₂=2, then : 2-subrelation₁ =(2,3) and 2-subrelation₂=(3,4). The last two subrelations ((2,3),(3,4)) comes from S₂ ={2,3,4} having 3 as repeated item.

Definition 3: A BP is *full* if it provides at least 2 repetitions of items and it does not include empty slots in the area_rel. A BP is regular if it is full and provides equal spacing property[1].

Definition 4: The number of items that can be repeated in a subrelation is called *item multiplicity* (*it_mu*) or number of repetitions (*n*-rep).

Definition 5: A subrelation i (i-subrelation) that belongs to set S_i is *strong* if, in its area, it can provide the same number of repetitions of all the items of a set (without empty slots) for all the relations. The strong i-subrelations create strong relations.

Definition 6: Integrated relations (or integrated grouping) is when after the grouping, each group contains relations with all the data of S_2 and S_1 . This happens when: (\cup (2_subrelation) = S_2) \land (\cup (1_subrelation) = S_1). See example 7 for details.

Grouping length(gl): The gl is a divisor of S_{ks} (1,..,k). It is the n_rel that can provide homogenous grouping.

Partition value (pv): It is the common divisor of S_{is} (i=1,.., k) and gl for a given size of s_sum_i. Hence: $pv_i | S_{is}$ and $pv_i | gl$. Each set must have its own pv.

Example 4: If S_{3s} =40, gl=20, considering that s_sum_3=8 then pv_3 =5 (=40/8). Hence $pv_3|S_{3s}$ and $pv_3|gl$

The criterion of homogenous grouping(chg): when $pv_i | gl$.

The criterion of multiplicity constraint(cmc) or differential multiplicity: This happens if: $it_{i+1} < it_{mu_i} (i=1,..,n-1)$.

The criterion of PV(cpv): when: $pv_i < pv_j$ (for i<j). The chg along with cpv can guarantee the cmc for different multiplicity (Theorem 1) and because of that the cmc is not necessary to be examined.

The pv criterion can guarantee differential multiplicity service. For having an RBP the criterion of chg along with pv have to be held.

The number of channels (nc): S_k / gl (where S_k is the last set)

It is considered that a|b (a divides b) only when b mod a =0 (f.e. 14 mod 2=0). The relation with the maximum value of n_rel provides the opportunity of *maximum multiplicity* for all items of S₂ and S₁ and finally creates the *minor cycle* of a full BP. The *major cycle* is obtained by placing the minor cycles on line.

2.2 Some Analytical Results

Two basic Lemmas provide the possibility of the FBP and RBP construction. The first deals with a particular case of the S_{2s} and S_{3s} while the second is a general case for every value of S_{2s} , S_{3s} . Proofs and details for the case of empty slots BP are not included in this work due to limited space.

After making sure that there is a RBP the data from the array (the minor cycles for each array line) are transferred to queues for broadcasting. For multiple channels, the data from integrated relations are grouping and then are broadcasting.

Example 5: The relation A=(a, b, c, d, f) has the following three subrelations (s_sub_i) starting from the end one; the 3-subrelation (f) with $s_sub_3 = 1$, the 2-subrelation (b,c,d) with $s_sub_2 = 3$, and the 1-subrelation (a) with $s_sub_1 = 1$. The size of relation (s rel) =5.

Lemma 1 (particular case): The basic conditions in order from a set of data to have a regular broadcast plan are: $k = S_{2s} / S_{3s}$ (1) and $m = it_mu_2 = S_{2s} / k$ (2) (item multiplicity).

Proof: For (1) if $k = S_{2s} | S_{3s}$ then the k offered positions can be covered by items of S_{2s} and we can take a full BP. From (2) m represent the number of times (it_mu) that an item of S_2 will be in the relation.

Example 6: (full BP) Consider the case of: $S_1 = \{1\}$, $S_2 = \{2,3\}$, $S_3 = \{4,5,6,7,8,9, 10, 11\}$. Moreover $k = S_{2s} | S_{3s} = 4(8/2)$, and m = 2(4/2) the it_mu $_2 = 2 = 4/2$. The relations for the full BP are: (1,2,4,5), (1,3,6,7), (1,2,8,9)(1,3,8,9). Since $(s_{sub_3}/s_{sub_2}) > 1$ we have $r_p = 4$ (2*2).

