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Abstract: An open problem in spectral clustering concerning of finding automatically the number of clusters is studied.
We generalize the method for the scale parameter selecting offered in the Ng-Jordan-Weiss (NJW) algorithm
and reveal a connection with the distance learning methodology. Values of the scaling parameter estimated via
clustering of samples drawn are considered as a cluster stability attitude such that the clusters quantity corre-
sponding to the most concentrated distribution is accepted as true number of clusters. Numerical experiments
provided demonstrate high potential ability of the offered method.

1 INTRODUCTION

The recent decades, have seen numerous applications
of graph eigenvalues in many areas of combinatorial
optimization (Chung, 1997), (Mohar, 1997), (Spiel-
man, 2012). Spectral clustering methods became very
popular in the 21th century following Shi and Malik
(Shi and Malik, 2000) and Ng, Jordan and Weiss (Ng
et al., 2001). Over the last decade, various spectral
clustering algorithms have been developed and ap-
plied to computer vision (Ng et al., 2001), (Shi and
Malik, 2000), (Yu and Shi, 2003), network science
(Fortunato, 2010), (White and Smyth, 2005), biomet-
rics (Wechsler, 2010), text mining (Liu et al., 2009),
natural language processing (Dasgupta and Ng, 2009)
and other areas. We note that spectral clustering meth-
ods have been found equivalent to kernelk-means
(Dhillon et al., 2004), (Kulis et al., 2005) as well
as to nonnegative matrix factorization (Ding et al.,
2005). For surveys on spectral clustering, see (Nasci-
mento and Carvalho, 2011), (Luxburg, 2007), (Filip-
pone et al., 2008).

The main idea is to use eigenvectors of the Lapla-
cian matrix, based on an affinity (similarity) func-
tion over the data. The Laplacian is a positive semi-
definite matrix whose eigenvalues are nonnegative re-
als. It is well-known that the smallest eigenvalue of
the Laplacian is 0, and it corresponds to an eigen-
vector with all entries equal. Moreover, viewing the
data similarity function as an adjacency matrix of a
graph, the multiplicity of the 0 eigenvalue is the num-
ber of connected components (Mohar, 1997). While
in clustering problems the corresponding graph is typ-
ically connected, we partition the data intok clusters

using thek eigenvectors corresponding to thek small-
est eigenvalues. These would either be thek smallest
eigenvectors or thek largest eigenvectors, depending
on the Laplacian version being used. For example, a
simple way of partitioning the data into two clusters
would be considering the second eigenvector as an in-
dicator vector, assigning items with positive coordi-
nate values into one cluster, and items with negative
coordinate values to another cluster.

Spectral clustering algorithms have several signif-
icant advantages. First, they do not make any assump-
tions on the clusters, which allows flexibility in dis-
covering various partitions (unlike thek-means algo-
rithm, for example, which assumes that the clusters
are spherical). Second, they rely on basic linear alge-
bra operations. And finally, while spectral clustering
methods can be costly for large and “dense” data sets,
they are particularly efficient when the Laplacian ma-
trix is sparse (i.e., when many pairs of points are of
zero affinity). Spectral methods can also serve in di-
mensionality reduction for high-dimensional data sets
(the new dimension being the number of clustersk).

Note, that the problem to determine the optimal
(“true”) number of groups for a given data set is very
crucial in cluster analysis. This task arising in many
applications. As usual, the clustering solutions, ob-
tained for several numbers of clusters are compared
according to the chosen criteria. The sought number
yields the optimal quality in accordance with the cho-
sen rule. The problem may have more than one solu-
tion and is known as an “ill posed” (Jain and Dubes,
1988) and (Gordon, 1999). For instance, an answer
here can depend on the scale in which the data is mea-
sured. Many approaches were proposed to solve this
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problem, yet none has been accepted as superior so
far.

From a geometrical point of view, cluster val-
idation has been studied in the following papers:
Dunn (Dunn, 1974), Hubert and Schultz (Hubert
and Schultz, 1974), Calinski-Harabasz (Calinski
and Harabasz, 1974), Hartigan (Hartigan, 1985),
Krzanowski -Lai (Krzanowski and Lai, 1985), Sugar-
James (Sugar and James, 2003), Gordon (Gordon,
1994), Milligan and Cooper (Milligan and Cooper,
1985) and Tibshirani, Walter and Hastie (Tibshirani
et al., 2001) (the Gap Statistic method). Here, the
so-called “elbow” criterion plays a central role in the
indication of the “true” number of clusters.

