
DBMS meets DSMS
Towards a Federated Solution

Andreas Behrend
1
, Dieter Gawlick

2
 and Daniela Nicklas

3

1University of Bonn, Roemerstr. 164, 53117 Bonn, Germany
2Oracle Redwood City, 500 Oracle Parkway, Redwood City, CA 94065, U.S.A.

3Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany

Keywords: Data Stream Management, Event Processing, Active Databases, Database Architecture, Query Processing.

Abstract: In this paper, we describe the requirements and benefits for integrating data stream processing with database

management systems. Currently, these technologies focus on very different tasks; streams systems extract

instances of patterns from streams of transient data, while database systems store, manage, provide access

to, and analyze persistent data. Many applications, e.g., patient care, program trading, or flight supervision,

however, depend on the functionality and operational characteristics of both types of systems. We discuss

how to design a federated system which provides the benefits of both approaches.

1 INTRODUCTION

Traditional database management systems (DBMS)

are capable of persistently storing and efficiently

querying and analysing large amounts of ‘static’

data. These systems are not well-suited, however,

for managing and analysing highly dynamic data—

so-called data streams—which are generated, e.g.,

by sensor networks, financial tickers, or transaction

loggers. Therefore, over the last 15 years,

specialized systems have been developed, so-called

data stream management systems (DSMS), which

are explicitely designed for an online analysis of

rapidly changing data. This systems, however, lack

support for persistance. DSMS are so important that

they are the subject of a variety of research project

since many years and an integral part of the infra-

structure of the major software vendors.

DSMS support long-running, persistent queries

which continuously analyse ordered sequences of

items. The performance gain over traditional DBMS

is mainly achieved by avoiding the overhead for

persitance and transactionality. Additionally, DSMS

leverage the long livity of the continuous queries,

share work between queries, and evaluate stream

data incrementally, There are many applications that

require the functionality of DSMS and DBMS, such

as flight supervision and patient care—actually the

need for pesistance and provenance is the overriding

requirement. In these cases, the requirements for

persistant data management are so important that the

DSMS functionality is provided by the DBMS using

triggers and/or persistant queries (Schüller et al.,

2012; Guerra et al., 2011). However, there are major

draw-backs: these systems are not scalable to large

amount of incoming data and the ability for pattern

recognition is way below the level typically found in

DSMS.

The alternative is obviously the use of a DSMS

complement by a DBMS. In this case the DSMS has

to identify the information that needs persistance and

the application has to store it in a DBMS. This

approach requires a deep understanding of system

design and it often not achiveable by applications

programmers due to the many incompatibilities

between these types of systems. Consequently, the

development, test, and maintenance cost are often

prohibative.

Consequently, there is a need for a system that

includes both, the functionality of a DSMS and the

functionality of a DBMS. We propose a federated

solution that leverages the strength of both

technologies and hides the differences as much as

possible. This approach has the potential to broaden

the application spectrum of stream processing

systems considerably. The design of such a

federated system, however, is not a simple task due

to the heterogeneity of the underlying systems with

respect to the supported data models, query

languages and operational characteristics (Babcock

���Behrend A., Gawlick D. and Nicklas D..
DBMS meets DSMS - Towards a Federated Solution.
DOI: 10.5220/0004122501570162
In Proceedings of the International Conference on Data Technologies and Applications (DATA-2012), pages 157-162
ISBN: 978-989-8565-18-1
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

et al., 2002). For example, DBMS do not only

support relational data models, but also XML, RDF,

multimedia, or text data and allow users to add

domain and/or application specific data models.

Although DSMS also support various data models,

there remain differences in the structure and

semantics of data which have to be bridged by a

federated solution.

The same applies for the heterogeneity of query

languages. Typically, DSMS provide variants of

SQL such as CQL (Arasuet al., 2006) or StreamSQL

(StreamBase Systems 2012), or complex event

languages like Sase (Gyllstrom et al., 2007). Such

languages suppport new stream-related concepts

such as window expressions, sketches and

approximate answers and differ in their operational

characteristics in comparison to standard SQL

statements. Although SQL also provides temporal

support, history management (e.g. Oracle’s total

recall) and event processing, there are still intricate

details which make the development of a common

federated query language difficult (cf. Section 1.2).

