
Building Application Ontologies through Knowledge System Goals

Luis Eduardo Santos and Rosario Girardi
Federal University of Maranhão, Computer Science Departament, São Luiz, Maranhão, Brazil

Keywords: Application Ontologies, Intestate Succession, Knowledge-based Systems, Knowledge Bases.

Abstract: This article presents a case study in building an application ontology for the development of a knowledge-
based system in the field of Inheritance Law, developed with GAODT, a goal oriented technique. GAODT
proposes the translation of the goals necessary to build a knowledge-based system expressed in natural
language to rules in First-order logic, from which the elements that constitute the application ontology
(classes, relations, properties and axioms) are extracted. It is also presented a comparative evaluation
between GAODT and other state of the art techniques.

1 INTRODUCTION

Ontologies are knowledge representation structures
capable of expressing a set of entities in a given
domain, their relationships and axioms, being used
by modern knowledge-based systems (KBS) as
knowledge bases to represent and share knowledge
of a particular application domain. They allow
semantic processing of information and a more
precise interpretation of data, providing greater
effectiveness and usability than traditional
information systems (Girardi, 2010).

An ontology is classified according to its
generality, as high-level, domain, task or application
ontology (Guarino, 1998). High-level ontologies
describe generic concepts like time and space,
independently of a particular domain. Domain
ontologies make explicit concepts of a domain and
their relationships, for example, the concepts
“client”, “legal-case” are the relationship “has(client,
legal-case)” in the legal field. Task ontologies
describe the activities of a domain, for instance,
similarity analysis in the information retrieval
related activities. Finally, application ontologies are
specializations of domain and task ontologies, being
used in a particular application, for example, the task
relationship “similarity analysis” between the
concepts “old legal case” and “new legal case” in a
legal information retrieval system. According to
Guarino (Guarino, 1998), this hierarchy promotes
the reuse of ontologies, i.e., to build application
ontologies it is necessary to extend both domain and
task ontologies, and these in turn, extend high-level

ontologies. However, in practice, building reusable
ontologies is a costly process. Therefore, building
application ontologies first and then generalizing
them to domain and task ontologies is a suitable
alternative (Girardi, 2010).

Several techniques have been developed to
support the process of ontology construction.
However, most of them focus just on the
development of domain and task ontologies.
Appropriate techniques for the development of
application ontologies are needed and the GAODT
(“Goal-Oriented Application Ontology Development
Technique”) technique described in this paper
contributes to this goal.

GAODT translates the goals in language natural
expressing the requirement of a KBS to rules and
facts in First-order logic (FOL) (Russell and Norvig,
2004) and then extracts the elements that constitute
the application ontology.

This article describes a case study in building an
application ontology using GAODT to support
decision making in Intestate Succession, a type of
succession disciplined by Inheritance Law. Intestate
Succession comprises the set of rules governing the
transfer of assets to someone after his death
according to the law (Gonçalves, 2009).

The paper is organized as follows. Section 2
presents the case study, emphasizing the advantages
of the goal-oriented development cycle adopted by
the GAODT technique. Section 3 discusses a
comparative evaluation between GAODT and some
representative state of the art techniques. Section 4
concludes the paper and points out future work.

115Santos L. and Girardi R..
Building Application Ontologies through Knowledge System Goals.
DOI: 10.5220/0004143501150124
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (KEOD-2012), pages 115-124
ISBN: 978-989-8565-30-3
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

2 A CASE STUDY ABOUT
INTESTATE SUCCESSION

The main concepts about Intestate Succession
considered in this work are following described.

Intestate Succession is a legal institute that
governs the transfer of property of a person by the
reason of his/her death without a will. In that case
there is set of rules used to determine who will
inherit the property.

In the Brazilian law, the following order is
applied: First, the descendants (children,
grandchildren, and so on) concurring with the
spouse; in the absence of descendants, the
ascendants (father, mother, grandfather,
grandmother, etc.) also concurring with the spouse;
if there aren’t ascendants, the spouse and finally, in
the absence of a spouse, the properties are
transmitted to the collaterals (article 1829 of
Brazilian Civil Code).

The concurrency of the spouse with descendants
or ascendants depends on the matrimonial regime.
Matrimonial regime, are systems of property
ownership between spouses providing for the
creation or absence of a marital estate, and if
created, what properties are included in that estate,
how and by whom it is managed, and how it will be
divided and inherited at the end of the marriage,
which can be of four types: Universal Community
Regime, Limited Community Regime, Accrual
Regime and Separation of Property.

