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Abstract: This paper presents HoneyCloud: a large-scale high-interaction honeypots architecture based on a cloud in-
frastructure. The paper shows how to setup and deploy on-demand virtualized honeypot hosts on a private
cloud. Each attacker is elastically assigned to a new virtual honeypot instance. HoneyCloud offers a high scal-
ability. With a small number of publicIP addresses, HoneyCloud can multiplex thousands of attackers. The
attacker can perform malicious activities on the honeypot and launch new attacks from the compromised host.
The HoneyCloud architecture is designed to collect operating system logs about attacks, from variousIDS,
tools and sensors. Each virtual honeypot instance includes network and especially system sensors that gather
more useful information than traditional network oriented honeypots. The paper shows how are collected the
activities of attackers into the cloud storage mechanism for further forensics. HoneyCloud also addresses ef-
ficient attacker’s session storage, long term session management, isolation between attackers and fidelity of
hosts.

1 INTRODUCTION

Honeypots are hosts that welcome remote attackers.
Honeypots enable to collect valuable data about these
attackers, their motivations and to test countermea-
sures against attacks. Two major issues with hon-
eypots are their robustness and their scalability. As
the attacker tries to violate the security of the host, he
can damage the host or the contained data. Moreover,
welcoming attackers uses a large amount of resources
and needs frequent re-installations.

This paper proposes a new type of honeypot: Hon-
eyCloud which is a honeyfarm, i.e., an architecture
designed to provide multiple honeypots, able to de-
ploy virtual honeypots on-demand in a cloud. This
proposal solves the two previous issues: HoneyCloud
is highly scalable and the robustness of the host might
be relaxed as a new honeypot virtual machine (VM ) is
automatically provisioned for each new attacker. Our
goal is to show that the proposed solution enables to
setup high-interaction honeypots that help to study at-
tacks atOS level. Our solution increases the fidelity
of both the honeypot host (from the attacker point of
view) and the fidelity of the collected data. Moreover,
our solution also preserves the scalability of the farm
of honeypots.

The paper is organized as follows: the next sec-

tion exposes the motivations for this work regarding
the current state of the art. The proposed HoneyCloud
infrastructure is described in Section 3. Section 4 de-
scribes the virtualized hosts that welcome the attack-
ers. Section 5 concludes the paper and gives some
perspectives.

2 MOTIVATION

In this work, we use honeypots in order to collect at-
tack logs. “A honeypot is an information system re-
source whose value lies in unauthorized or illicit use
of that resource” (Spitzner, 2003). Honeypots are of-
ten classified by the level of interaction they provide
to attackers:

1. Passive network probes: such tools can be de-
ployed widely and welcome/analyze millions of
IP addresses, e.g., Network Telescopes (Moore
et al., 2004).

2. Low-interaction honeypots: easy to setup and ad-
ministrate, but simply emulate services. Attackers
have the illusion of using normal computers.

3. High-interaction honeypots: the most difficult to
setup, deploy and maintain, but provide the best
fidelity for attackers.
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We mainly focus onOS level aspects of attacks for
several reasons. Except for DoS/DDoS attacks and
massive network scans, most attacks aim at exploit-
ing anOS vulnerability to finally steal or corrupt in-
formation, or to install distributed botnets onto theOS.
Thus, attacks should be studied atOS level to be able
to have a good description of them. Following these
objectives, in previous work, we correlate variousOS

level logs to rebuild the full sessions of attacks (Bous-
quet et al., 2011) that were collected using a previous
honeypots architecture (Briffaut et al., 2012). The ar-
chitecture presented in this paper is new. It aims at
being fully scalable, easier to use and for forensics
while providing almost the same fidelity as the previ-
ous one.

As explained in the following section, current
honeypot solutions have to find a tradeoff between fi-
delity and scalability. This issue, and the fine descrip-
tion atOS level of the attacks are what we mainly want
to address in this work.

2.1 Fidelity

Low-interaction honeypots, e.g.,Honeyd (Provos,
2004), DarkPots (Shimoda et al., 2010) and farms
of such honeypots, e.g., SGNET (Leita and Dacier,
2008)) provide scalability but do not gather any in-
formation about system events related to attacks. At
best, they collect network logs and malwares. Hon-
eyCloud collects all the attack steps from a system
point of view. Precisely, it collects keystrokes, HIDS
events, syslog/SELinux audit logs and other host sen-
sor logs. This provides the highest fidelity of attack
data.

In addition, HoneyCloud also aims at providing
the highest fidelity for attackers, by using high inter-
action honeypots. High interaction honeypots are full
operating systems that interact with attackers. They
offer the possibility to monitor the consequences of
an attack at network andOS levels.

On physical high-interaction honeypot hosts,
when dealing with real system sessions, i.e., from lo-
gin to logout, the issue is that all the system events
of different attackers are mixed in the same logs of
the host. That complicates the analysis and under-
standing of the logs and needs technics like PID tree
reconstruction to isolate events for each session (Brif-
faut et al., 2012). With HoneyCloud, each attacker
gets his own virtualized honeypot, avoiding the mix
of the precious logs.

2.2 Scalability

In a classical honeyfarm, a pool of publicIPs is redi-

rected to a pool of hosts that will welcome the attack-
ers. In case of a very high number of attackers at the
same moment, this architecture may not be sufficient
to welcome correctly the attackers, as performances
may dramatically decrease.

When there is a real need of provisioning new re-
sources, the use of a cloud and elasticity seems the
most appropriate. Using clouds leads to a better con-
solidation of resource usage and helps to implement
green IT: resources are assigned on-demand when
they are needed and are powered-off or put in hi-
bernation otherwise. Thus our HoneyCloud architec-
ture aims at providing both scalability and fidelity, but
also global efficiency: save of computing resources,
money, and the planet!

In (Balamurugan and Poornima, 2011), the au-
thors present a Honeypot-as-a-Service high-level ar-
chitecture, without any implementation evidence. On
the opposite of their vision, we do not think that hon-
eypots can help to trap attackers and thus protect legal
computer sharing the same network. In particular, fil-
tering of attackers is very difficult for0-dayattacks.

2.2.1 On-attack Provisioning of Honeypots

Honeylab (Chin et al., 2009), a honeyfarm approach,
provides high-interaction honeypots but does not pro-
vide any on-demand service allowing to provision
new virtual honeypots when new attackers arrive.
Collapsar (Jiang and Xu, 2004), aVM based honey-
farm architecture for network attack collection, shares
the same limitations: the honeypots are statically de-
ployed once and for all. HoneyCloud clearly over-
comes this limitation.

In (Vrable et al., 2005), the authors introduce the
Potemkin architecture, which is the closest one to our
proposal. Potemkin uses virtualization and thus has
a better scalability. However, Potemkin is intrinsi-
cally limited to 65k honeypots, i.e., 65kIP addresses.
Moreover, the authors give only results for a represen-
tative 10 minutes period. Our HoneyCloud proposal
is not essentially limited to a number ofIP addresses.
Indeed, as a cloud computing architecture, each pub-
lic IP of the HoneyCloud can handle a possibly infinite
number or attack sessions. Each attacker receives on-
the-fly its own virtual honeypot. More than that, since
our HoneyCloud architecture is based on the Amazon
EC2 API, it could potentially extends its honeyfarms
physical servers to other (private) clouds compatible
with EC2.

2.2.2 Attack Sessions

Potemkin starts aVM per publicIP and does not con-
sider theIP of the attacker. Thus, Potemkin is not
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able to explicitly isolate attackers between each oth-
ers. Potemkin does not really consider attackers’ ses-
sions and thus does not deal with them (no session
storing, so session analysis). Potemkin only main-
tains activeIPs for a set of services andOS to deliver.
Potemkin keeps the running state for eachVM : its
load and liveness, and stands ready to shut down the
VM as long as it is not used any more.

