
Automated Generation of User Interfaces
Based on Use Case or Interaction Design Specifications?

Hermann Kaindl, Roman Popp and David Raneburger
Institute of Computer Technology, Vienna University of Technology, Gusshausstrasse 27-29, 1040 Vienna, Austria

Keywords: Modeling Languages, Model Transformation.

Abstract: Instead of manually creating (graphical) user interfaces (UIs), automatically generating them is desirable, espe-
cially since UIs are needed today for diverse devices like PCs and smartphones. The basis for such automated
generation can be a UI specification, but most of the related research takes task models as input, which are on
a higher level of abstraction. More recently, another modeling language employing discourse-based models
for specifying communicative interaction has been proposed, which completely abstracts from specifics of a
particular UI and even its type. From such models, UIs can be generated automatically through model trans-
formations. Some research, however, claims that UIs can be generated from use cases. While it would be
desirable to utilize such a form of requirements definition without having to create another specification, we
found that these approaches actually use additional information attached to the use cases, usually UI-related
attachments. In addition to contrasting different kinds of specifications, we propose a synthesis through a com-
bination. In fact, we found that discourse-based models can be also viewed as specifying classes of scenarios,
i.e., use cases more precisely than the main-stream approach using UML and use-case reports.

1 INTRODUCTION

Automated generation of user interfaces (UIs) needs
to be based on some input specification. This can be
a UI specification that abstracts from the peculiari-
ties of a real UI, but specifies already the kind of
UI (e.g., a graphical UI), and possibly also the kinds
of widgets. A higher abstraction can be achieved
with so-called task models, e.g., see (Costa et al.,
2007; van den Bergh and Coninx, 2007; Pastor et al.,
2008; Mori et al., 2002; Paternò et al., 2009; Van-
derdonckt, 2008). A more recent approach employs
discourse-based models, e.g., see (Falb et al., 2006;
Falb et al., 2009). From higher-level models, usu-
ally model transformations lead to lower-level models
and, with the help of templates to final code imple-
menting a UI. Alternatively, use cases are considered
as the basis for automated UI generation, see (Elk-
outbi et al., 2006; Fatolahi et al., 2008; Hennicker and
Koch, 2001; da Silva and Paton, 2003).

In this paper, we discuss these possibilities using
a simplified version of flight-booking as a running ex-
ample. First, we elaborate on the question, whether
use cases are enough for automated generation of UIs.
Then we consider discourse-based models. Finally,
we propose a combination.

2 ARE USE CASES ENOUGH?

First, let us figure out whether the information avail-
able in use case specifications is sufficient for auto-
mated generation of user interfaces. According to the
Unified Process (UP) and mainstream practice, use
case diagrams such as the one in Figure 1 are em-
ployed for providing an overview of the use cases of
a given application, their relations among each other
and with actors (e.g., human users of the application).
For our simple running example, this amounts to the
use case book flight, which includes the use cases se-
lect flight and buy ticket. Customer is the actor of
these use cases.

Such a use case often consists of a class of sce-
narios, in the sense of sequences of actions involving

Customer

book flight

select flight

buy ticket

«include»

«include»

Figure 1: Flight-booking Use Case Diagram.

303Kaindl H., Popp R. and Raneburger D..
Automated Generation of User Interfaces - Based on Use Case or Interaction Design Specifications?.
DOI: 10.5220/0004136203030308
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 303-308
ISBN: 978-989-8565-19-8
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



the actor and the system to be built. Such scenarios
are either described in (stylized) natural language text
or modeled in sequence diagrams such as the one in
Figure 2, or both. This example sequence diagram
specifies the main scenario of the use case book flight.
Note, that this is typically just an example of use and
not a general specification of all the possible interac-
tions of a use case.

For a more comprehensive documentation of use
cases, the UP defines so-called use-case reports,
which consist of the following information:

1. Brief Description

2. Flow of Events

3. Special Requirements

4. Pre-conditions

5. Post-conditions

6. Extension Points

7. Relationships

8. Use-Case Diagrams

9. Other Diagrams

While a few variations of the main scenario are
usually given under Flow of Events, rarely a compre-
hensive specification of all the possible interactions of
a use case is available. Even if, it is given informally
in natural language (with a few encodings), much as
the use-case report overall.

Is this sufficient information for automated gener-
ation of a user interface?