The Universal Community Regime is the union
of all pre-marital and marital property of a couple,
and when sharing, the surviving spouse does not
compete for the inheritance, since half (moiety) of
all properties belong to him/her. For example,
consider that the late “John” left properties valued at
R$ 100,000. Half of this amount belongs to “Mary”,
his alive wife, and the remaining money will be
divided among the other heirs.

 In Limited Community Regime, the surviving
spouse owns half of the marital properties and still
competes for the inheritance of pre-marital
properties with the descendants. For example, the
late “Peter” left pre-marital properties equivalent to
R$ 200,000 and a patrimony made with “Louise”
valued at R$ 100,000. The spouse already owns half
of the marital properties and will also compete with
the descendants for pre-marital properties.

In the present case study only these two regimes
will be considered.

2.1 An Overview of the GAODT
Technique

Figure 1 illustrates the GAODT process along with
its four activities: “Selection of Goals and Facts”,
“Representation of Predicates in FOL”,
“Specification of Axioms in FOL” and
“Specification/Extension of the Application
Ontology”.

The developer of the application ontology and
the domain expert participate in the execution of the
activities. The developer is the knowledge engineer
responsible for building the application ontology.
The domain expert is someone who has expertise in
an area of knowledge.

The technique takes as input a list of all the goals
and facts of the system provided by the domain
expert. The goals are the requirements that the KBS
has to achieve, for instance, “Calculate the
inheritance of a person” and the facts are general
statements like “A person might have descendants”.
In the activity “Selection of Goals and Facts”, the
developer, in consensus with the domain expert,
selects the most representative goals and facts to be
used as input of next activity. In the activity
“Representation of Predicates in FOL”, the
developer translates the goals and facts in natural
language to predicates in FOL.

The activity “Specification of Axioms in FOL”
takes as input the predicates specified in the
previous activity and specifies in FOL the rules
needed to achieve the goals of the system. This
activity is iterative, that is, a goal predicate may
require the achievement of other subgoals. For
example, to satisfy the goal “Determine the
ascendants of a person”, other subgoals should be
achieved, such as “Determine the genitor of a
person”. All the process is iteratively executed until
all the goals have been decomposed and expressed
as simple facts. Finally, the activity
“Specification/Extension of the Application
Ontology” uses axioms generated on the previous
activity and extracts from them the necessary
elements to compose the application ontology. The
created application ontology can be extended by
performing a semantic search in a repository of
application ontologies. In the next subsections
GAODT activities are explained in further detail.

2.2 Selection of Goals and Facts

This activity takes as input a list of all the goals and
facts of the system, provided by the domain expert.
From this list, the developer and the specialist sets

KEOD�2012�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

116

Figure 1: An overview of the GAODT technique.

which of them will be given as input to the next
activity. As an example, Table 1 presents a list of
goals and facts for an application ontology for a
knowledge-based decision support system on
Intestate Succession.

Initially it must be defined the general goal and
the main specific goals of the system. For instance,
for the general goal 1: “Calculate the inheritance of a
person”, the main specific goals are 2: “Identify the
heirs of a person” and 3: “Determine the inheritance
of each heir”. To satisfy these subgoals, other goals
could be defined in subsequent iterations, in a
process performed recursively for all the goals in the
list.

2.3 Representation of Predicates in
FOL

This activity consists in translating the items
selected in the previous activity, expressed in natural
language to predicates in FOL. It consists of seven
sub-activities: “Identification of entities”,
“Redefinition of entities”, “Identification of
relationships”, “Redefinition of relationships”,
“Definition of the arity”, “Definition of predicates”
and “Redefinition of the entities of the predicate”
(Figure 2).

In the sub-activity “Identification of entities”, all
explicit or implicit subjects and objects in a sentence
are identified from the items selected in the previous
activity and exemplified in Table 1. The result of
this sub-activity is shown in Table 2.

Figure 2: “Representation of Predicates in FOL” activity.

Table 1: List of goals and facts of the ontology.