Example 7: Let's consider $S1 = \{1\}$, $S2 = \{2,3,4,5\}$, $S3 = \{6,7,8,9, 10, 11,12,13\}$. Again, k=2(8/4), m= it_mu _2=2(4/2). Hence the FBP is (1,2,3,6,7), (1,4,5,8,9),(1,2,3,10,11) ,(1,4,5,12,13). The subrelations (2,3) \neq (4,5).

Lemma 2 (general case): Given that S_{2s} and S_{3s} (and $S_{2s} \nmid S_{3s}$) with k_1 , k_2 their common divisors as: $k_1 = n/S_{2s}$ (3) and $k_2 = n/S_{3s}$ (4) (where n= common divisors of S_{2s} and S_{3s}): (a) if $k_2 < S_{2s}$ and k_2/S_{2s} (5) then there is an RBP with it_mu₂ = k_2/S_{2s} (b) if $k_2 > S_{2s}$ and S_{2s} / k_2 (6) then there is an RBP with it_mu₂ = S_{2s} / k_2

The RBP will have for both cases k_2 relations.

Proof: From (3) we get that the number of S₂ items in a line s_sub₂ = k_1 / S_{2s} . From (4) we have s_sub₃ = k_2 / S_{3s} . If (5) is valid then it means that the k_2 positions (offered by S₃) can be covered by k_2/S_{2s} items (it_mu₂). If (6) is valid then it means that the k_2 positions (offered by S3) can be covered by S_{2s} / k_2 *Example 8*: $S_1 = \{1\}$, $S_2 = \{2,..,13\}$, $S_3 = \{15,..,32\}$, $S_{2s} = 12$, $S_{3s} = 18$. If n = 3, $k_1 = 3/12 = 4$, $k_2 = 3/18=6$, and $k_2/S_{2s} = 6/12 = 2$. Hence we have 6 relations and the 2-subrelations are: (...,2,3,4,5,...), (...,6,7,8,9...), (...,10,11,12,13,...), (...,2,3,4,5,...), (...,6,7,8,9...), (...,10,11,12,13,...). If n=2, $k_1 = 2/12 = 6$, $k_2 = 2/18=9$, and from $k_2/S_{2s} =$ we have $9 \nmid 12$.

The less dimension principle, LDP, coming from the diminishing of the size of cold set s_sum_{k-1} (for k sets), the provides an opportunity to minimize the delay (especially for the hot data) by using smaller number of data in s_sum. If an RBP is feasible for the low dimension of values this area can be copied many times and provide an RBP for all the available channels.

Example	9:	Let	us	consider	$S_{1s}=10$,
S2s=20,S3s=4	$0, S_{5s} =$	=120.		Taking:	$d_1 =$
5,d ₂ =5,d ₃ =5,	$d_4 = 1$	with s	sum	= 16 the	$AWT_1 =$
32(=4+5+5+	1 +	4+5+	5+1 -	+ 1). Fo	or $d_1 =$
5,d ₂ =5,d ₃ =8,	$d_4 = 1$	with s	sum =	19 the AW	$VT_1 = 38.$
Consider	ing sr	naller s	ize of	s sum for	an RBP
the size of P	V _i is i	ncreasii	ng. Fin	ally : from	LDP the
AWT (LDP)	is les:	s that ai	ny othe	er size of s_	sum
Theorem 1	Let	us cons	ider th	ne case of	multiple
channel allo	cation	with	differ	ent multi	plicity of
sets (such as	: S ₁ , S	S_2, S_3).	Then, i	if pvi d4, th	e validity
of multiplic	ity coi	nstraint	(it_m	u _{i+1} <it_mu< td=""><td>i (i=1,,k-</td></it_mu<>	i (i=1,,k-
1) can be ac	hieve	d from	the pv	criterion ($pv_i < pv_{i+1}$
, i <k, k="#s</td"><th>sets).</th><td>Similar</td><td>rly the</td><td>e pv crite</td><td>erion can</td></k,>	sets).	Similar	rly the	e pv crite	erion can
guarantee the	e mult	iplicity	constr	aint criterio	on.