In the papers Volkovich, Barzily and Morozensky
(Volkovich et al., 2008), Barzily, Volkovich, Akteke-
Ozturk and Weber (Barzily et al., 2009), Toledano-
Kitai, Avros and Volkovich (Toledano-Kitai et al.,
2011), methods using the goodness of fit concepts are
suggested. Here, the source cluster distributions are
constructed based on a model designed to represent
well-mixed samples within the clusters.

Another very common, in this area, methodology
employs the stability concepts. Apparently, Jain and
Moreau (Jain and Moreau, 1987) were the first to pro-
pose such a point of view in the cluster validation
thematic and used the dispersions of empirical dis-
tributions of the cluster object function as a stabil-
ity measure. Following this perception, differences
between solutions obtained via rerunning a cluster-
ing algorithm on the same datum evaluate the parti-
tions stability. Hence, the number of clusters mini-
mizing partitions’ changeability is used to assess the
“true” number of clusters. In papers of Levine and
Domany (Levine and Domany, 2001), Ben-Hur, Elis-
seeff and Guyon (Ben-Hur et al., 2002), Ben-Hur and
Guyon (Ben-Hur and Guyon, 2003) and Dudoit and
Fridlyand (Dudoit and Fridlyand, 2002) (the CLEST
method), stability criteria are understood to be the
fraction of times that pairs of elements maintain the
same membership under reruns of the clustering al-
gorithm. Mufti, Bertrand, and El Moubarki (Mufti
et al., 2005) exploit Loevinger’s measure of isolation
to determine a stability function.

In this paper we offer a new approach to an open
problem in spectral clustering which concerns auto-
matically finding the number of clusters. Our ap-
proach is based on the stability concept. Here we
generalize the method for the scale parameter select-
ing offered in the Ng-Jordan-Weiss (NJW) algorithm
and reveal a connection with the distance learning
methodology. Values of the scaling parameter, es-
timated via clustering of the drawn samples for the
number of clusters allocated in a given area, are con-

sidered as a cluster stability attitude such that the
preferred number of clusters corresponds to the most
concentrated empirical distribution of the parameter.
Provided numerical experiments demonstrate high
potential ability of the offered method. The rest of
the paper is organized in the following way. Section
2 is devoted to statement of the base facts of cluster
analyzes used and to a discussion of the scale param-
eter selection approaches. In section 3 we propose an
application of the offered methodology to the cluster
validation problem. Section 4 is devoted to the nu-
merical experiments provided.

2 CLUSTERING

We consider a finite subsetX = {x1, ...,xn} of the
Euclidean spaceRd. A partition of the setX into k
clusters is a collection ofk non-empty of its subsets
Πk = {π1, ...,πk} satistiyng the conditions:

k⋃

i=1

πi = X,

πi ∩π j = ∅ if i 6= j.

The partition’s elements are namedclusters.
Two partitions are identical if and only if every clus-
ter in the first partition is also presented in the second
one and vice versa. In other words, both partitions
have the same clusters up to a permutation. In cluster
analysis a partition is chosen so that a given quality

Q(Πk) =
k

∑
i=1

q(πi)

is optimized for some real valued functionq whose
domain is the set of subsets ofX. The functionq is
a distance-like function and, commonly, it is not re-
quired to be positive or to satisfy the triangle inequal-
ity. In case of the hard clustering the underlying dis-
tribution ofX is assumed to be represented in the form

µX =
k

∑
i=1

piηi ,

wherepi , i = 1, ..,k are the clusters’ probabilities and
ηi , i = 1, ..,k are the clusters’ distributions. Note, that
this supposition is widespread in clustering, pattern
recognition and multivariate density estimation (see,
for example (McLachlan and Peel, 2000)). Partic-
ularly, the most prevalent Gaussian model considers
distributionsηi having densities

fi(x) = φ(x|mi ,Γi), i = 1, ...,k,

whereφ(x|mi ,Γi) denotes the Gaussian density with
mean vectormi and covariance matrixΓi . Usually,
the mixture parameters
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θ = (pi ,mi ,Γi), i = 1, ...,k

are estimated in this case by maximizing the likeli-
hood

L(θ|x1, ...,xn) =
n

∑
j=1

ln

(

k

∑
i=1

piφ(x j |mi ,Γi)