1 Calculate the inheritance of a person
2 Identify the heirs of a person
3 Determine the inheritance of each heir
4 Identify the spouse of a person

5
Define the inheritance portion of descendants in the
universal regime

6 Identify the ascendants of a person
7 Identify the descendants of a person

8
Determine the moiety of the spouse in the universal
regime

9
Determine the moiety of the spouse in the limited
regime

10 Determine the quantity of descendants of a person
11 Determine the quantity of ascendants of a person

12
Determine the portion of the descendants in the
universal regime

13
Determine the portion of the descendants in the
limited regime

14 Divide the moiety by the quantity of descendants
15 A person might have descendants
16 A person might have spouse
17 A person might have ascendants
18 A person might have marital properties
19 A person might have pre-marital properties
20 A person might have universal regime
21 A person might have partial regime
22 A marital property has value
23 A pre-marital property has value

24
Assign inheritance portion to spouse and
descendants in the universal regime

25
Assign inheritance portion to spouse and
descendants in the limited regime

26 Sum all the properties of a person
27 Verify the existence of ascendants
28 Verify the existence of descendants
29 Verify the existence of universal regime
30 Verify the existence of limited regime

The sub-activity “Redefinition of entities” takes
into account the entities identified in Table 2, and
for each one verifies if that is an entity or a
relationship. The entity “Heirs” is actually a

Building�Application�Ontologies�through�Knowledge�System�Goals

117

relationship between two “People”, i.e., “A person is
heir of another person”. So, “Heirs” is redefined as a
“Person”, considering the entities that integrate the
relationship. However, the word “Heirs” is not
discarded, it will be useful in the sub-activity
“Redefinition of relationships”. Table 3 shows the
result of this sub-activity.

Table 2: Inputs and outputs of the sub activity
“Identification of entities’’.

Selected items Entities

Calculate the inheritance of a person
Inheritance,

Person
Identify the heirs of a person Heirs, Person

Determine the inheritance of each heir
Heirs,

Inheritance

Table 3: Inputs and outputs of the sub-activity
“Redefinition of entities”.

Entities Redefinition of entities
Inheritance, Person Inheritance, Person

Heirs, Person Person, Person

Heirs, Inheritance Person, Inheritance

The sub-activity “Identification of relationships”
uses the items selected in the activity “Selection of
Goals and Facts” to identify verbs in the phrases,
which represent the relationships to be extracted. For
instance, in the selected item “Calculate the
Inheritance of a person”, the verb “Calculate” is
identified as a relationship. Table 4 shows the
relationships identified.

Table 4: Inputs and outputs of the sub-activity
“Identification of relationships”.

Selected items Relationships
Calculate the inheritance of a person Calculate

Identify the heirs of a person Identify
Determine the inheritance of each heir Determine

The sub-activity “Redefinition of relationships”
takes into account the relationships identified in the
previous activity (exemplified in Table 4) and
verifies if these relationships are transitive verbs, as
they need a supplement to make sense. For example,
the relationship “identify” needs a supplement to
give it sense, using their respective entities identified
in Table 3 or the words that were considered entities
in the first sub-activity, for example, the word
“Heirs”. Table 5 shows the result of this sub-activity
applied to the examples in Table 3 and Table 4.

The sub-activity “Definition of the arity” defines
the number of entities involved in the relationships
previously identified. This quantity is determined
according to by the number of entities identified on

each selected item. Table 6 shows the arity identified
for the items 1, 2 and 3 in Table.

Table 5: Inputs and outputs of the sub-activity
“Redefinition of relationships”.

Relationships Entities
Redefinition of
relationships

Calculate Inheritance calculateInheritance
Identify Heirs identifyHeirs

Determine Inheritance determineInheritance

Table 6: Inputs and outputs of the sub-activity “Definition
of the arity”.

Relationships Entities Arity
calculateInheritance Inheritance, Person 2

identifyHeirs Person, Person 2
determineInheritance Person, Inheritance 2

In the sub-activity “Definition of predicates” the
entities and relationships identified and illustrated in
Tables 3 and 5 are represented in FOL. Table 7
presents the predicates resulting from the realization
of this sub-activity.

Table 7: An example of translation of the selected items
into predicates in FOL.

Selected items Predicates

Calculate the inheritance of a
person

calculateInheritance
(Person, Inheritance)

Identify the heirs of a person
identifyHeirs

(Person, Person)
Determine the inheritance of

each heir
determineInheritance
(Person, Inheritance)

The sub-activity “Redefinition of the entities of
the predicate” aims at renaming the arguments of the
predicates, defined in the sub-activity “Definition of
predicates”, when the arguments have the same
name. For example, for the predicate
“identifyHeirs(Person, Person)”, the entities are
considered variables since they represent distinct
persons. So it is redefined to “identifyHeirs
(PersonX, PersonY)” and this change is also
propagated to all other predicates in Table 7. Table 8
presents the result of this sub-activity and the final
product of this activity.