Proof: Lets prove that if $pv_i < pv_{i+1}$ (1) then it_mu_i > it_mu_{i+1}. (2). From (1) =>1/ $pv_i > 1/ pv_{i+1} => d_4/ pv_i > d_4/ pv_{i+1}$. If $(d_4/ pv_i) \in I$, => it_mu_i > it_mu_{i+1}. Following the reverse order we can go from (2) to (1). Therefore, it is not necessary to examine the multiplicity criterion and the pv criterion can provide the multiplicity.

Example 10: Let's consider again the same four sets S_1, S_2, S_3, S_4 with $S_{1s}=10$, $S_{2s}=20, S_{3s}=40$, $S_{4s}=120$. If gl =20 (20 is a divisor of 120) then S_{1s} / gl , S_{2s} / gl , gl / S_{3s} . The chg exists. The number of channels is: nc=120/20= 6. Considering s_sum1 = 5, s_sum2=5,s_sum3=8 then pv₁ = 10/5=2, pv₂= 20/5=4, pv₃ =40/8=5. We have pv₁<pv₂<pv₃ (pv criterion) and since pv₁|20, pv₂|20, pv₃|20 (or d₄ | pv₁)) $\in I$) then the chg is valid and and an RBP can be constructed. From all this process it is evident that there is no need to test the cmc.

Theorem 2: If pv_i (i<k, k =#sets) are analogous to a_i the AWT_i are also analogous to the a_i and $pv1 / AWT1 = pv_2/AWT_2 = ... = pv_k / AWT_{k-1}$.

Proof: Let us consider k=4. and $(pv_1/a_1) = (pv_2/a_2) = (pv_3/a_3)$ (1)

Finding AWT1: AWT1= s sum*pv1 (= s sum1-1+s sum2 + s sum3 + s sum1 -1= s sum*a1 = s_sum * pv1). In analogous way : AWT2 = s_sum*a2 = s_sum*pv2, AWT3= s_sum*a3 = s sum* pv3,.., $\overline{AWTk-1} = s sum*a_{k-1} = s sum*pvk-1$. Taking the ratio: For AWT₁ / $a_1 = AWT2/a_2 =$ $AWT_3/a_3 = \dots = AWT_{k-1}/a_{k-1}$ (2)Dividing the ratios (1),(2) : $pv_1 / AWT_1 = pv_2 / AWT_2$ $=...= pv_k / AWT_{k-1}$. Lemma: The LDP can provide an RBP with more # of channels. Example 11: For S1s=10,S2s=20,S3s=40, S4s=120, and $d_1=5, d_2=5, d_3=5$ the $pv_1=2, pv_2=4, pv_3=8$ and n ch= 120/8=5.For $d_1=2, d_2=2, d_3=2$ $pv_1=5, pv_2=10, pv_3=20$ and n ch=120/6=20.

3 THE BASIC REGULAR ALGORITHM (BRA)

The BRA is based on the conditions to find a RBP and provide opportunities for multiplicity on the items of Si (i < n) and it is for a single channel allocation.

BRA: //input: the S_1, S_2, S_3 , num_set (=2) *//output:* define k the max. # of relations (n rel) that can support a full BP //variables: k,m,n \in I, n=common divisors of S_{2s} and S_{3s} $km \in I and km > 1$ //particular case if $(k = S_{2s} | S_{3s})$ and $m = it mu_2 = S_{2s} | k$ {there is a full BP for S_{2s} , with k lines each item of S_{is} (i=1,2) will be repeated for m times, //general case if $k_1 = n/S_{2s}$ and $k_2 = n/S_{3s}$ (for given: S_{2s} , S_{3s} , n) and k_2/S_{2s} { there is an RBP with it $mu_2 = k_2/S_{2s}$ }

4 THE PARTITION VALUE ALGORITHM WITH LESS DIMENSION (PVALD)

The PVAMD addresses the cases of minimum size of integrated relations of all sets. It works with neither grouping nor BRA. For k sets, PVALD starts with the lower value of d_4 and s_sum_i (i < k) and $d_k = 1$.As soon as a BRP is feasible, so that the criterion of homogenous grouping, pv and multiple constraint are valid, the maximum number of

desired channels can be computed. The grouping is used in order to adapt the RBP to the available number of channels.