We think that a major problem involved is that
the given scenarios are just examples. In early work
(Kaindl and Jezek, 2002), a systematic decomposition
of the overall task into tasks assigned to the steps in a
given scenario was proposed, their composition to in-
teraction tasks etc., and finally the assignment of wid-
get classes to such interaction tasks. In this way, all
the possible variations of performing the interaction
tasks are covered, but this approach has to be done
manually by a human instead of automated genera-
tion.

However, a few papers claim that user interfaces
can be generated automatically from use cases, see
(Elkoutbi et al., 2006; Fatolahi et al., 2008; Hennicker
and Koch, 2001; da Silva and Paton, 2003). We found
that use cases in these approaches actually have addi-
tional information attached, usually through annota-
tions with extra information on user interface aspects.

So, we conclude that use case specifications with-
out extra information are not enough for generating
user interfaces automatically.

Customer Airline

book flight()

present possible departure airports()

departure airport()

present possible destination airports()

destination airport()

request date()

date()

present possible flights()

flight to book()

request passenger details()

passenger details()

request payment information()

payment information()

ticket()

Figure 2: Flight-booking Sequence Diagram.

3 HOW ABOUT AN
INTERACTION DESIGN
SPECIFICATION?

Let us contrast this with our high-level specification
of communicative interaction specifically developed
for automated generation of UIs, e.g., see (Falb et al.,
2006; Falb et al., 2009; Raneburger et al., 2011a).
This kind of specification is on a high level of abstrac-
tion in the sense, that it is not (yet) a UI specification,
as it does not contain any concrete clues for a real UI.
It does not even specify whether a graphical or, e.g., a
speech UI will be generated based on it.

The main part of such an interaction specification
is a so-called Discourse Model, see the example in
Figure 3. It specifies all possible (communicative)
interactions through discourses in the sense of dia-
logues in terms of Communicative Acts, Adjacency
Pairs (Luff et al., 1990), Rhetorical Structure The-
ory (RST) (Mann and Thompson, 1988) relations and
procedural constructs. The green and yellow rounded
boxes represent Communicative Acts (a generaliza-

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

304



Figure 3: Flight-booking Discourse Model.

Automated�Generation�of�User�Interfaces�-�Based�on�Use�Case�or�Interaction�Design�Specifications?

305



tion of so-called Speech Acts (Searle, 1969)). There
are two colors for two dialogue partners. A ques-
tion is related with an answer through an Adjacency
Pair (represented through a diamond symbol). A tree
results from recursively connecting Adjacency Pairs
with RST relations (such as Joint in our example) or
procedural constructs (such as Sequence). The left-
most Joint in Figure 3 means that the related questions
may be asked concurrently and that both of them will
have to be answered. Sequence means that the con-
nected trees will have to be elaborated in this given
sequence.

Communicative Acts refer to a specification of
what they “talk about” — the domain of discourse.
The Domain-of-Discourse Model for our running ex-
ample can be found in Figure 4. It contains, e.g.,
classes Airport, Flight, etc. Note the ontological
difference to a class model of a use-case realiza-
tion, which actually contains software design classes.
In contrast, a Domain-of-Discourse Model specifies
those classes of objects in the real-world domain
that the application can communicate about in its
discourses with the human user through the UI. A
software design model may contain these or similar
classes, of course, but the exact model for the imple-
mentation in software may also be different for vari-
ous reasons.

Figure 4: Flight-booking Domain-of-Discourse Model.

Finally, there needs to be a connection to the func-
tionality provided by the software application. So,
there is yet another model involved that specifies the
interfaces of methods of the application logic, see
(Popp and Raneburger, 2011). Note the relation of
such a specification with use cases.

From such models, it is possible to automatically
generate user interfaces through model transforma-

tions (Falb et al., 2009; Falb et al., 2011). They are
not necessarily always usable enough for practical ap-
plication when fully automatically generated for large
screens. For relatively small screens of todays smart-
phones, however, they can be specifically optimized,
see (Raneburger et al., 2011b). Figure 5 shows how
such automatically generated UIs look on an iPhone.

So, these models, e.g., contain enough informa-
tion for generating user interfaces based on them.

4 HOW ABOUT A
COMBINATION?

At least on the surface, such models look quite dif-
ferent from common use case / scenario models. So,
there may be a danger of separation of requirements
specification from interaction design. Is there a useful
way of combining such models?