Table 8: Inputs and outputs of the sub-activity
“Redefinition of the entities of the predicate”.

Predicates Predicates redefined
calculateInheritance
(Person, Inheritance)

calculateInheritance
(PersonX, Inheritance)

identifyHeirs
(Person, Person)

identifyHeirs
(PersonX, PersonY)

determineInheritance
(Person, Inheritance)

determineInheritance
(PersonY, Inheritance)

KEOD�2012�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

118

2.4 Specification of Axioms in FOL

The purpose of this activity is to specify the rules
that lead to the achievement of the goals of the
system which are represented as predicates in FOL.
The process is iterative, because there is an iteration
with the activity “Selection of Goals and Facts”. For
each goal contained in a rule a search is performed
in the list of goals and facts to retrieve the subgoals
that satisfy it.

This activity consists of four sub-activities:
“Definition of the condition and conclusion”,
“Definition of Boolean operators”, “Definition of
quantifiers” and “Definition of implication or
equivalence”. Figure 3 shows the sub-activities of
this activity.

Figure 3: “Specification of axioms in FOL” activity.

The sub-activity “Definition of the condition and
conclusion” determines the condition and the
conclusion of each rule. The conclusion is the main
goal that has to be achieved and the condition can be
considered as a set of assumptions or subgoals that
lead to the achievement of the main goal. This sub-
activity receives as input the predicates identified in
Table 8. Table 9 shows the result of this sub-activity.

Table 9: Output of the sub-activity “Definition of the
condition and conclusion of the axiom”.

Condition and predicates of the
axiom

Conclusion

identifyHeir
(PersonX, PersonY) calculateInheritance

(PersonX, Inheritance) determineInheritance
(PersonY, Inheritance)

The sub-activity “Definition of Boolean
operators” specifies the Boolean operators which
integrate the predicates of the axiom condition. The
operators used are the conjunction represented by
the symbol (^) and the disjunction represented by the
symbol ().

Predicates in the condition are joined by an
“and” operator when all of them are needed to
achieve the conclusion; by an “or” operator when

they are alternative predicates to achieve the
conclusion. For example, to achieve the goal
“Calculate the inheritance of a person”
(calculateInheritance(PersonX, Inheritance)), it is
necessary to satisfy all the goals “Identify the heirs
of a person” (identifyHeirs(PersonX, PersonY)) and
“Determine the inheritance of each heir”
(determineInheritance(PersonY,Inheritance)).
Therefore, a conjunction is used to integrate these
two predicates.

The sub-activity “Definition of quantifiers”
defines the appropriate quantifiers associated to
entities present in the axiom. Quantifiers can be
universal () or existential (). The first one is used
to indicate that a predicate is true for all the elements
of a given set while the last one is used to indicate
that a predicate is true for at least one element in a
given set. For instance, the variable “PersonX”
refers to “at least one person who died” so the
existential quantifier is associated to this entity. The
variables “PersonY” and “Inheritance” follow the
same principle, being set to the existential quantifier.

The sub-activity “Definition of implication or
equivalence” takes as input a set of predicates like
those in the example of Table 9 and to determines
whether the axiom to be created is an implication or
an equivalence.

The implication is used when the satisfaction of
the condition leads to the conclusion. The
equivalence occurs when there is a symmetry
between the condition and conclusion. For instance,
an implication is used to form the following axiom:
“PersonX, PersonY, Inheritance | identifyHeirs
(PersonX,PersonY) ^ determineInheritance
(PersonY,Inheritance) calculateInheritance
(PersonX,Inheritance)”.

As illustrated in Figure 1, the GAODT activities
are executed iteratively. Therefore, in order to
construct new axioms, each one of the predicates in
the condition of the current axiom submitted to the
“Selection of Goals and Facts” activity where once
more time the items in Table, satisfying this
condition will be selected.