PVALD input: S1,S2,S3,S4, Sis (i ≤4), n_ch: the # of channels, m n ch: the max # channels,a ch:#avail.chan. thr ch: # of desired channels for an RBP output: the homogenous grouping for multiple channels find the divisors set D_4 of S_4 ($d_4 \in D_4$, increasing order) find the divisors of the S_1, S_2, S_3 (in increasing order) $//D_3$ for S₃, D₂ for S₂, D₁ for S₁ $//d_3 \in D_3, d_2 \in D_2, d_1 \in D_1$ for each s_sum (s_sum_i, s_sum_i = d_i (i<4)) (a) for each divisor (d_4) of set S_4 (b) for all S_i (i≤4) $\{ //define the s_sum_i = d_i (i < 4) \}$ $s_sum_i = d_i (i < 4)$ $\overline{pv_i} = S_{is} / s_{sum_i}$ O (if pvi | d UBLICA {the chg criterion is valid, "there is multiplicity"} else $\{go to (b)\}$ if $(pv_i < pv_{i+1})$ {"the pv criterion is valid " the m n ch = D_4/d_4 ; if (a ch \geq m n ch) { creation of an RBP for m n ch channels} else { grouping for an RBP with a chelse { go to (b)} if $(n_ch < thr_ch)$ $\{d_4 = 2 * d_4, \text{ go to } (c) \}$ if (there is not an RBP for all d_4 –b-) $\{go to (a), new s_sum\}$

Example 12: Let us consider: $S_{1s}=10$, $S_{2s}=20$, $S_{3s}=$ 40, $S_{4s} = 120$, thr_ch=4. Considering : (a) for s_sum₁ =2, $s_sum_2=2$, $s_sum_3=2$, (or [2,2,2]), $d_4=20$, the $pv_1 = 5(10/2), pv_2 = 10 (20/2), pv_3 = 20 (40/2).$ Also $pv_1 \mid d_4 \ (=8=20/5), \ pv_2 \mid d_4 \ (=2=20/10), \ pv_3 \mid d_4$ (=1=20/20) and $pv_1 \le pv_2 \le pv_3$. The pv and multiplicity criterion is valid. n_ch= 120/20=4> thr ch. So [2,2,2] with d₄=20 can not provide the (b) desired RBP. for s sum1 =2. s_sum2=2,s_sum3=2, (or [2,2,2]), d4=40(=2*20), the pv1 = 5(10/2), pv2 = 10 (20/2), pv3 = 20 (40/2). Also $pv_1 \mid d_4$ (=8=40/5), $pv_2\mid d_4$ (=4=40/10), $pv_3\mid d_4$ (=2=40/20) and $pv_1 \le pv_2 \le pv_3$. The pv and

multiplicity criterion is valid. $n_ch= 120/40=3 < thr_ch.$ So [2,2,2] with $d_4=40$ can provide the desired RBP.

5 THE DIMENSIONING ALGORITHM (DA)

The DA is very useful for finding the AWTi by applying the Theorem 2. In addition any change to the integrated relation (s_sum) or any subrelation (s_subi) can easily be translated into delay. This is very important for the server making decision process and for having successful differentiation of services.

DA: input: s_sumi (i <k, :="" ai="" k:#sets),="" pai="" th="" the<=""></k,>				
desired ratio				
output: RBP with desired AWTi ratio				
for each s_sum (s_sum _i , s_sum _i = d_i (i<4)) (a)				
for each divisor (d_4) of set S_4 (b)				
//find PVi				
$PAi = Sis / s_sumi$				
if $pv_i \mid d_4$				
{chg criterion is valid}				
else {go to (b) }				
if $(pv_1 < pv_2 < < pv_{k-1})$				
{the pv criterion is valid}				
else {go to (b) }				
if $(pv_1/a_1 = pv_2/a_2 = = pv_{k-1}/a_{k-1})$				
$\{AWT_1 a_1 = AWT_2 a_2 = = AWT_{k-1} a_{k-1} \}$				
there is a RBP with the predefined ratio}				
else {go to (b) }				
if (there is not an RBP for all d_4 –b-)				
$\{go to (a), new s_sum\}$				

