
Modelling Agent Protocol Requirements

Jason Heard and Rob Kremer
Department of Computer Science, University of Calgary, Calgary, Alberta, Canada

Keywords: Multi Agent Systems, Communications Protocols, Knowledge Representation.

Abstract: Currently, there is no method for describing the requirements of a multi agent protocol. Much work has been
done on describing protocols themselves, and this work has continually shifted from low-level protocols, such
as situation-action pairs, to higher-level protocols, such as conversation policies. Despite the wealth of work
in methods for describing policies, there is no work on describing what a policy should do. A method to
describe what (and not how) would be useful in the area of automated protocol evaluation and even protocol
generation. To address this gap, this paper outlines a situation model that contains all of the information
needed to define the requirements of a new protocol in a declarative manner. The situation model describes
the needed information to develop new protocols, try those protocols in an appropriate environment and then
evaluate the performance of the protocols once they have been executed. In addition, this model has a fairly
simple textual representation that is designed to be easily parsed. This paper also outlines how this model
could be used to generate possible protocols and to evaluate potential protocols.

1 INTRODUCTION

Historically, the creation of multi agent communica-
tions protocols has been a long, arduous process that
must be done by hand and with great care (Singh,
1998). The protocols must be described not just for
the cases where everything proceeds in a straightfor-
ward and correct manner, but also for cases where
things go wrong and the participants make errors, ei-
ther intentionally or unintentionally.

Many great strides have been taken to make the
process of creating multi agent protocols easier. Stan-
dards have been made to describe basic interactions
(Foundation for Intelligent Physical Agents (FIPA),
2002). These standards aid multi agent system de-
signers by providing known protocols that can be used
in some situations instead of creating new protocols.
Another improvement has been social commitments
(Castelfranchi, 1995). The use of social commitments
allows communications protocols to be described in
terms of the actions and communications of agents
(Fornara and Colombetti, 2003). With these and other
advances, the process of creating agent protocols has
become both simpler and more robust. Unfortunately,
the process is still akin to algorithm design. The multi
agent designer must create the rules, states and/or
transitions of the protocol.

It would be beneficial for a multi agent designer to
be able to declaratively describe the situation, includ-

ing the requirements of that situation, and generate the
protocol automatically. MAPC is a system that is de-
signed to do this (Heard and Kremer, 2009). In order
to do this, previous versions of MAPC required that
the user describe the situation in which the protocol
would execute and provide a set of fitness functions in
Java. This paper outlines a new method for modelling
a communication situation. This communication sit-
uation encompasses not just the environment of the
agents in a system (including the roles and actions of
those agents), but also the requirements of the desired
protocol. Section 2 describes the situation model de-
veloped for this purpose. This model is presented
both as a formal model and as a textual representa-
tion of situations. Section 3 explains how individual
situations are used to generate environments in which
to test possible protocols and to evaluate executions of
possible protocols. Finally, Section 4 provides some
concluding remarks.

2 MODELLING A SITUATION

A situation in a multi agent system can be defined
by four separate components: (1) a description of the
agents that will be in the situation, (2) a set of roles
that various agents in the system will take on, (3) an
outline of the digital environment or data (which is
composed of information that may be different for

335Heard J. and Kremer R..
Modelling Agent Protocol Requirements.
DOI: 10.5220/0004125103350338
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (KEOD-2012), pages 335-338
ISBN: 978-989-8565-30-3
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

each execution of the situation), and (4) a description
of the requirements of the situation. Each of these
four components is required to form a complete pic-
ture of the situation.

2.1 The Comparison Shopper Situation

To aid in the articulation of the four components, con-
sider the comparison shopper situation. In the com-
parison shopper situation, a single purchasing agent
that is looking to purchase a particular item and has
multiple potential suppliers to choose from. The pur-
chasing agent is looking for the lowest price and also
has a maximum price that cannot be exceeded. The
sellers each may or may not have the item in question.
If they do have the item, they also have a minimum
selling price.