For instance, the predicate goal “identifyHeirs
(PersonX,PersonY)” which is part of the condition
in the axiom example of the previous paragraph is
submitted to the “Selection of Goals and Facts” and
the domain specialist informs that the items “Verify
the existence of descendants”, “Identify the
descendants of a person”, “Verify the existence of
spouse”, “Identify the spouse of a person” satisfy
that goal. Then, new goals specified in natural
language are given as input to the activity
“Representation of Predicates in FOL” (Table 10)

Building�Application�Ontologies�through�Knowledge�System�Goals

119

and a new cycle of the GAODT technique begins.

Table 10: Goals represented as predicates.

Goals in Natural Language Predicates

Verify the existence of
descendants

verifyExistence
Descendants

(PersonX, PersonY)
Identify the descendants of a

person
identifyDescendants
(PersonX, PersonY)

Verify the existence of spouse
verifyExistenceSpouse

(PersonX, PersonY)

Identify the spouse of a person
identifySpouse

(PersonX, PersonY)

These predicates are given as input to the activity
“Specification of Axioms in FOL” to generate the
new axiom presented in Table 11.

Table 11: Axiom developed in the activity “Specification
of Axioms in FOL”.

CONDITION
verifyExistenceDescendants(PersonX, PersonY) ^

identifyDescendants(PersonX, PersonY) ^
verifyExistenceSpouse(PersonX, PersonY) ^

identifySpouse(PersonX, PersonY)
CONCLUSION

identifyHeirs(PersonX, PersonY)

The predicate “determineInheritance(PersonY,
Inheritance)” that also makes part of the axiom
condition pass through the same process of
specification and representation in FOL to which the
predicate “identifyHeirs(PersonX,PersonY)” was
submitted, generating the new axiom in Table 12.

Table 12: Axiom developed in activity “Specification of
Axioms in FOL”.

CONDITION
verifyExistenceDescendants(PersonX, PersonY) ^

verifyExistenceSpouse(PersonX, PersonY) ^
verifyExistenceUniversalRegime

(PersonX,UniversalRegime) ^
assignInheritancePortionDescendants

SpouseUniversalRegime
(PersonX Inheritance,

PersonY, UniversalRegime)
CONCLUSION

determineInheritance(PersonX,PersonY)

The process is then recursively executed for each
one of the subgoals, until all the goals given as input
to the technique (as the ones illustrated in Table 1)
have been satisfied. The product of this activity is a
set of axioms specified in predicates in FOL. A sub-
set of the axioms generated from the activity
“Specification of Axioms in FOL” is shown in Table
13.

2.5 Specification/Extension of the
Application Ontology

The constituent elements of the axioms specified in
the previous activity are extracted for the
construction of the application ontology. This
activity consists of six subactivities: “Translation of
axioms”, “Definition of classes”, “Definition of non-
taxonomic relationships”, “Definition of taxonomic
relationships”, “Definition of properties” and
“Retrieval of application ontologies” (Figure 4).

Table 13: A sub-set of axioms generated from the activity “Specification of Axioms in FOL.

Condition Conclusion
identifyHeirs(PersonX, PersonY) ^

determineInheritance(PersonX, Inheritance)
calculateInheritance

(PersonX, Inheritance)
verifyExistenceDescendant(PersonX, PersonY) ^

verifyExistenceSpouse(PersonX, PersonY) ^
verifyExistenceUniversalRegime(PersonX, UniversalRegime) ^
assignInheritancePortionDescendantsSpouseUniversalRegime

(PersonX, Inheritance, PersonY, UniversalRegime)

determineInheritance
(PersonX, PersonY)

mightHaveDescendants(PersonX, PersonY)
verifyExistenceDescendants

(PersonX, PersonY)

mightHaveSpouse(PersonX, PersonY)
verifyExistenceSpouse

(PersonX, PersonY)
verifyExistenceDescendants(PersonX, PersonY) ^

identifyDescendants(PersonX, PersonY) ^
verifyExistenceSpouse(PersonX, PersonY) ^

identifySpouse(PersonX, PersonY)
verifyExistanceAscendants(PersonX, PersonY) ^

identifyAscendants(PersonX, PersonY)

identifyHeirs
(PersonX, PersonY)

determinePortionDescendantsUniversalRegime(PersonX, Portion) ^
determineMoietySpouseUniversalRegime(PersonX, PersonY)

assignInheritancePortionDescendants
SpouseUniversalRegime
(PersonX, Inheritance,

 PersonY, UniversalRegime)

KEOD�2012�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

120

Figure 4: “Specification/extension of the application
ontology” activity.

The sub-activity “Translation of axioms”
converts the axioms defined in the previous activity
expressed in FOL into rules expressed in an
ontology rule based language, like RuleML (Harold,
2001). The experiences conducted to evaluate
GAODT use RuleML because of its expressiveness.

To perform this translation, the following
heuristics are applied. First, regular expressions
(Jeffrey, 2001) are used to extract the premises and
the conclusions of the axioms. For example, for the
rule “PersonX, PersonY, Inheritance |
identifyHeirs(PersonX,PersonY) ^ determine
Inheritance(PersonY,Inheritance) calculate
Inheritance(PersonX,Inheritance)”, the following
regular expression was used “^(\w+\(.*\)) ^
(\w+\(.*\)) (\w+\(.*\))”. Then, the premises and
conclusion are specified in POSL (Boley, 2004) and
finally automatically translated to RuleML axioms
(Figure 5).

The sub-activity “Definition of classes” extracts
the variables of the axioms of the “Specification of
Axioms in FOL” activity illustrated in Table 13. For
example, the predicate “identifyHeirs
(PersonX,PersonY)” has the variables “PersonX”
and “PersonY” both referring to the class “Person”.

The sub-activity “Definition of non-taxonomic
relationships” extracts non-taxonomic relationships
of the ontology from the predicates in the list of
axioms outputted from the activity “Specification of
Axioms in FOL” (Table 13). A non-taxonomic
relationship is defined for each predicate having the
same name and arity. For example, the predicates
“sumProperties(PersonX,Properties)”, “sumProperti-
es(PersonX,MaritalProperty)” and “sumProperties
(PersonX,Pre-maritalProperty)” have the same name
and arity; therefore, the non-taxonomic relationship
“sumProperties/2” is defined.

<Assert>
 <Rulebase mapClosure='universal'>
<Implies>

<And>
<Atom>
 <Rel> identifyHeirs </Rel>
 <Var>PersonX</Var>
 <Var>PersonY</Var>
</Atom>
<Atom>
 <Rel>determineInheritance</Rel>
 <Var>PersonX</Var>

<Var>PersonY</Var>
</Atom>
</And>
<Atom>
 <Rel>calculateInheritance</Rel>
 <Var>PersonX</Var>
 <Var>PersonY</Var>
</Atom>

</Implies>
 </Rulebase>
</Assert>

Figure 5: Example of an axiom represented in RuleML.

The sub-activity “Definition of taxonomic
relationships” extracts a set of taxonomic
relationships based on the hierarquical relation
between the variables of the predicates outputted
from the previous sub-activity. For example, there is
a hierarchy between the classes, “Property”,
“MaritalProperty” and “Pre-maritalProperty”,
extracted from the predicates “sumProperties
(PersonX,Properties)”, “sumProperties(PersonX,
MaritalProperty)” and “sumProperties(PersonX,Pre-
maritalProperty)”.

The sub-activity “Definition of properties”
extracts from the axioms the predicates describing
attributes of the classes. For example,
“hasValue(MaritalProperty,Value)” and “hasValue
(Pre-maritalProperty,Value)” describe that the
classes “MaritalProperty” and “Pre-maritalProperty”
has the property “hasValue”.

Figure 6: Taxonomic relationships of the Intestate
Succession application ontology.

Building�Application�Ontologies�through�Knowledge�System�Goals

121

Table 14: A sub-set of the non-taxonomic relationships of
the Intestate Succession application ontology.

Domain Relationship Range
Person calculateInheritance Inheritance
Person identifyAscendants Person
Person identifySpouse Person
Person identifyDescendants Person
Person determineInheritance Inheritance
Person identifyHeirs Person
Person mightHaveDescendants Person
Person mightHaveMarital MaritalProperty

Person
mightHave
Pre-Marital

Pre-Marital
Property

Person
mightHave

UniversalRegime
Universal Regime

Person
mightHave

LimitedRegime
Limited
Regime

Table 15: A sub-set of the properties of the Intestate
Succession application ontology.

Domain Properties
Person determineQuantityAscendants
Person determineQuantityDescendants
Person sumMaritalProperties

Person
determineMoietySpouse

UniversalRegime

Person
determinePortionDescendants

UniversalRegime

Person
determinePortionDescendants

LimitedRegime

Person
determineMoietySpouse

LimitedRegime
Pre-

MaritalProperty
hasValue

MaritalProperty hasValue

<Assert>
<Rulebase mapClosure='universal'>
<Implies>
<And>

<Atom>
 <Rel>hasValue</Rel>

<Var>MaritalProperty</Var>
<Var>Value</Var>

</Atom>
<Atom>
 <Rel> sumMaritalProperties</Rel>
 <Var>Person</Var>
 <Var> MaritalProperty </Var>
</Atom>
 </And>
</Implies>
 </Rulebase>
</Assert>

Figure 7: Example of an axiom represented in RuleML.

If there is a need to extend the application
ontology developed, the sub-activity “Retrieval of
application ontologies” performs a semantic search

for reusable ontologies in a repository. Several
similarity measures (Lee et al., 2008); (Claudia et
al., 2008) can be used to rank the ontologies
retrieved.

Figure 6, Figure 7, Table 14 and Table 15 show
respectively the taxonomy, an example of an axiom,
a sub-set of the non-taxonomic relationships and
properties of the application ontology developed for
the domain of Intestate Succession, which make up
the final product of GAODT.

3 RELATED WORK

Various techniques and methodologies for building
ontologies have been proposed like the 101
technique (Noy and McGuinness, 2001),
DERONTO (Caliari, 2007), Uschold and King
(Uschold and King, 1995) (Fernandez et al., 2004),
Gruninger and Fox (Gruninger and Fox, 1995);
(Fernandez et al., 2004) and Methontology (Perez,
2004); (Fernandez et al., 2004). Table 16 shows the
results of a comparative analysis among them and
GAODT technique according to the following
criteria: the type of developed ontology, the order
through which the ontology elements are discovered,
the type of life cycle (classic or iterative), the reuse
of existing ontologies and the use linguistic
knowledge to find classes and relationships.

Ontologies can be of four types: high-level,
domain, task and application ontologies (Guarino,
1998). The chosen technique should be appropriate
for the construction of a particular type of ontology.
Among the state of the art of the techniques
analyzed in this work only GAODT and DERONTO
support the development of application ontologies.

An application ontology is composed of six
elements: classes, taxonomy, relationships,
properties, axioms and instances (Girardi, 2010).
The order in which these elements are discovered
influences the development of the subactivities of
the technique or methodology. For example,
GAODT starts by discovering axioms considering
that they represent the requirements of the
knowledge-based system. Other techniques begin
with the identification of relevant domain terms
corresponding to ontology classes.

An ontology development process should
preferably be incremental allowing the engineer to
add new elements to the ontology at each process
interaction. DERONTO, 101, Methontology and
GAODT are supported by an incremental
development process.

Good techniques and methodologies should

KEOD�2012�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

122

Table 16: Comparative analysis of techniques for the construction of ontologies.

Comparison criteria DERONTO
Uschold and

King
101 Methontology

Gruninger and
Fox

GAODT

The type of developed
ontology

Domain and
application
ontologies

Domain
ontologies

Domain ontologies
Domain

ontologies
Domain

ontologies
Application
ontologies

The order through
which the ontology

elements are
discovered

Classes
Taxonomy
Properties

Relationships
Axioms

Classes
Taxonomy

Relationships

Classes
Taxonomy
Properties

Relationships
Axioms

Instances

Classes
Taxonomy

Relationships
Properties
Axioms

Instances

Classes
Relationships

Properties
Instances
Axioms

Taxonomy

Axioms
Classes

Relationships
Taxonomy
Properties

The type of life cycle Iterative Classic Iterative Iterative Classic Iterative

The reuse of existing
ontologies

No Yes Yes Yes No Yes

Uses linguistic
knowledge

No No Yes No No Yes

consider the reuse of existing ontologies like domain
and task ontologies and even application ontologies.
Most of the analyzed techniques approach
reusability with the exception of DERONTO and
Gruninger and Fox.

Only GAODT and the 101 technique define rules
to find classes from nouns and relationships from
verbs. This is an advantage because it allows easy
identification of the elements of the ontology based
on a linguistic strategy. Another advantage of the
use of linguistic knowledge is the possible
automation of the extraction of these elements using
NLP techniques (Cunningham et al., 2012).

4 CONCLUSIONS AND FUTURE
WORK

This article described GAODT, a technique for
building application ontologies through a goal-
oriented development cycle. The technique also
provides the developer, a well-defined way to
translate the knowledge expressed in natural
language to FOL predicates. This feature is not
covered by any other technique or methodology of
the state of the art presented in this paper.

GAODT has been evaluated through the
development of a study case for the construction of
an application ontology to be used on an Intestate
Succession Knowledge-based System.

Building reusable ontologies is a costly process.
Among the four types of ontologies defined by
Guarino (Guarino, 1998), application ontologies are
the less reusable once they are developed for
specific software applications. However, they are
generally easier and faster to develop. Building
application ontologies and then generalizing its

elements to domain and task ontologies is a good
alternative approach for developing these reusable
artifacts. In this context, GAODT consists of a first
step in this direction by defining a systematized way
for building application ontologies.

Future improvements of GAODT include the
development of a software tool to support it and a
technique to perform the semantic search for
ontologies to be reused. GAODT will also be
integrated into a knowledge based process for the
development of multi-agent systems (Leite, 2009)
already constructed by the authors´ research group.
The main objective is to use GAODT to construct
the knowledge bases of deliberative agents of
knowledge-based systems developed with this
process.

ACKNOWLEDGEMENTS

This work is supported by CNPq, CAPES and
FAPEMA, institutions of Brazil and Maranhão
Governments for scientific and technologic
development.

REFERENCES

Article nº 1.829., 2002. Brazilian Civil Code. Federal
Legislation.

Boley, H., 2004. POSL: An Integrated Positional-Slotted
Language for Semantic Web Knowledge. W3C.

Caliari, F., 2007. DERONTO: Method for Building
Ontologies from Entity-Relationship Diagrams.
Master thesis - Federal Technological University of
Paraná. (In Portuguese)

Claudia, A., Fanizzi, N., Esposito, F., 2005. A semantic
similarity measure for expressive description logics. In

Building�Application�Ontologies�through�Knowledge�System�Goals

123

Proceedings of Italian Conference on Computational
Logic, Roma.

Costa, A., 2009. MADAE-Pro A knowledge-based process
for Domain and Application Engineering. Master
thesis - Federal University of Maranhão. In
Portuguese.

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.,
2002. GATE: A Framework and Graphical
Development Environment for Robust NLP Tools and
Applications, In: Proceedings of the 40th Anniversary
Meeting of the Association for Computational
Linguistics (ACL'02). Philadelphia, July.

Fernández, M., Pérez, A., Juristo, N., 1997. Methontology:
From Ontological Art Towards Ontological
Engineering. Spring Symposium Series. Stanford.

Girardi, R., 2010. Guiding Ontology Learning and
Population by Knowledge System Goals. In:
Proceedings of the International Conference on
Knowledge Engineering and Ontology Development,
Ed. INSTIIC, Valence, p. 480 – 484.

Gonçalves, C., 2009. Brazilian Civil Law: Inheritance
law. São Paulo, Saraiva. (In Portuguese).

Gruninger, M., Fox, M., 1995. Methodology for the design
and evaluation of ontologies. In: IJCAI95 Workshop
on Basic Ontological Issues in Knowledge Sharing,
Montreal, Canada.

Guarino, N., 1998. Formal Ontology in Information
Systems. Proceedings of the 1st International
Conference, Trento, Italy, IOS Press.

Harold, B., 2001. The Rule Markup Language: RDF-XML
Data Model, XML Schema Hierarchy, and XSL
Transformations. In Proc. 14th International
Conference on Applications of Prolog.

Jeffrey, F., 2006. Mastering Regular Expressions. O'Reilly
Media, 3rd Edition.

Lee, W., Shah, N., Sundlass, K.., Musen, M., 2008.
Comparison of ontology-based semantic-similarity
measures. AMIA Symposium, p. 384–388.

Noy, N., McGuinness, D., 2001. Ontology Development
101: A Guide to Creating Your First Ontology.

Pérez, A., et al., 2004. Ontological Engineering: with
examples from the areas of knowledge management, e-
commerce and the semantic web. London. Springer-
Verlag.

Russel, S., Norvig, P., 2004. Artificial Intelligence. Rio de
Janeiro: Ed. Campus. (In Portuguese).

Uschold, M., King, M., 1995. Towards a Methodology for
Building Ontologies. In IJCAI’95 Workshop on Basic
Ontological Issues in Knowledge Sharing. Montreal,
Canada.

KEOD�2012�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

124