)

. (1)

The most common procedure for maximum likeli-
hood clustering solution is the EM algorithm (see, for
example (McLachlan and Peel, 2000)). The EM al-
gorithm provides, in many cases, meaningful results.
However, the algorithm often converges slowly and
has a strong dependence on its starting position. One
of the important EM related algorithms is a Classifica-
tion EM algorithm (CEM) introduced by Celeux and
Govaert in (Celeux and Govaert, 1992). CEM max-
imizes the Classification Likelihood criterion which
is different from the Maximum Likelihood criterion
(1). In fact, it does not yield maximum likelihood es-
timates and can lead to inconsistent values (see, for
example (McLachlan and Peel, 2000), section 2.21).

The k-means approach has been introduced in
(Forgy, 1965) and in (MacQueen, 1967). It provides
the clusters which approximately minimize the sum
of the items’ squared Euclidean distances from clus-
ter centers, which are calledcentroids. The algorithm
generates linear boundaries among clusters. Celeux
and Govaert (Celeux and Govaert, 1992) showed that,
in the case of the Gaussian mixture model, this proce-
dure actually assumes that all mixture proportions are
equal

p1 = p2 = ...= pk;

and the covariance matrix is of the form:

Γi = σ2I , i = 1, ...,k,

where I is the identity matrix of orderd and σ2 is
an unknown parameter. In other words, thek-means
algorithm is, evidently, a particular case of the CEM
algorithm.

Spectral clustering skills commonly leverage the
spectrum of a given similarity matrix in order to
perform dimensionality reduction for clustering in
fewer dimensions. Note, that there is a large family
of possible algorithms based on the spectral cluster-
ing methodology (see, for example (Nascimento and
Carvalho, 2011), (Luxburg, 2007), (Filippone et al.,
2008)).

Here, we concentrate on a relatively simple tech-
nique offered in (Ng et al., 2001) in order to demon-
strate the ability of the proposed approach.

Algorithm 2.1. Spectral Clustering(X,k,σ)(NJW)
Input

• X - the data to be clustered;
• k - number of clusters;
• σ - the scaling parameter.

Output
Πk, σ(X)- a partition of X into k clusters depending
on σ.

====================

• Construct the affinity matrix A(σ2)

{ai j (σ2)} =







exp

(

−‖xi−xj‖
2

2σ2

)

if i 6= j,

0 otherwise

• Introduce L= D− 1
2 A(σ2)D− 1

2 where D is the di-
agonal matrix whose(i, i)-element is the sum of
A′s i-th row.
(Note, that the acceptable point of view proposes
to deal with the Laplacian I− L. However, the
authors (Ng et al., 2001) prefer to work with L and
only to change the eigenvalues (from A to I−A)
without any changing of the eigenvectors.)

• Compute z1,z2, ...,zk, the k largest eigenvectors of
L (chosen to be orthogonal to each other in the
case of repeated eigenvalues);

• Create the matrix Z= {z1,z2, ...,zk} ∈ Rn×k by
joining the eigenvectors as consequent columns;

• Compute the matrix Y from Z by normalizing each
of Z’s rows to have a unit length;

• Cluster the rows of Y into k clusters via K-means
or any other algorithm (that attempts to minimize
distortion) to obtain a partitionΠk, σ(Y);

• Assign each point xi according to the cluster that
was assigned to the row i in the obtained partition.

Note, that there is a one to one correspondence be-
tween the partitionsΠk, σ(X) andΠk, σ(Y). The mag-
nitude parameterσ2 represents the increasing rate of
the affinity of the distance function. This parameter
plays a very important role in the clustering process
and can be naturally reached as the outcome of an
optimization problem intended to find the best pos-
sible partition configuration. An appropriate meta al-
gorithm could be presented in the following form.

Algorithm 2.2. Self-Learning Spectral Clustering
(X,k,F)

Input

• X - the data to be clustered;
• k - number of clusters;
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• F - cluster quality function to be minimized.

Output

• σ∗- an optimal value of the the scaling parame-
ter;

• Πk, σ∗(X)−a partition of X into k clusters corre-
sponding toσ∗.
====================

Return

σ∗ = argmin
σ
(F(Πk, σ(X) =

= Spectral Clustering(X,k,σ))).

When σ2 is described as a human-specified pa-
rameter which is selected to form the “tight”k clusters
on the surface of thek-sphere. Consequently, it is rec-
ommended to search overσ2 and to take the value that
gives the tightest (smallest distortion) clusters of the
setY. This procedure can be generalized. Here

F1(Πk, σ(X)) =
1
|Y|

k

∑
i=1

∑
y∈πi

‖y− r i‖
2 , (2)

wherer i , i = 1, ...,k are cluster’s centroids.
Other functions of this kind can be found in the

framework of the distance learning methodology. In
what follows, it is presumed that the degree of simi-
larity between pairs of elements of data collection is
known:

S: {(xi ,x j) ; i f xi and xj are similar

(belong to the same cluster)}

and

D : {(xi ,x j) ; i f xi and xj are not similar

(belong to di f f erent clusters)}

the goal is to learn a distance metricd(x,y) such that
all “similar” data points are kept in the same clus-
ter, (i.e., close to each other) while distinguishing the
“dissimilar” data points. To this end, we define a dis-
tance metric in the form:

d2
C(x,y) = ‖x− y‖2

A = (x− y)T ·C · (x− y) ,

whereC is a positive semi-definite matrix,C ≻ 0
which is learned. We can formulate a constrained
optimization problem where we aim to minimize the
sum of similar distances concerning pairs inS while
maximizing the sum of dissimilar distances related to
pairs inD in the following way:

min
C

∑
(xi ,xj)∈S

∥

∥xi − x j
∥

∥

2
C

s.t.
∑

(xi ,xj)∈D

∥

∥xi − x j
∥

∥

2
C ≥ 1, C≻ 0

If we suppose that the purported metric matrix is di-
agonal then minimizing the function is equivalent to
solving the stated optimization problem (Xing et al.,
2002) up to a multiplication ofC by a positive con-
stant. So, the second quality function can be offered
as

F2(Πk, σ(X)) = ∑
(xi ,xj)∈S,i6= j

∥

∥yi − y j
∥

∥

2
− (3)

− log



 ∑
(xi ,xj)∈D

∥

∥yi − y j
∥

∥



 .

Finally, in the spirit of the Fisher’s linear discriminant
analysis we can consider the function:

F3(Πk, σ(X)) =
∑(xi ,xj)∈S,i6= j

∥

∥yi − y j
∥

∥

2

∑(xi ,xj)∈D

∥

∥yi − y j
∥

∥

2 . (4)

3 AN APPLICATION TO THE
CLUSTER VALIDATION
PROBLEM

In this section we discuss an application of the of-
fered methodology to the cluster validation problem.
We suggest that these values should be learned from
samples clustered for several clusters quantities such
that the most stable behaviour of the parameter is ex-
hibited when the cluster structure is the most stable.
In our case, it means that the number of clusters is
chosen by the best possible way. The drawbacks of
the used algorithm together with the complexity of the
dataset structure add to the uncertainty of the process
outcome. To overcome this ambiguity, a sufficient
amount of data has to be involved. This is achieved
by drawing many samples and constructing an empir-
ical distribution of the scaling parameter values. The
most concentrated distribution corresponds to the ap-
propriate number of clusters.

Algorithm 3.1. Spectral Clustering Validation
(X,K,F,J,m, Ind)

Input

• X - the data to be clustered;
• K - maximal number of clusters to be tested;
• F - cluster quality function to be minimized;
• J- number of samples to be drawn;
• m - size of samples to be to be drawn;
• Ind - concentration index.

KDIR�2012�-�International�Conference�on�Knowledge�Discovery�and�Information�Retrieval

28



Output

• k∗− an estimated number of clusters in the
dataset.

====================

• Fork= 2 to K do

• For j = 1 to J do

• S= sample(X,m) ;

• σ j =Self-Learning Spectral Cluster-
ing(X,k,F);

• end Forj

• ComputeCk = Ind{σ1, ...,σJ}

• end Fork

• The “true” number of clusters -k∗ is chosen ac-
cording to the most concentrated distribution indi-
cated by an appropriate value ofCk, k= 2, ...,K.

3.1 Remarks Concerning the Algorithm

Here,sample(X,m) denotes a procedure of drawing
a sample of sizem from the populationX without rep-
etitions. Concentration indexes can be provided in
several ways. The most widespread instrument used
for the evaluation of a distribution’s concentration is
the standard deviation. However, it is sensitive to out-
liers and can be principally dependent, in our situa-
tion, on the number of clusters examined. To counter-
balance this reliance, the values have be normalized.
Unfortunately, it has been specified in the clustering
literature that the standard “correct” strategy, for nor-
malization and scaling, does not exist (see, for exam-
ple (Roth et al., 2004) and (Tibshirani et al., 2001)).
We use the coefficient of variation(CV) which is de-
fined as the ratio of the sample standard deviation
to the sample mean. For comparison between arrays
with different units this value is preferred to the stan-
dard deviation because it is a dimensionless number.

4 NUMERICAL EXPERIMENTS

We exemplify the described approach by means of
various numerical experiments on synthetic and real
datasets provided for the three functions mentioned
in 2-4. We chooseK = 7 in all tests and perform 10
trials for each experiment. The results are presented
via the error-bar plots of the coefficient of variation
within the trials.

4.1 Synthetic Data

The first example consists of a mixture of 5 two-
dimensional Gaussian distributions with independent
coordinates with the same standard deviationσ =
0.25. The components means are placed on the unit
circle with the angular neighboring distance 2π/5.
The dataset contains (denoted asG5) 4000 items. The
scatterplot of this data is presented in the next figure
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Figure 1: Scatterplot of the Gaussian dataset.

We set hereJ = 100 andm= 400.
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Figure 2:CV for theG5 dataset usingF1 function.
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Figure 3:CV for theG5 dataset usingF2 function.
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Figure 4:CV for theG5 dataset usingF3 function.
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The CV index demonstrates approximately the
same performance for all object functions hinting to
a 5 or 7 clusters structure. However, the bars do not
overlap only in the first case where a 5 cluster parti-
tion is properly indicated.

4.2 Real-world Data

4.2.1 Three Texts Collection

The first real dataset is chosen from the text collection
http : //ftp.cs.cornell.edu/pub/smart/.
This set (denoted asT3) includes the following

three text collections:

• DC0–Medlars Collection (1033 medical ab-
stracts);

• DC1–CISI Collection (1460 information science
abstracts);

• DC2–Cranfield Collection (1400 aerodynamics
abstracts).

This dataset was considered in many works
(Dhillon and Modha, 2001), (Kogan et al., 2003a),
(Kogan et al., 2003b), (Kogan et al., 2003c) and
(Volkovich et al., 2004)). Usually, following the well-
known “bag of words” approach, 600 “best” terms
were selected (see, (Dhillon et al., 2003) for term se-
lection details). So, the dataset was mapped into Eu-
clidean spaces with dimensions 600. A dimension re-
duction is provided by the Principal Component Anal-
ysis (PCA). The considered dataset is recognized to
be well- separated by means of the two leading prin-
cipal components. We use this data representation in
our experiments. The results presented in Fig. 5-7
for m= J = 100 show that the number of clusters was
properly determined for all functionsF.

4.2.2 Iris Flower Dataset

Another real dataset chosen is the well-known Iris
flower dataset or Fisher’s Iris dataset available, for ex-
ample, at
http : //archive.ics.uci.edu/ml/datasets/Iris.

The collection includes 50 samples from each of
three species of Iris flowers:

• I. setosa;

• I. virginica;

• I. versicolor.

These species compose three clusters situated in a
manner that one cluster is linearly separable from the
others, but the other two are not. This dataset was an-
alyzed in many papers. A two cluster structure was
detected in (Roth et al., 2002). Here, we selected 100
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Figure 5:CV for theT3, 600 terms, usingF1 function.
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Figure 6:CV for theT3, 600 terms,usingF2 function.
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Figure 7:CV for theT3, 600 terms, usingF3 function.

samples of size 140 for each tested number of clus-
ters. As it can be seen, the “true” number of clusters
has been successfully found for theF2 andF3 objec-
tive functions. The experiments withF1 offer a two
clusters configuration.

4.2.3 The Wine Recognition Dataset

The last real dataset contains 178 results of a chemical
analysis of three different types (cultivates) of wine
given by their 13 ingredients. This collection is avail-
able at

http://archive.ics.uci.edu/ml/machine-learning-
databases/wine. This data collection is relatively
small however it exhibits a high dimension. The
parameters in use wereJ = 100 andm= 100. Fig. 4
demonstrates undoubtedly that forF2 andF3 the true
number of clusters is revealed, howeverF1 detects a
wrong structure.
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Figure 8:CV for the Iris dataset usingF1 function.