Beside declarative query interfaces, many DSMS

even support functional stream processing

languages, like Aurora’s boxes and arrows (Abadi et

al., 2003), or Infosphere Stream’s Stream

Programming Language SPL (Biem et al., 2010)

which are hardly compatible with SQL. Beside pure

DSMS, there are specialized systems like kdb+ (Kx

Systems 2010) or DBToaster (Kennedy et al., 2011)

that are optimized for processing real-time and

historical data in main-memory.

In order to cope with these challenges, we

propose semantic information layers which help to

systematically identify challenges and solutions for

designing a federated data management system for

active data. But before these layers are presented in

more detail, we discuss a use case in which various

requirements of the proposed federated solution are

examplarily illustrated.

1.1 Scenario

To illustrate the proposed architecture, we will fol-

low a scenario from the health care domain. Howev-

er, scenarios with similar characteristics can be

found in other domains like traffic management,

smart grids, or intelligent city infrastructures. Health

care providers have to deal with an ever increasing

amount of data that have to be acted upon by apply-

ing knowledge and regulations, both of which grow-

ing rapidly in amount and complexity.

Capturing of patient data as EMRs (Electronic

Medical Records) is fast becoming common place.

EMRs represent a wide variety of data; data have to

be retained for an extended period of time and

access to and analysis of these data has to be well

supported while it is strictly controlled and has to be

documented.

Doctors are typically unable to devote enough

time to review all captured data (facts), therefore

real time support is required to extract important

information. This information has to be captured and

brought into attention of doctors with the proper

level of urgency and thus, facilitating situation-

awarenes. This transformation from facts to

information should be based on the codified

knowledge of the medical community. The

transformation has to take personal preferences into

account and has to be fully auditable.

Patient data arrive with various delays and may

go through revisions; vitals are immediately

available while test depending on chemical reactions

and cultures may take hours or even days. The real

time support has to be able to deal with these widely

varying delays. Auditing requires that it must be

easy to understand which facts were available for

which derived information.

Medical knowledge is evolving at a fast pace; if

new — codified— knowledge becomes available

existing facts have to be automatically reviewed in

order to identify and act upon any relevant

information that was not derived when the facts

became available.

1.2 Challenges

From this scenario, we see the following four main

challenges that should be addressed by a data man-

agement system:

Query Processing over Streaming and Persistant

Data: to support applications like the one depicted in

the scenario, the DSMS may need to reference

DBMS data. The performance of DSMS can only be

maintaned if relevant data from the DBMS are

cached. Therefore much attention has be be given in

deriving the right caching strategy from each

continuous queries and also add a global

optimization. Directives have to be given to the

DBMS in order to notify the DSMS about changes

of the cached data.

Heterogenous Data Models: DSMS are focused

on temporal support for large incoming data streams;

while temporal support for DBMS is only slowly

gaining traction. Assuming bi-temporal support in

the DBMS; it should be possible to represent any

stream of data (events) as a DBMS object.

Challenges are to verify this asumption and to

'A7A ���� � ,nternational &onference on 'ata 7echnoloJies and Applications

���

Figure 1: Federated Architecture for DSMS and DBMS.

develop a mapping of any DSMS object to DBMS

objects.

Complexity of queries: Realizing scenarios like

the one discussed will lead to complex query plans.

The reason is the joint focus on continuous queries

in DSMS and on ad-hoc queries in DBMS. Even the

event support in DBMS — whether realized through

triggers and registered queries—does syntactically

and semantically not match the DSMS support. This

calls for a common query language. Secondly, for

such answering queries, the raw data has to be

interpreted, aggregated, classified, and maybe

predicted; if the data management system wants to

support this (to provide higher-level semantics for

different applications), the resulting queries have to

contain the logic for all these processing steps. Thus,

the query language has to be directed towards

common semantic information layers (similar to

DBMS views).

Provenance: When critical decisions are taken

based on aggregated information, it is often crucial

that the system is always able to tell how the

aggregation was performed and what data has

contributed to it. In an active data management

szenario, it is also important to track which events

where delivered to which application and when.This

problem can be handled by assuming that any

information that is considered to be critical is

retained in the DBMS and can be accessed using the

temporal DBMS support. If applications are using

transactional support, any result can be audited by

revieweing the — temporal — data, which version

of the application was used, which requests were

initiated by the application, and which

authentification was used.

1.3 Contribution

In this position paper, we argue for the following:

 Many applications need management for both

streaming and persistent data

 Many applications need timely analysis of data

— event processing — as well as support for

ad-hoc queries and provenance.