The agents in the situation will be described as
a set of agent groups. Each group has a set of one
or more roles that the agents in that group are fulfill-
ing. The roles define the abilities of a general class of
agents and since they may be shared between agent
groups they are described separately. In addition,
each group has a defined quantity. The quantity de-
scribes the possible number of agents in that group.
In the comparison shopper situation, the situation has
two groups: one agent group containing the role of
buyer (to be described below) and a quantity of one
and a second agent group containing the seller role
and a quantity of one to ten.1

To organize the description of the agents in the
system, each situation has one or more roles which
define the capabilities of various types of agents in
the system. They are kept separate from the quantity
of each agent type to allow the description of situa-
tions in which multiple agents share one role, but have
some other differentiation. To enhance the capability
to describe the roles, the roles can be arranged in a
type hierarchy to indicate inheritance. The roles each
describe the actions agents of that role can perform,
the desires that agents of that role would like to fulfill,
and negotiable values that can be used when fulfill-
ing their desires. In the comparison shopper example,
there are three roles. There is a base type called trans-
actor that represents any agent with money and/or
items. In addition, there are two sub-types that are
named buyer and seller. The buyer is capable of giv-
ing money to another agent. The seller is capable of
giving items to other agents. In Figure 1, the roles
are represented as clouds. Within the roles, the give
item and give money actions are represented as light-
ning bolts. In addition to their capabilities, the buyer
and seller each have desires to receive what the other

1The seller quantity can vary between 1 and 10 agents.

transactor

buyer seller

Requirements

Enviornment
(Data)

buyer
Agent Group

1

seller
Agent Group

1-10

Figure 1: Comparison Shopper Situation.

can give: the buyer has a desire for a give item action
with the buyer agent as the recipient and the seller has
a desire for the give money action with the seller agent
as the recipient. These desires are represented within
the roles as hearts. In addition, both the buyer and the
seller have a negotiable value price which the seller
would prefer to be higher and the buyer would prefer
to be lower.

The environment of a situation can be represented
as a collection of data. This data is composed of three
kinds of data. It includes information that is constant
over all instances of the situation, information that
may be different for different instances of the situa-
tion but is constant throughout the entire timeline of
one execution of the system, and information that may
change as the system executes. In addition, data may
be global to the entire situation or specific to one or
more roles in the situation. In the comparison shop-
per example, there isn’t any global data, but there is
data specific to each role. For example, each trans-
actor agent has a money and item count variable. In
Figure 1, data is represented by cylinders. Each of the
roles has some data that is part of the environment (or
data) of the entire situation.

The final component of the situation model is the
requirements of the system. These include both the
hard requirements that must be met and the soft re-
quirement that the system designer would like to be
met. In the comparison shopper situation the buyers
and sellers must not exceed their price limits; this is
a hard requirement. Another hard requirement is that
money must be given for each item received. Finally,

KEOD�2012�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

336

to illustrate the ability of the situation to reflect the
desires of the designers, this example will reflect a
buyer’s market, and so the buyer should end up with
the highest possible total value at the end of the ex-
ecution of the situation. As with the situation data,
the requirements may be generic to the entire situa-
tion or specific to individual roles. In Figure 1, the
octagons represent the requirements, parts of which
refer to specific roles.

When discussing a situation and later the evolu-
tion of a protocol that will satisfy the situational re-
quirements, it is useful to discuss situation instances
and executions. Situation instances are specific exam-
ples of agent arrangements that are included in a situ-
ation. For example, one situation instance of the com-
parison shopper situation could include a single buyer
agent and three seller agents. The situation instance
could also include specific values for the number of
items and amount of money held by each individual
as well as the minimum and maximum prices for the
sellers and buyers, respectively. An execution of a
situation instance is the sequence of states from the
situation instance’s starting environment to an ending
state where no more actions occur.

2.2 Formal Definitions

Formally, a situation (Sit) can be defined as the 4-
tuple:

Sit = (AG;Rol;Dat;Req)
where AG is the set of agent groups in the situation,
Rol is the set of roles in the situation, Dat is the set of
possible data instances for the situation and Req are
the requirements in the situation.

An agent group in a situation (agn 2AG) is defined
as the pair:

agn = (Rn;cn) s.t. Rn 2 Rol^ cn 2 P Z^
cn 6=?

where Rn is a role in Rol and cn is the set of possible
numbers of agents in the agent group agn.

A role is a set of actions that every agent with that
role can perform, desires that every agent of that role
wishes to fulfill, and negotiable values that agents of
that role may use when executing. Furthermore, roles
are arranged in a type lattice where every sub-type
contains all the actions and desires of it’s ancestors.
Formally:
Rol : posetP(Action[Desire[Negotiable) s.t.

8ri ;r j 2 Rol � ri l r j! r j � ri

An action in a role (am 2 ri, ri 2Rol^am 2Action)
is defined as the pair:

am = (fm; Inm)

fm : Dat� Inm! Dat

where fm is the function that modifies the current data
instance to reflect the occurrence of the action and Inm
is the set of all possible parameters for the action.