As a singleVM may welcome multiple attackers
in Potemkin, forensics may be quite complicated in
some cases, as explained before with non-virtualized
(physical) honeypots. Of course, some works, like
Nepenthes (Baecher et al., 2006) storeVMs’ snap-
shots for future forensics, but those snapshots do not
distinguish attackers sessions, and most of the time,
those snapshots seem to be only used for manual in-
vestigations ((Jiang and Xu, 2004), pp.1173-1174).
Potemkin, Nepenthes and many others share the same
drawback: they do not keep all precise events related
to attacks. The use of HoneyCloud provides a set of
clear system logs. HoneyCloud only accepts connec-
tions on thessh port 22 and thus attack sessions are
lighter to store. It is also easier to restore later such
sessions back to honeypots if the correspondingVMs
have been deleted due to a too longidle time. That
voluntary restriction tossh based attacks solve many
problems of resource consumption. For example, ex-
isting honeyfarms of virtualized honeypots have to
deal with network scans: shall the architecture instan-
tiate a new honeypotVM for eachIP scanned? Our
vision intrinsically tamper this issue. More than that,
it is now common that attackers use encryption “en-
abled backdoors, like trojanedsshd deamons” (Jiang
and Xu, 2004). So, even if we use some classical net-
work sensors, such assnort, we can not only rely on
network logs. This is is the reason why we focus on
OS events and host logging systems.

2.2.3 Instantiation, Storage and Recycling

HoneyCloud introduces the ability to easily and dy-
namically setup a new environment for each attacker.
The challenge is to setup an architecture that is per-
sistent for the attacker as it may come back latter
and should not notice any change between the two at-
tack moments. But the technical solution must also
ensure a lightweight storage mechanism. An attack
can sometimes take several days to end up and may
finish with sending back some reports, e.g., scan re-
sults. Some attacks need each step to be validated re-
motely (Bousquet et al., 2011). It is thus not relevant
to prematurely recycle the virtual honeypot and its
resources. HoneyCloud stores all attackers sessions
in order to revive those session if the attacker comes
back later, even if theVM itself has been deleted. Ses-

sions are stored in a abstract and compressed repre-
sentation but not the relatedVM .

2.2.4 Network Traffic Management

While Potemkin uses hidden external routers to route
65k IP addresses to the Potemkin gateway, which in
turn redirects the flow to physical servers, Honey-
Cloud can handle virtually much more connections at
the same time with only a few range ofIP addresses.
Potemkin and Collapsar have the most sophisticated
outgoing traffic redirection policies. However, they
consider redirecting outgoing traffic within the hon-
eyfarm, whereas other solutions, e.g., Honeylab, only
allows to see the DNS servers. In some cases, redi-
recting all the traffic inside can maintain some illu-
sion, e.g., for worms. But in many cases – manual
or scripted attacks, or malwares that need to commu-
nicate outside (using encrypted connections) – those
policies are not relevant.

Our policy is simple, HoneyCloud only limits the
outgoing rate but not the destination’s nature. Con-
trary to Collapsar (Jiang and Xu, 2004), HoneyCloud
does not limit the attackers: HoneyCloud does not
avoid internal network and system scans.

2.3 Robustness, Detection, Protection

In the state of the art, many researchers using virtu-
alized honeypots try to obfuscate the virtualization
technologies. But we think this is not needed any
more: nowadays, almost servers tend to be virtual-
ized. So, virtualization is not always an evidence
of being captured by a honeypot. It can even mean
the opposite: only big companies and Cloud Service
Providers have funds big enough to build cloud ar-
chitectures. However, some of the sensors used in
HoneyCloud, likesnort, are well-known and can eas-
ily be detected. Even if invisibility is not our main
goal at the moment, fidelity is needed in order to con-
vince attacker that he entered in a regular network. To
achieve authenticity, honeypots share some network
andOS configuration with normal servers:DNS con-
figuration, mail servers of the domain.

No direct protection for the virtual honeypots is
provided. Again, providing a vulnerable machine is
the aim, not its opposite. However, one can assume
that, by re-cloning the referenceVM after a long time
of inactivity, some protection is provided for the hon-
eypots.

When an attacker gains root priviledges on a clas-
sical honeypot, he may corrupt or delete his own data,
history and logs, and sometimes also others’ ones.
HoneyCloud also manages this issue. Indeed, isola-
tion is provided between users, guaranteeing the pro-
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Figure 1: Overall architecture of HoneyCloud.

tection between theVMs, and thus protection of the
attacks’ logs.

At last, while using public IPs among the legal
IPs locally owned, the honeypot server is physically
not connected to the normal local network, which
prevents the use of HoneyCloud against any form of
stepping-stone for further attack on the legitimate net-
work.