 A federation of a DSMS and a DBMS should

be feasible to achieve this.

 Semantic processing layers help in designing

such a federated system by making differences

between DSMS and DBMS system transparent

to applications.

Figure 1 guides us through the paper: we first intro-

duce the semantic information layers “Facts”, “In-

formation” and “Situations” in Section 2 and the

overall federated architecture in Section 3. We iden-

tify relevant implementation techniques and chal-

lenges in Section 4. Finally, we conclude with Sec-

tion 5 and show future directions for research and

industry.

2 SEMANTIC INFORMATION

LAYERS

As we can see from the applications, modern sensor-

based applications need more than just pure fact-

based data processing. Thus, in a full-fledge data

processing architecture, we need to support different

semantic layers of information. Such layers help in

coping with the complexity of federated query plans,

making the resulting architecture much more main-

tainable and flexible.

Fact Layer: Facts are statements, observation, or

any other piece of data that is part of the basic

information schema. There are various sources for

facts: When raw data comes in from sensors, it has

to be often pre-processed to extract features and

facts. Similarly, when data is integrated from

external data sources, ETL (“extract-transform-

load”) processes are used to insert facts in the

database.

Information Layer: Typically, applications need

not only plain facts but some derived information. In

classical fact-based data base management systems,

this derivation is expressed by the SQL query that

the application sends to the database. Various

'%M6 meets '6M6 � 7oZards a)ederated 6olution

���

operations can lead form facts to information, step,

like classification (e.g., mapping a blood pressure

value to classes like “high”, “normal”, or “low) or

aggregation. Prediction functions use application

knowledge (pre-modeled or learned by data mining

algorithms) and derive probable future states from

present facts. Such trends and predictions are

application-relevant information, too.

When information is only generated within the

application layer, it can hardly be shared between

applications. Thus, we propose to introduce a shared

information layer in the data management system

that can be directly queried by applications, similar

to views in databases.

Situation Layer: On the top layer, we define

situations as a relevant combination of facts and

information that needs to be communicated to

subscribed applications. Typically, only the change

of state is communicated, i.e., in the moment when

the situation occurs. Situations could be modeled as

complex events (i.e., patterns evaluated on basic

events) or as continuous queries (i.e., a query that is

continuously evaluated). When archived, a situation

would become part of the information layer.

The concept of semantic information layers is

somehow similar to the well-known concept of

views in data-bases and can thus help us in similar

ways: First, since application-specific higher level

information if explicitly modeled and expressed, it is

easier for the application developer to communicate

with the domain expert and to implement new

queries. And secondly, the layers act as abstraction

levels within the system design, so that the lower-

level processing can be changed without changing

higher-level processing and models.

However, there are also significant extensions to

simple views: we see the need for a much richer set

of operations to express the derivation of higher-

level information, like prediction of future states,

classification, or aggregation. Such operations also

encode application-specific knowledge, represented

in models that are either specified by the domain

expert or are learned by data mining techniques over

persistant data.

3 FEDERATED ARCHITECTURE

From the discussion of the scenario, we see that

there is a need for data management systems that

support both the efficient management of high vol-

umes of stored data, and the processing support of

high-performance streaming systems. To leverage

the benefits of both systems, we propose a federated

architecture. Note that in future data management

systems, both sides may be integrated into one pro-

cessing engine; however, for this, the challenges of a

dual system have to be resolved, too.

Figure 1 shows an overview on the proposed

architecture. Applications can issue continuous

queries or define information models (needed for

classification and aggregation) at the federation

layer.

Here, these queries are transformed into

executable query plans in the underlying systems,

which are a DBMS and a DSMS. At each of the data

processing layers, queries and data can be

exchanged between the two systems.

Note that this is a streaming system; thus, the

query plans are not executed just once, but

deployed/registered to the underlying systems.

Whenever new data arrives, the queries are executed

again with this new data. If the query represents a

continuous query, the new result set is

communicated to the application. If it is a complex

event pattern, the new data is treated as new basic

events, and the systems check whether new complex

event evaluates to true. Both cases are covered by

the concept of “situations”; thus, the result every

application query belongs to the upper most

semantic information layer.

