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Abstract:  To manage the huge amount of traffic that is to be carried using the limited bandwidth and other resources, 
large networks and the Internet are heavily dependent on the use of protocols, and in particular, on TCP/IP 
protocol suite.  While the utilization of TCP/IP is of significant practical value, for most large complex 
networks it can be inefficient, as it fails to fully take into consideration the importance of the major parts of 
the system. To overcome this, more complicated congestion control mechanisms, such as AQM/RED are 
widely utilized. However, these complex mechanisms exhibit nonlinear dynamics, which are not well 
understood and are usually unaccounted for. As a result of this, to avoid oscillatory behavior or loss of 
stability, the parameters of these systems are often set too conservatively. In turn, this will lead to 
unnecessary underutilization of the network resources. On the other hand, through the analysis and 
management of nonlinearities, the operability regions for the networked systems can be expanded, while its 
performance is also improved. This paper presents our visionary works of applying these ideas to networked 
systems, resulting in higher loading and throughput, and avoiding oscillatory or unstable behavior. 

1   INTRODUCTION 

The explosive growth of the Internet has provided 
modern societies with many new opportunities and 
challenges. Apart from the two end-systems, 
invariably for communications outside a LAN, 
routers play dominant roles in establishing the 
communication paths. In general, given the store-
forward nature of the Internet, queuing and delay of 
packets are inventible.  

Obviously, the utilized transport protocols play a 
major role in delay and reliability of communications 
of the packets.  However, it is well established that 
for most large networks this simplistic utilization of 
TCP/IP can result in severe inefficiencies (Fan, 
2010). Such approaches tend to ignore to fully take 
into consideration the importance of the major parts 
of the system, namely the routers and the links or the 
network itself.  

To overcome such inefficiencies, many 
approaches have been proposed and implemented. Of 
the well established approaches, among these, is the 
so-called Active Queue Management (AQM). 
Random Early Detection (RED) is the most widely 
used AQM scheme (Hollot, 2002). While the 
concepts behind RED mechanism are very 

straightforward, its interfaces with TCP can lead to 
nonlinear dynamics that are not well understood. The 
rather complex Internet behavior arising from the 
existence of inherent nonlinearities can cause 
instability and oscillatory dynamics. To avoid such 
undesirable dynamics, in practice the parameters of 
AQM/RED mechanisms may be set more 
constrained, compared to what the system is actually 
capable of. In other words, underutilization of the 
networks and resources has been a common practice 
as the system is set to operate below its operation 
limits. 

Nonlinearities of TCP/AQM and the drastic 
changes of the system behavior that they can cause, 
even with small loading changes for example, are 
well established (Chen, 2005). Such variations in 
behavior and the existence of chaos can in turn be 
linked to bifurcations in the networked systems (Liu, 
2007). Consequently, rather than ignoring the 
nonlinearities, it is advantageous to exploit them and 
employ strategies to manage and control the chaotic 
behavior and bifurcations. This must be based on a 
global view of the system and can improve 
performance of the underlying networks, leading to 
higher loading possibility of the Internet without the 
oscillatory or unstable behavior (Shahrestani, 2000).  

52
Shahrestani S..
Improving Network Performane - Management of Nonlinear Dynamics .
DOI: 10.5220/0004129900520057
In Proceedings of the International Conference on Data Communication Networking, e-Business and Optical Communication Systems (DCNET-2012),
pages 52-57
ISBN: 978-989-8565-23-5
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



To facilitate the discussion of these points, this 
paper is organized as follows. The bifurcation and 
structural stability analysis are introduced in the next 
section. Such analysis is used to study the 
performance of the AQM/RED based networks. The 
results along with strategies to manage such 
networks to improve their performance are presented 
in Section III. The conclusions and potential future 
works are given in the last section. 

2   MANAGEMENT OF COMPLEX 

NETWORKS 

Many complex systems, such as large networks, 
exhibit multiple equilibrium points leading to several 
potential steady-state operating states. Such systems 
require a management scheme capable of 
administration over a wide range of anticipated 
operating conditions. In developing such schemes, 
the qualitative changes that occur in the behavior of 
the system in different operating regions must be 
taken into account. 