3 ARCHITECTURE

The architecture proposed here uses a private open-
source cloud: Eucalyptus (Nurmi et al., 2009). Euca-
lyptus exposes the EC2API. This allows our Honey-
Cloud to work on any other clouds that provide EC2,
without any modification.

The remaining of this section describes how the
proposal uses the cloud and what new services have
been added to implement the HoneyCloud. First,
the gateway facility is introduced. It acts as a net-
work flow redirector for incoming packets of attack-
ers. Then, the configuration and security settings of
the runningVMs are presented. Then, the imple-
mented data persistence service is described for the
data uploaded and/or modified by attackers, when
connected. Finally, the sensors used on the Honey-
Cloud and their setup are presented.

3.1 Provisioning Architecture

The Figure 1 presents the architecture and describes
the general scenario of provisioning virtual honey-
pots. Attackers (on the left) connect to the Honey-
Cloud by the gateway. Attackers #1 and #2 already
have a honeypot assigned, i.e., resp.VM 1 andVM

2. Their packets are redirected to their corresponding
VMs. Attacker #3 has left a long time ago. Thus, its
honeypot (VM 3) is deleted by the Cloud Controller
(arrow 1.a). Later arrives attacker #4 (2.a). The gate-
way requests the Cloud Controller for a newVM (2.b),

Figure 2: HoneyCloud Gateway Flowchart.

which in turn assigns theVMx (2.c) from theVMs pool
to the attacker #4 (2.d), and starts theVM now labelled
asVM 4 (2.e). The attacker #4 can now interact with
its VM . At the same time, the Cloud Controller creates
VMz in the pool, ready for further assignment (2.f).

3.2 Gateway

The purpose of the gateway is to act as an entry-point
for attackers on the HoneyCloud. The gateway is con-
nected to a range ofIP addresses (that are continuous
or discontinuous ones). It redirects the attackers to a
VM that is started on-demand for each attacker by the
Cloud Controller. The gateway also shutdowns the
VMs once they are no more in use.

The gateway uses two separate lists:VMQueue that
contains the list ofVMs that are started but not al-
located to attackers andVMStarted that contains the
list of VMs that are allocated to the pair〈attacker IP,
public IP〉. It means that, for each attacker and for
each targeted publicIP, a VM is provisioned. Fur-
thermore, two static variables are needed to setup the
whole gateway:POOL_SIZE defines the number of
startedVMs that are not allocated yet (2 by default)
and DURATION defines the amount of time before a
VM is stopped when it does not received new packets
(60 minutes by default).

As shown on Figure 2, the life cycle of the gate-
way can be separated into three main parts, each part
using one or morepython threads. The first part
(edges 1 to 6) implements the routing algorithm of
attacker’s incoming packets. The main steps are de-
scribed below:

1 A (new) attacker sends a packet to one of the pub-
lic IP addresses allocated for the gateway.

2.a TheVM allocation thread checks if aVM is al-
ready allocated to the pair〈attackerIP, public IP〉.
If it is the case, the process jumps to step 4.

2.b A VM is pulled from theVMQueue list.

3 TheVMStarted list is updated with the newly as-
signedVM to the pair〈attackerIP, public IP〉.

4 The packet sent by the attacker is forwarded to the
Network Packet Redirector.
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5 The packet is sent to the allocatedVM on the
cloud.

6 TheVMStarted list is updated for theVM with the
date of the last packet.

The second part (edgesA andB) of the gateway
checks the size ofVMQueue list (edgeA). If the queue
size is smaller thanPOOL_SIZE, new instances are
started to refill the queue.

The third part (edgesI and II ) of the gateway
checks the date at when the last packet has been re-
ceived for eachVM . If LAST_PACKET + DURATION
<CurrentDate, the correspondingVM is stopped.

4 HONEYPOT VM S

Each incoming attacker is welcomed in aVM through
an ssh tunnel on port 22. The goal is to provide a
remote shell to the attacker into theVM . From this
shell, the attacker will be able to perform its malicious
activities, mainly:

• to inspect the system: available resources, vulner-
abilities, data;

• to use the host as a stepping stone host for further
attacks to other computers;

• to install malicious software as botnets, worms,
keyloggers, scanners, etc;

• to exploit vulnerabilities to become root of the
system.