Example13: Let's consider: S1s=10,S2s=20, S3s=40, S4s =120. The divisor of S4s are: $d4 = \{10, 20, 30, 40\}$. The purpose is to see for: AWT1/ 2 = AWT2/4 = AWT3/8. For d₄ =10 and s sum₁=5, $s_sum_2=5,s_sum_3=5$, the pv1 = 10/5 = 2, it_mu1=10/2=5, pv2=20/5=4, it_mu2=10/4 \notin I, pv3=40/5=8, and it_mu3= 10/8 $\notin \overline{I}$ (pv criterion no For $d_4 = 20$ and s sum₁=5, valid). t $s_sum_2=5$, $s_sum_3=5$, the pv1 = 10/5 = 2, it_mu₁= $20/\overline{2}=5$, pv2= 20/5=4, it mu₂= 20/4=5, pv3=40/5=8, and it $mu_3=40/8=5$ (pv criterion is valid). Also $pv_1 < pv_2 < pv_3$ (2<4<8) so the pv criterion is valid.

The pv ratio is: $pv_1/2 = pv_2/4=pv_3/8$ give the $AWT_1/2 = AWT_2/4 = AWT_3/8$.

6 SIMULATION

For our simulation, Poisson arrivals are considered for the mobile users' requests. The items are separated into four categories according to their popularity using Zipf distribution. Two scenaria have been developed:

Scenario 1: Considering $S_{4s} = 120$, $S_{3s}=60,S_{2s}=40,S_{1s}=20$. For the lower values of s_sum (s_sum1=2, s_sum2=2,s_sum3=2 or [2,2,2] (from integrated relation dimension -id-, using PVAMD, we have the lower number of available channels. For the other for two cases like: [5,5,5] and [10,5,5] it is needed the same # of channels since they have the same $d_4=8$. It is considered that s_sum_4=1 for both cases.

Figure 1: The AWT for the PVAMD.

Scenario 2: Let us consider the same size of sets as Scenario 1. The AWTi (i \leq 4) for [2,2,2] and [5,5,5] have greater values for [2,2,2] since the lower size of s_sumi can define greater values of pvi and more times of repeated s-sum (including also the s sum_k=1).

Figure 2: The AWT for the different size of s_sum.

7 CONCLUSIONS

A new broadcast data model plan with a set of algorithms has been presented. The PVAMD start finding RBP by using the less dimension principle with constraints. The DA provides opportunities for finding the desired delays of a set of services. By applying these algorithms the next generation servers and their components with the scale up possibilities, tools etc can enhance their selfsufficiency, self-monitoring and they may address quality of service, and other issues with minimal human intervention.

REFERENCES

- Acharya, S., Zdonik, F., Alonso, R., 1995. "Broadcast disks: Data management for asymmetric communications environments", *Proc. of the ACM SIGMOD Int. Conf. on Management of Data*, San Jose, May 1995, 199-210
 Yee, W., Navathe, S., Omiecinski, E., Jemaine, C., 2002. "
- Yee, W., Navathe, S., Omiecinski, E., Jemaine, C., 2002. " Efficient Data llocation over Multiple Channels of Broadcast Servers", *IEEE Trans. on Computers*, vol. 51, No.10,Oct 2002.

IGY PUBLIC

- Ardizzoni, E., Bertossi. A., Pinotti, M., Ramaprasad, S., Rizzi, R., Shashanka, M., 2005. "Optimal Skewed Data Allocation on Multiple Channels with Flat per Channel", *IEEE Trans. on Computers*, Vol. 54, No. 5, May 2005
- Bertossi. A., Pinotti, M., Ramaprasad, S., Rizzi, R., Shashanka, M., 2004. "Optimal multi-channel data allocation with flat broadcast per channel", *Proceedings of IPDS'04*, 2004, 18-27
- Peng, W., Chen. M., 2000. "Dynamic Generation of data Broadcasting Programs for a Broadcast disk Array in a Mobile Computing Environment", Proc. of the 9th ACM International Conference on Information and Knowledge Management (CIKM 2000), pp. 38-45
 Yao, G., Zhu, D., Li, H., Ma. S., 2008. "A polynomial
- Yao, G., Zhu, D., Li, H., Ma. S., 2008. "A polynomial algorithm to compute the minimum degree spanning trees of directed acyclic graphs with applications to the broadcast problem", *Discrete Mathematics*, 308(17), 3951-3959.
- Hashemi, S., Rezapour, M., Moradi, A.,2007. "Two new algorithms for the Min-Power Broadcast problem in static ad hoc networks", *Applied Mathematics and Computation*, 190(2) 1657-1668, 2007