1 2 3 4 5 6 7 8
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 9:CV for the Iris dataset usingF2 function.

1 2 3 4 5 6 7 8
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 10:CV for the Iris dataset usingF3 function.

4.2.4 The Glass Dataset

This dataset is taken from the UC Irvine Machine
Learning Repository collection. (http://archive.ics.
uci.edu/ml/index.html). The study of classification of
glass types was motivated by criminology investiga-
tion.The glass found at the place of a crime, can be
used as evidence. Number of Instances: 214. Num-
ber of Attributes: 9. Type of glass: (class attribute)

• building windows f loat processed;

• building windowsnon f loat processed;

• vehiclewindows f loat processed;

• vehiclewindowsnon f loat processed
(not presented);

• containers;

• tableware;

• headlamps.
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Figure 11:CV for the Wine dataset usingF1 function.
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Figure 12:CV for the Wine dataset usingF2 function.
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Figure 13:CV for the Wine dataset usingF3 function.

Fig. 14-16 demonstrate outcomes obtained for
J = 100. Note, that this relatively small dataset pos-
sess a comparatively large dimension and a signifi-
cantly larger, in comparison with previous collection,
suggested number of clusters. To eliminate the influ-
ence of the sample size on the clustering solutions we
draw samples with growing sizesm= max((k−1) ∗
40,214). The minimal value depicted in the graph
corresponding to theF3 function is 6, however the
bars of ”2” and ”6” overlap. Since the index behav-
ior is more stable once the number of clusters is 6,
this value is accepted as the true number of clusters.
Other function do not success in determining the true
number of clusters.

4.2.5 Comparison of the Partition Quality
Function used

Table 1 summarizes the results of the numerical ex-
periments provided. As can be seen, the functionsF2
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Figure 14:CV for the Glass dataset usingF1 function.
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Figure 15:CV for the Glass dataset usingF2 function.
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Figure 16:CV for the Glass dataset usingF3 function.

andF3, introduced in this paper, subsume the previ-
ously offered functionF1.

Table 1: Comparison of the partition quality function used.

Dataset F1 F2 F3 TRUE
G5 5 5,7 5,7 5
T3 3 3 3 3
Iris 2 3 3 3

Wine 2 3 3 3
Glass 7 7 6 6

4.2.6 Comparison with Other Methods

In addition to an experimental study of the presented
cluster quality functions, we also provide a compari-
son of our method with several other cluster valida-
tion approaches. In particular, we evaluate the re-
sults obtained by the Calinski and Harabasz index
(CH) (Calinski and Harabasz, 1974), the Krzanowski

and Lai index (KL) (Krzanowski and Lai, 1985), the
Sugar and James index (SJ) (Sugar and James, 2003),
the GAP-index (Tibshirani et al., 2001) and the Clest-
index (Dudoit and Fridlyand, 2002). Our method suc-
ceeds quite well in the comparison in case ones an
appropriate quality function was chosen.

Table 2: Comparison with other methods.

Dataset CH KL SJ Gap Clest
G5 5 5 5 3 6
T3 3 3 1 3 2
Iris 2 2 4 7 7

Wine 3 2 3 6 1
Glass 2 2 2 6 3

5 CONCLUSIONS AND FUTURE
WORK

In this paper a new approach to determine the number
of the groups in spectral clustering was presented. An
empirical distribution of the scaling parameter, found
resting upon samples clusterization, is considered as
a new cluster stability feature. We analyze three cost
functions which can be used in a self-tuning version
of a spectral clustering algorithm. In the future re-
search we plan to generalize our method to the Lo-
cal Scaling methodology (Zelnik-manor and Perona,
2004) and compare the obtained outcomes. Another
research direction can consist of a study of the model
behavior when the number of clusters is suggested to
be relatively big. An essential ingredient of each re-
sampling cluster validation approach is the selection
of the parameters values in an implementation. It is
difficult to treat this task from a theoretical point of
view (see, e.g. (Dudoit and Fridlyand, 2002), (Roth
et al., 2004) and (Levine and Domany, 2001)). We are
going to investigate this matter in our future papers.
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