A desire in a role (dm 2 ri, ri 2 Rol^dm 2Desire)
is defined as the pair:

dn = (an; inpart) s.t. an 2 Action^
9inn 2 Inn^ Inn 2 an � inpart � inn

where an is the desired action and inpart is one in-
stance of the possible inputs for that action or a subset
of one of the possible inputs (i.e. a partially defined
action).

A negotiable in a role is a partially ordered set of
potential values. Formally:

Negotiable : posetP Z

The requirements (Req) of a situation are given as
the pair:

Req = (reqh;reqs)

reqh : P (Dat! B)
reqs : P (Dat! Z)

where reqh are the hard requirements and reqs are the
soft requirements. The hard requirements are defined
as functions from the final data instance to a boolean
value of true for success and false for failure. The
soft requirements are defined as a functions from the
final data instance to an integer value indicating how
well the soft requirements were met (a higher or lower
value could be considered better, depending on the
situation).

A situation instance is one specific instance of a
situation. A situation instance (instn) can be formally
defined as the 3-tuple:

instn = (Sit;An;datn0) s.t.

dat0
n 2 Dat^

(8a 2 An �9r 2 Rol �a hasRole r) ^
(8agn 2 AG�9r 2 Rol;c 2 (PZ) jagn = (r;c) �
jfa 2 An ja hasRole rgj 2 c)

where Sit is the situation, An is the set of agents in this
situation instance and dat0

n is the initial data instance.
Furthermore, all the agents in An fulfill at least one
role, and every agent group in AG contains the proper
number of agents.

3 MODEL USE

A situation model can be used to generate potential
situation instances and evaluate an execution of some
protocol.

Modelling�Agent�Protocol�Requirements

337

3.1 Situation Instances

To generate situation instances, first the collection of
agents is chosen. This is done by selecting the number
of agents in each agent group from the available op-
tions. In the comparison shopper example, one possi-
bility is that the number of seller-group agents is three
and the number of buyer-group agents is one (the only
option). Once the agent quantities have been deter-
mined, the initial value of all of the variables must be
picked.2

3.2 Evaluating a Protocol

In order to evaluate a protocol using a situation, such
as the comparison shopper situation described above,
the protocol must give a method to go from a desire
to some action. If the protocol is formed in this way,
the desires of the agents in a situation instance can
drive the test agents to attempt to communicate to ful-
fil those desires.

Once a protocol has been executed in a situation
instance, it must be evaluated against the require-
ments of the situation. One process for doing this is
to use the hard-requirements, soft-requirements and
desires defined in the situation.

Each of the post-condition functions in each of the
fitness objects within the roles and the situation as a
whole are considered a different hard requirement. In
addition, the pre-conditions of all of the actions are
considered hard requirements. To aid in the evalu-
ation process, the infraction of the pre-conditions are
counted as the system executes. Since all of the afore-
mentioned functions are Boolean functions, a relative
fitness is given by comparing the number of failures
of action pre-conditions, role-specific post-conditions
and situational post-conditions. This gives a method
for comparing the relative utility of each protocol
even when none of the potential protocols met all of
the hard requirements.

4 CONCLUSIONS

The situation model described in this paper has all of
the information needed to allow the Multi Agent Pro-
tocol Creator (MAPC) to automatically generate pro-
tocols.

2In the case of random values, an appropriate function
was called. In the case of the fixed starting values that value
is simply used as is.

REFERENCES

Castelfranchi, C. (1995). Commitments: From indi-
vidual intentions to groups and organizations. In
Lesser, V. R., editor, Proceedings of the First Interna-
tional Conference on Multi-Agent Systems (ICMAS-
95), pages 41–48, San Francisco, CA, USA. AAAI-
Press and MIT Press.

Fornara, N. and Colombetti, M. (2003). Defining interac-
tion protocols using a commitment-based agent com-
munication language. In Proceedings of the Second
International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2003), pages 520–
527, New York, NY, USA. ACM Press.

Foundation for Intelligent Physical Agents (FIPA) (2002).
FIPA ACL message structure specification. docu-
ment number SC00061G, FIPA TC communication.
http://www.fipa.org/specs/fipa00061/SC00061G.html.

Heard, J. and Kremer, R. (2009). Evolving social commit-
ment based protocols using MAPC. In Proceedings of
Self-Organizing Architectures (SOAR 2009).

Singh, M. P. (1998). Agent communication languages: Re-
thinking the principles. IEEE Computer, 31(12):40–
47.

KEOD�2012�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

338