In our experiments, the goal was not to avoid the
attacker to become root or to install a malware: if
the virtualized host is compromised or totally unus-
able, it does not impact the cloud infrastructure nor
the other attackers. On the contrary, HoneyCloud is
setup to help the attacker to enter the honeypot while
hiding the cloud infrastructure and auditing what is
performed. These three points are described in the
next sections.

4.1 Welcome Operations

A modified open-ssh server is integrated into the
VMs. The service allows remote password connection
of attackers and automatically accepts randomly the
tried login/password when bruteforcing the service. It
allows for example to accept 10% of the tried login/-
password pairs. When the service accepts a challenge
from, for examplebob, it automatically addsbob to
the system and creates its home directory. Thus, the
attacker obtains a remote shell located at/home/bob.

4.2 Data Persistence

One of the main difficulties in honeypot solutions
close to ours is the honeypot storage. How to store ef-
ficiently honeypots that have been used by attackers,
but are currently not in use? The objectives are dou-
ble: to keep the honeypot available for further attack
steps of the attacker, and to preserve valuable attack
information for future forensics. To solve theses is-
sues, we choose to make a self abstract version of a
lightweight snapshot of theVMs. This vision has the
advantage of requiring almost no space for the stor-
age. Concretely, the deployedVMs in HoneyCloud
have a specialinit.d script that save the home direc-
tory of the attacker when theVM is powered-off. To
do that, HoneyCloud uses theWalrusstorage mecha-
nism of Eucalyptus1 which offers an access to a cen-
tralized storage zone. The record is based on the at-
tacker’s login, which is used to name thebucketstored
in Walrus. If the attackerbobcomes back latter, a new
VM is assigned to him. Nevertheless, just before cre-
ating his home directory, thessh service checks into
the Walrus storage service if the same login has al-
ready been seen. If so, the corresponding bucket is
recovered andbob’s home directory is restored. This
way, it offers homedir persistence to the attacker.

Of course, there are some limitations to this mech-
anism. A deep and careful analysis of the system
could reveal to the attacker that theVM of the second
connection is not the same as the first one. For ex-
ample, the uptime of the host may not be consistent.
We may very soon improve this mechanism by also
checking the sourceIP of the attacker when he tries to
use an existing login. Another limitation is that restor-
ing only homedirscan not bring back system modifi-
cations made by malwares for example, nor malware
themselves. We have to face all those limitations in
the next phase of this work in order to reflect almost
perfectly theVM the attacker left before coming back.

4.3 Sensors

With the proposed architecture, it becomes possible
to install multiple sensors into the virtualized hosts.
In our experiment, we deployed the classical network
and system sensors that may report malicious events
in the logs of the virtualized host. The network and
system sensors are:

• P0f, for passive network packet analysis. It can
identify the operating system of the attacker’s host
that is connected to the audited host.

1Walrus is a storage service included with Eu-
calyptus that is interface compatible with Amazon’s
S3 http://open.eucalyptus.com.
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• Snort, for real time traffic analysis of the packet
that are exchanged between the two hosts.

• syslog/SELinux, that is activated in auditing
mode. It enables to monitor all the forbidden in-
teractions that are controled by the standard “tar-
geted” policy.

• Osiris, that monitors any change in the system’s
files and kernel modules.

All the sensor’s logs are saved before killing theVM

for off-line investigation. Furthermore, important sys-
tem files like the user’sbash_history, /dev/shm,
/tmp are saved too.

5 CONCLUDING REMARKS

This paper introduces HoneyCloud, a new honey-
pot infrastructure based on cloud computing technics
that enables to deploy a large-scale high interaction
honeyfarm. This new type of honeyfarm provides a
virtualized honeypot host per attacker. HoneyCloud
introduces persistence facilities in order to restore
the homedirectory of the attacker in case of multiple
venues. The architecture lets the attacker exploit any
vulnerability of the honeypot. He may become root
and install malicious software. This is a real advan-
tage as HoneyCloud stores all network and system
logs related to attacker’s session, enabling to finely
study the attacks.

The architecture of HoneyCloud is very scalable,
as it is based on a cloud and can multiplex a few pub-
lic IP to thousands of attackers. Further works will
focus on deploying HoneyCloud on a larger infras-
tructure as the one used here in order to collect attacks
logs during a long period.
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