Since the registered queries are typically long-

running, query sharing plays a crucial part for

optimizing the performance. For every new query,

an ideal optimizer at the federation component

would recognize which already running query plans

could be re-used. However, since cross-platform

optimizations over complex query plans might be

too expensive or not possible, the semantic

information layers provide another benefit: they

already represent sharable query plans, since every

modeled concept at the information comes with a

query plan to derive it. If multiple queries use the

same information concept, the system can re-use this

query plan for both situations.

4 IMPLEMENTATION

In order to realize the federation layer depicted in

the architecture from Figure 1, we can leverage

existing techniques provided by the underlying sys-

tems. The arrows between the two subsystems indi-

cate the data transfer that should be supported for

each identified semantic layer. To this end, compati-

ble operators and DB techniques have to be identi-

fied that allow for resuming the data processing task

coming from the DSMS resp. DBMS subsystem.

'A7A ���� � ,nternational &onference on 'ata 7echnoloJies and Applications

���

4.1 Existing Techniques

The most relevant DBMS techniques that have a

close relationship to stream processing are triggers,

materialized views and registered (continuous) que-

ries (e.g., Oracle’s CQN). Triggers are active rules

that allow for specifying the automated reaction to

updates on tables or views. Due to their instance-

oriented, push-based data processing, they directly

correspond to incremental stream operators of

DSMS. Materialized views and registered queries

are techniques that allow for automatically refresh-

ing query results as new data arrive. In this regard,

they directly correspond to the concept of continu-

ous queries in DSMS.

From the DSMS perspective, query plans,

caching and batching are techniques which are

related to DBMS concepts. Query plans are

represented by operator trees in which operator

subtrees coming from the DBMS query engine could

be integrated. Caches of stream operators may even

comprise persistent DBMS data which can then be

jointly processed with the dynamic stream data. In

this way, static domain knowledge — stored in the

DBMS — can be used for a stream analysis, too.

Finally, batching allows for combining stream data

into a single update request that can be more

efficiently handled by the set-oriented data

processing strategy of a DBMS than individual ones.

All these techniques ought to be used in order to

realize a federated query processing. The main

challenge, however, is to find a meaningful and

optimized combination of such techniques. The

latter depend on the chosen query type which should

be supported by the proposed federated system.

4.2 Federated Query Types

In Figure 2, we depict typical query types that can be

realized within the federated architecture.

Pure DSMS Query Execution: Query (1) shows a

pure DSMS query execution: without any interaction

with the DBMS, the query processes raw data to

facts, combines the facts to information, and if a

relevant combination of information occurs, the

result of this processing is sent to the application.

One example for this query could be the continuous

assessment of changes in temperature and

cardiogram data for ICU patients. Such queries are

well-suited for high volume data streams whose

processing can be performed in main memory and

where no reliable persistent storage of the data is

needed.

Archiving Queries: If the facts derived from the

Figure 2: Federated Query Execution.

raw sensor data should be kept for future analysis or

because of legal reasons, the persistent storage of the

stream data using the DBMS would be desireable.

Query (2) implements this functionality and is

regsarded as archiving query: the DSMS performs a

preprocessing of the raw data, but all facts are

transferred and stored in the DBMS for further

analysis. In order to cope with the frequency of

streaming data, the DSMS could batch the induced

inserts. Althought archiving queries are depicted for

the facts layer, they are meaningful for all other

semantic layers, too. An example for an archiving

query is the relibale storage of patient data such as

blood tests and medications. On the information

layer, an archiving query storing very unusual

cardigram data could be imagined allowing for

legally justifying dangerous and heart-related drug

treatments.

Continuous DBMS Query: Query (3) represents a

continuous query solely realized within the DBMS.

In this way, the advantages of both system types are

directly supported. This query type, however, is

solely applicable for particular stream frequencies

and volumes which are certainly lower than the ones

manageable by a DSMS. An example for this query

type is the continuous analysis of patient records of a

hospital for operative reasons.

Complex DSMS/DBMS Query: Query type (4)

represents complex DSMS/DBMS queries with

various data flows between the two subsystems. A

classic example is the continuous determination of

diagnoses based on medical domain knowledge and

'%M6 meets '6M6 � 7oZards a)ederated 6olution

���

current patient data. In this query type, raw stream

data is first pre-processed to facts (step 4.1) quite

similar to the query type (1). In order to decide about

the present situation, however, additional

information is needed which is provided by the

DBMS. Thus, a join between stream data from the

DSMS and DBMS data is needed (of course, by the

help of DSMS caching techniques). Otherwise, the

DBMS has to provide the relevant information (e.g.,

using a materialized view) by applying domain

knowledge on its stored facts.