The limits, at which qualitative changes in 
complex system behavior occur, may be related to 
the structural stability of the system. The structural 
stability limits of a nonlinear system can in turn be 
related to bifurcation points in the mathematical 
model of the system. The bifurcations refer to 
qualitative changes in the system behavior as some of 
the system parameters vary quasi-statically (Seydle, 
2010).  

Complex nonlinear dynamical systems can 
generally be described by a number of coupled 
differential-algebraic equations 

 

(1) 

Where t is time, x(t) and a are the dynamic and 
instantaneous states of the system and w represents 
external influences, such as system input, time 
varying parameters, disturbances, and the like. Now, 
consider a single-output case where the variations of 
the control input u(x,a,t) and another one of the 
system parameters min max( ) [ , ]t   , dominate other 
variations in the system. For example, in networked 
systems there is a rather clear separation between the 
time-frames involved in the analysis (and design of 
the required management actions) for transient 
congestion and delay and longer-term bandwidth and 
capacity management consideration (Shahrestani, 

2011). To emphasis these points, the model (1) can 
be put in the following form 

 

(2) 

A typical network management problem can be 
considered as identification and setting of system 
parameters such that a point dx is a secure operating 
point of the system (2). Additionally, there may be 
constraints on the manageable parameters or the 
specification of transient characteristics of the 
network. Naturally, if with ,dx x no proper 
manageable and controlled parameters satisfying (2) 
can be identified, then the network will not be 
operable steadily at that point. 

More generally though, the system state may be 
considered to be constrained to a certain operating 
region ,dX containing steady operating points (or in 
some cases, to some operating region containing 
secure oscillatory solutions with restrained 
amplitudes). Consequently, with properly identified 
parameters at the operating points, the state space 
region of interest for system (2) can be considered as 

min max{ },d e e e eX x x x x    (3) 

while  varies slowly with time within a certain 
range of interest 

{d  min max},e e e e      (4) 

The value of the managed parameters with the 
network operating at some steady-state, is to be 
chosen such that the existence of some 

e dx X for 
some 

d   is assured. Therefore, with a particular 

and proper value of ,eu  say 
,e e ju u , the network 

operation constrained to region 
dX  may happen to 

exist for only a range ,j d   defined by 

min max{ | }d         (5) 

That is, to cover the complete range of interest 

d in general, multiple sub-ranges may need to be 
considered, with each sub-range corresponding to a 
different set of managed parameters with the system 
at steady-state. These points are illustrated in Figure 
1.   It   can   also   be   noted   that   each value of ,e ju  
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Figure 1: An illustration of parameter dependent steady-state operation manifolds. 

corresponds to some reference segment on the 
parameter dependent steady-state operation manifold 
of a nonlinear system such as (1).  

As pointed out earlier, in general, the region dX  
may contain steady-state operating points with 
different characteristics. That is, as   varies within 
its limits, the system with the managed parameters 
being simply set as 

, ,e ju u  may exhibit 
qualitatively different behavior for different levels of
 . To account for the manager capability in handling 
the system dynamics appropriately, the managed 
parameters are now considered as 

, .e j ju u u   
The critical values of the slowly changing parameter 
  that are associated with the boundaries of 
operating regions with distinct dynamic behaviors, 
correspond to bifurcation points of the system (2).  

In some cases, the management of bifurcating 
systems is achieved by ensuring that the system 
operation is such that the bifurcation parameter is 
always below its critical values, and the bifurcations 
are ultimately avoided (Shahrestani, 2000). While this 
approach solves part of the operation problems, it can 
result in a conservative design with for example 
loading margins larger than what is really required. 

For a bifurcating system exhibiting regions with 
non-identical structural stability behavior, the 
bifurcation points may be used to establish the 
bounds on segments of the state space of the system 
with different management requirements. 
Consequently, depending on the ranges of the 
bifurcation parameter, several regional management 
schemes will be needed, while each scheme may 
pursue a different objective. For example, in some 
range of the bifurcation parameter the manager may 
force the system to track the existing steady-state 
operation points while in some other range, the 
stabilization of the bifurcated solutions may be the 
primary objective of the managing scheme. These 

points are further illustrated through management of 
delay and congestions to improve the network 
performance, in the next section. 

3   SHAPING THE NETWORK 

BEHAVIOR 

To reduce the delay and to achieve improved 
throughput, many adaptive Random Early Detection 
(RED) algorithms have been developed and studied. 
As discussed before, to overcome the shortcomings 
associated with the linear dropping probability 
functions originally used by adaptive RED, the 
utilization of nonlinear adaptive approaches have 
found widespread acceptance. These approaches are 
mainly based on Active Queue Management (AQM). 
As mentioned before, utilization of AQM/RED 
introduces complex nonlinearities. Such 
nonlinearities can in turn induce several bifurcated 
solutions.  

Effectively, the RED controller output that 
provides the feedback to sender, is a probability of 
drop rate p(t). This probability is a function of 
average queue length q(t). The nonlinearities of the 
AQM/RED model are essentially a consequence of 
the multiplicative characteristics of packet loss and 
are represented through describing TCP window 
control mechanism (Rezaie, 2007).  

Ignoring secondary effects and with D denoting 
the propagation delay, it can be shown that R(t), the 
round trip delay, will be ((ω/c) + D). The packet drop 
probability, as a function of queue length q(t), can 
then be put in the following form (Raina, 2005). 

 

 
 

(6) 

 ( ) 0,  ;p q q qMin 

 ( )
( ) ( ),  qMin<

q t qMin
p q pMax q qMa

qMax qMin


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Figure 2: Unstable oscillatory behavior, at network loading 
near but after a bifurcation point. 

The TCP/AQM and the router queuing dynamics can 
be described by the following set of differential 
equations (Misra, 2000) and (Ranjan, 2004). 

 

 

(7) 

In this model, p(t) is the probability of packet drop 
within the closed interval [0, 1], R is the round trip 
delay in seconds, ω(t) is the average TCP window 
size in packets, q(t) is the average length of the queue 
in packets, , c is the link capacity in packets per 
second, and n is the load factor or the number of TCP 
sessions.  

In most network management analysis, it is 
assumed that the load n(t) and the round trip delay 

R(t) are time-invariant. Given their slow variations 
compared to other network parameters, this is usually 
a reasonable assumption. But it is more realistic to 
consider them varying slowly with time. This is in 
line with bifurcation analysis approaches.  

With these considerations, the second set of 
differential equations (7) can be normalized by noting 
that the dropping probability p(t) is proportional to the 
queue length. The normalization can be carried out by 
using the following substituting in those equations 
(Rezaie, 2007). 

 

(8) 

These substitutions will result in the following 
normalized equations. 

 

 

(9) 

The system described by the normalized 
differential equations in (9) has a unique equilibrium 
point, 2( ,2 / ( . )).c K c  Due to space limitations, only 
the results of bifurcation analysis of this model are 
presented here. The eigenvalue analysis of this system 
shows that a zero eigenvalue occurs for 0.K  This 
corresponds to one of the bifurcation points, at which 
the system behavior changes and bifurcated solutions 
are expected to emerge.   

It can be noted that generally speaking, most of 
the RED parameters are set based on network 
manager experiences or at best based on experiential 
data. This may lead to very conservative set-ups to 
avoid instability or cyclic behavior similar to those 
discussed so far and portrayed in Figure 2. 

The choice of the RED parameters, selected by 
the network administrator, dictates the value of K. In 
other words, if the network manager sets the RED 
parameters in a way that K is close to zero, a small 
disturbance, such as small variations in network 
traffic can destabilize the network through 
disappearance of a stable steady-state operating 
point. This means that under such conditions, even 
vey small variation in network traffic can result in 
the collapse of the whole network operation.  

 
Figure 3: Growing oscillatory behavior, at network loading 
near a bifurcation point. 

Perhaps, more interestingly, it can be shown that 
for each value of c, while K remains below some 
certain limit, say Ks, there exist exactly one stability 
nterval that is a function of K. In that interval, the 
network is operable, although at high levels of traffic, 
oscillatory responses can come into picture. On the 
other side of this point, with the RED parameters 
chosen such that K>KS, growing oscillatory solutions 
can be expected. Obviously the growing oscillations 
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lead to unstable operation of the system and collapse 
of the network. The expected system behavior for 
values of K just after KS, will be similar to that shown 
in Figure 2. KS corresponds to a subcritical Hopf 
bifurcation of the original nonlinear system 
describing AQM/RED. In the Hopf bifurcation a 
branch of stable periodic solutions originates, which 
again becomes unstable after a period doubling 
bifurcation. The sequence of period doubling 
bifurcations ultimately leads to chaos. For more 
details see (Shahrestani, 2000). For the chaotic 
situation, the unstable oscillatory behavior that the 
network exhibits will be dependent on its initial state. 
The behavior will be similar to those depicted in 
Figure 4. 

Clearly, more analytical approaches for selection 
of RED controller parameters and analysis of their 
effects on the network performance will be 
advantageous. In our previous works, we have 
developed a framework for design of management 
schemes and control laws for a parameter dependent 
complex nonlinear system (Shahrestani, 2000) and 
(Shahrestani, 2008).  

 
Figure 4: Unstable oscillatory behavior. 

The result is a global multilevel management and 
control scheme, where the first level depending on 
signal and loading levels switches the parameters, so 
that the system states are confined to the 
neighborhood of some desired reference segment. 
For each reference segment, the information gained 
through bifurcation analysis is used for further 
segmentation of the state space of the system, similar 
to that shown in Figure 1. 

To move the eigenvalues, λ,  

,,

ˆ to ( )
i i

j kj k
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to locations, 


 corresponding to more desirable 
behavior and operations, the so-called modal control 
approach will require the feedback  

2

1

( ( ) ) ;i i i T

n n

n

u k l x 


   (11) 

where the gains are  

ˆ ˆ( )( )
(1 ),

( ) ( ) 2( )

i i i i

j j j ki

j i T i i

j j j

k
i Tl b l b
j

    
  

 
  



(1 ).
2( )

i

kk
i Tl b
j




   
(12) 

With such modal control, the response of the 
system with the situation the same as that shown in 
Figure 4 will be improved to the stabilized behavior 
shown in Figure 5. 

 
Figure 5: Stablized behavior through modal control, 
corresponding to the response shown in Figure 4. 

In our previous works we have also shown that 
only the feedback of critical variables up to cubic 
terms may have any effect on the existence of a Hopf 
bifurcation or changing the stability behavior of the 
bifurcated solutions. Obviously, even for a system 
with controllable modes only linear terms have any 
effect on the location of the eigenvalues. 
Consequently, to change a subcritical bifurcation to a 
supercritical one, quadratic and/or cubic (critical) 
state feedback can be identified. These relate to 
improving the network behavior, when the dynamics 
exhibit oscillatory behavior. Figure 6 for instance, 
shows the effect of cubic state feedback for the same 
situation depicted in Figure 4. 

 
Figure 6: Stablized behavior by cubic state feedback, 
corresponding to the response shown in Figure 4. 
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4 CONCLUDING REMARKS 

In this paper, some approaches to improve the 
performance of complex networks are proposed. 
These are based on the analysis and management of 
the system nonlinear dynamics and bifurcations. By 
managing the bifurcations, performance of these 
networks can be improved while their operability 
region can also be expanded. We also reported the 
works in-progress towards applying these ideas to 
establish a more analytical management scheme for 
networked systems. Choosing and regulating the 
parameters, based on these types of analysis and 
management and their utilization in communication 
systems and the Internet can result in expanding their 
stability and operability regions, for instance over a 
wide range of loading, throughput, delay and 
congestion levels over TCP connections. In our 
future works, we aim to expand these ideas and 
validate the analytical results through more 
experimental works. 
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