In fact, we found that the discourse-based mod-
els sketched above specify all the possible flows of
communicative interaction in the course of such dia-
logues. This is missing in the common use case ap-
proach of a main scenario example with a few varia-
tions. We can view it as a specification of the class
of all possible dialogues. These possible flows are
well defined and understandable in the sense that they
are specified using concepts common in human com-
munication (e.g., questions and answers). Moreover,
there is additional information in RST relations and
procedural constructs. So, combining such models
with common use-case reports results in a more com-
plete specification of the use cases, and it facilitates
automated generation of user interfaces.

Application of this combined approach in a
project together with a company provided some em-
pirical evidence of its usefulness. This company pro-
vided requirements in a specification based on the
common use-case approach. According to these,
we developed related discourse-based models, which
specified all possible communicative interactions /
scenarios. Our tools supporting this approach facil-
itated the editing of the models and their preliminary
verification, and they generated optimized graphical
user interfaces for smartphones.

In future work, we plan to extend our tool support
and to investigate typical interaction patterns that can
be provided as templates for the interaction designer.
We also plan to work on the scalability of our Com-
munication Models. They capture all possible flows
of events and, therefore, potentially encompass sev-
eral use cases. Sub-communication Models may fa-
cilitate a decomposition analogously to the one of use
cases. We plan to link these sub-models resulting in

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

306



Figure 5: Final UI for iPod Touch and iPhone.

the overall Communication Model. A hierarchically
structured model will be easier to manage and the sub-
models will also facilitate reuse.

Our Discourse-based Communication Models
provide a specification of the communicative in-
teraction between two dialogue partners. We will
investigate Habermas’ Communicative Action The-
ory (Habermas, 1984; Habermas, 1987), especially
its application to understanding Information Systems
(Cecez-Kecmanovic and Janson, 1999), to develop
a workflow for the creation of our Communication
Models. Another interesting point based on Haber-
mas’ work may be the negotiated combination of
(Sub-)Communication Models to new Communica-
tion Models according to our modeling approach.

5 CONCLUSIONS

So, should automated generation of UIs be based on
use case or interaction design specifications? If this
was an alternative, it can realistically only be based on
interaction design specifications, such as task models
or discourse-based models.

The latter models can be also viewed as specifying
classes of scenarios, i.e., use cases. Therefore, these
models can be usefully combined with more common
use-case reports, in order to achieve a more complete
specification of use cases, in particular of the possible
flows of actions. This combination has the potential
to make applications both more useful and usable.

ACKNOWLEDGEMENTS

We thank Points Management GmbH for sponsoring
part of this research in the context of a project par-
tially funded by the Austrian FFG.

REFERENCES

Cecez-Kecmanovic, D. and Janson, M. (1999). Commu-
nicative action theory: An approach to understanding
the application of information systems. In Proceed-
ings of the Tenth Australasian Conference on Infor-
mation Systems (ACIS99), pages 183–195.

Costa, D., Nóbrega, L., and Nunes, N. (2007). An MDA ap-
proach for generating web interfaces with UML Con-
curTaskTrees and canonical abstract prototypes. In
Coninx, K., Luyten, K., and Schneider, K., editors,
Task Models and Diagrams for Users Interface De-
sign, volume 4385 of Lecture Notes in Computer Sci-
ence, pages 137–152. Springer Berlin / Heidelberg.
10.1007/978-3-540-70816-2 11.

da Silva, P. and Paton, N. (2003). User interface modeling
in UMLi. IEEE Software, 20(4):62–69.

Elkoutbi, M., Khriss, I., and Keller, R. K. (2006). Auto-
mated prototyping of user interfaces based on UML
scenarios. Automated Software Engineering, 13(1):5–
40.

Falb, J., Kaindl, H., Horacek, H., Bogdan, C., Popp, R., and
Arnautovic, E. (2006). A discourse model for inter-
action design based on theories of human communi-
cation. In Extended Abstracts on Human Factors in
Computing Systems (CHI ’06), pages 754–759. ACM
Press: New York, NY.

Automated�Generation�of�User�Interfaces�-�Based�on�Use�Case�or�Interaction�Design�Specifications?

307



Falb, J., Kaindl, H., Popp, R., and Raneburger, D. (2011).
Automated WIMP-UI generation based on communi-
cation models. i-com, 10(3):48–55.

Falb, J., Kavaldjian, S., Popp, R., Raneburger, D., Arnau-
tovic, E., and Kaindl, H. (2009). Fully automatic
user interface generation from discourse models. In
Proceedings of the 13th International Conference on
Intelligent User Interfaces (IUI ’09), pages 475–476.
ACM Press: New York, NY.

Fatolahi, A., Som, S. S., and Lethbridge, T. C. (2008). To-
wards a semi-automated model-driven method for the
generation of web-based applications from use cases.
In Proceedings of the workshop on Speech and Natu-
ral Language.

Habermas, J. (1984). The Theory of Communicative Action
- Reason and the Rationalisation of Society, volume I.
Boston, MA: Beacon Press.

Habermas, J. (1987). The Theory of Communicative Action
- the Critique of a Functionalist Reason, volume II.
Boston, MA: Beacon Press.

Hennicker, R. and Koch, N. (2001). Modeling the user
interface of web applications with UML. In Work-
shop of the pUML-Group held together with the
&#171;UML&#187;2001 on Practical UML-Based
Rigorous Development Methods - Countering or In-
tegrating the eXtremists, pages 158–172. GI.

Kaindl, H. and Jezek, R. (2002). From usage scenarios
to user interface elements in a few steps. In Kol-
ski, C. and Vanderdonckt, J., editors, Proceedings of
CADUI’02, pages 91–102. Kluwer.

Luff, P., Frohlich, D., and Gilbert, N. (1990). Computers
and Conversation. Academic Press, London, UK.

Mann, W. C. and Thompson, S. (1988). Rhetorical Structure
Theory: Toward a functional theory of text organiza-
tion. Text, 8(3):243–281.

Mori, G., Paternò, F., and Santoro, C. (2002). CTTE: Sup-
port for developing and analyzing task models for in-
teractive system design. IEEE Transactions on Soft-
ware Engineering, 28:797–813.

Pastor, O., España, S., Panach, J. I., and Aquino, N.
(2008). Model-driven development. Informatik Spek-
trum, 31(5):394–407.

Paternò, F., Santoro, C., and Spano, L. D. (2009). Maria: A
universal, declarative, multiple abstraction-level lan-
guage for service-oriented applications in ubiquitous
environments. ACM Trans. Comput.-Hum. Interact.,
16:19:1–19:30.

Popp, R. and Raneburger, D. (2011). A High-Level Agent
Interaction Protocol Based on a Communication On-
tology. In Huemer, C., Setzer, T., Aalst, W., Mylopou-
los, J., Sadeh, N. M., Shaw, M. J., and Szyperski,
C., editors, E-Commerce and Web Technologies, vol-
ume 85 of Lecture Notes in Business Information Pro-
cessing, pages 233–245. Springer Berlin Heidelberg.
10.1007/978-3-642-23014-1 20.

Raneburger, D., Popp, R., Kaindl, H., Falb, J., and Ertl, D.
(2011a). Automated Generation of Device-Specific
WIMP UIs: Weaving of Structural and Behavioral
Models. In Proceedings of the 3rd ACM SIGCHI Sym-
posium on Engineering Interactive Computing Sys-
tems, EICS ’11, pages 41–46, New York, NY, USA.
ACM.

Raneburger, D., Popp, R., Kavaldjian, S., Kaindl, H., and
Falb, J. (2011b). Optimized GUI generation for small
screens. In Hussmann, H., Meixner, G., and Zuehlke,
D., editors, Model-Driven Development of Advanced
User Interfaces, volume 340 of Studies in Computa-
tional Intelligence, pages 107–122. Springer Berlin /
Heidelberg.

Searle, J. R. (1969). Speech Acts: An Essay in the Phi-
losophy of Language. Cambridge University Press,
Cambridge, England.

van den Bergh, J. and Coninx, K. (2007). From task to dia-
log model in the UML. In Proceedings of the 6th In-
ternational Workshop on Task Models and Diagrams
for User Interface Design (TAMODIA 2007), LNCS
4849, pages 98–111, Toulouse, France. Springer.

Vanderdonckt, J. M. (2008). Model-driven engineering
of user interfaces: Promises, successes, and fail-
ures. In Proceedings of 5th Annual Romanian Conf.
on Human-Computer Interaction, pages 1–10. Matrix
ROM.

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

308