Based on this combined information, situations

can be derived which are highly relevant for the

monitoring application. It might be necessary to

make the derived situations available directly within

the DBMS (selection point 4.3) in order to facilitate

a statistcial analysis of this temporal data. This kind

of queries (6) could be used, e.g., to analyse the

consequences of changed medical knowledge on

derived diagnoses or therapies retrospectively.

4.3 Implementing the Federation Layer

In the introduction we have already indicated the

principle differences between DBMS and DSMS

which makes the realization of the federation layer a

complex task. The most important goal is the devel-

opment of a unified query languages based on a

common temporal data model and an integrated

algebra. For optimizing complex DBMS/DSMS

queries, new cost models have to be developed

which allow for controlling the data flows between

the two subsystems. Additionally, new query rewrit-

ing strategies have to be investigated for an algebra-

ic-based optimization of mixed query types. These

techniques form the basis for an automated and

transparent distribution of (parts) of queries to the

underlying subsystems.

A federated query processing ought to be able to

adapt to new stream characteristics which, e.g.,

require a continuous DBMS query to become a

DSMS one due to an increased update frequency. To

this end, cost-based migration techniques have to be

developed. Finally, the storage of temporal data and

the needed history access by the DBMS call for new

compression and efficient access structures such as

Oracle’s total recall.

5 CONCLUSIONS

This paper argued for a federated approach to man-

aging persistent and active data in a uniform way.

We discussed general challenges which will be en-

countered when designing such a system, i.e.., tech-

nological requirements needed for controlling its

operational characteristics. Additionally, we showed

how the combination of DBMS and DSMS technol-

ogies may lead to new functionalities such as novel

(federated) query types. In order to systematically

develop this functionality, we propose semantic

information layers that additionally help to design

and use a federated system in a methodological way.

REFERENCES

Abadi, Daniel J., Don Carney, Ugur Çetintemel, Mitch

Cherniack, Christian Convey, Sangdon Lee, Michael

Stonebraker, Nesime Tatbul, and Stan Zdonik. 2003.

“Aurora: A New Model and Architecture for Data

Stream Management.” The VLDB Journal 12 (2).

Arasu, A., S. Babu, and J. Widom. 2006. “The CQL Con-

tinuous Query Language: Semantic Foundations and

Query Execution.” The VLDB Journal 15 (2)

Babcock, Brian, Shivnath Babu, Mayur Datar, Rajeev

Motwani, and Jennifer Widom. 2002. “Models and Is-

sues in Data Stream Systems.” In PODS’02, 1. Madi-

son, Wisconsin.

Biem, Alain, Eric Bouillet, Hanhua Feng, Anand Ranga-

nathan, Anton Riabov, Olivier Verscheure, Haris

Koutsopoulos, and Carlos Moran. 2010. “IBM In-

fosphere Streams for Scalable, Real-time, Intelligent

Transportation Services.” In SIGMOD’10. ACM.

Guerra, Diogo, Ute Gawlick, Pedro Bizarro, and Dieter

Gawlick. 2011.“ An Integrated Data Management Ap-

proach to Manage Health Care Data.” In BTW, 596–

605.

Gyllstrom, D., E. Wu, H. J Chae, Y. Diao, P. Stahlberg,

and G. Anderson. 2007. “Sase: Complex Event Pro-

cessing over Streams.” In Proceedings of the Third Bi-

ennial Conference on Innovative Data Systems Re-

search, Asilomar.

Kennedy, Oliver, Yanif Ahmad, and Christoph Koch.

2011. “DBToaster: Agile Views for a Dynamic Data

Management System.” In Cidr, 284–295.

Kx Systems. 2010. “Kdb+ White Paper.” http://kx.com/

papers/Kdb+_Whitepaper-2010-1005.pdf.

Schüller, Gereon, Roman Saul, and Andreas Behrend.

2012. “AIMS: A Tool for the View-Based Analysis of

Streams of Flight Data.” In SSDBM (accepted).

StreamBase Systems. 2012. “StreamSQL Guide,

StreamSQL Online Documentation.” http://streambase

.com/developers/docs/latest/streamsql/index.html.

'A7A ���� � ,nternational &onference on 'ata 7echnoloJies and Applications

���

