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Abstract: Feature selection helps to focus resources on relevant dimensions of input data. Usually, reducing the input
dimensionality to the most informative features also simplifies subsequent tasks, such as classification. This
is, for instance, important for systems operating in online mode under time constraints. However, when the
training data is of limited size, it becomes difficult to define a single small subset of features sufficient for
classification of all data samples. In such situations, one should select features in an adaptive manner, i.e.
use different feature subsets for every testing sample. Here, we propose a sequential adaptive algorithm that
for a given testing sample selects features maximizing the expected information about its class. We provide
experimental evidence that especially for small data sets our algorithm outperforms two the most similar
information-based static and adaptive feature selectors.

1 INTRODUCTION

Machine learning is often confronted with high-
dimensional data. A common problem is the so-called
“curse of dimensionality”, meaning that the amount
of data required to find good model parameters grows
exponentially with the dimension of the input space.
For this reason, as well as computational issues, fea-
ture selection is often used to reduce the data dimen-
sionality to the features relevant to solve a given prob-
lem, such as classification. Moreover, in a situation
when the training set is of a limited size, a classifier
built on a smaller number of features usually has bet-
ter generalization ability.

Basically, one can distinguish between two types
of feature selection algorithms: filters and wrappers
(Webb, 1999). The former try to reduce the dimen-
sionality of the data while keeping potential clusters
in the data well separated. In this case, the relevance
of each feature is evaluated using different measures
of distances between classes, e.g. probabilistic dis-
tance measures. However, the involved probabilities
are difficult to estimate and often approximate meth-
ods are used. Wrappers also preprocess the data but
directly take into account that the resulting features
should be useful for a certain classifier. Therefore,
features are selected based on the prediction accuracy
of the classifier employing these features. This might
lead to better results but is usually computationally

demanding and prone to overfitting.
In each case, one can look for the best feature sub-

set of a certain cardinality using an optimal search
strategy. Since the number of possible subsets is ex-
ponentially large, testing all of them is infeasible.
A good example is the branch and bound method
(Narendra and Fukunaga, 1977) that assumes mono-
tonicity of the selection criterion to avoid an exhaus-
tive search. If such an assumption is not valid and the
number of features is large, suboptimal methods have
to be used. This class of algorithms includes forward
and backward sequential feature selection, e.g. (Ding
and Peng, 2005; Abe, 2005). In both cases, the rel-
evance of each feature is evaluated together with the
current feature subset.

Among probabilistic criteria used by filters, se-
lection criteria based on Shannon entropy are widely
used (Duch et al., 2004). Such criteria select the
features to reduce uncertainty about the output class.
Battiti was one of the first to use mutual informa-
tion, a concept closely related to the Shannon en-
tropy, for sequential feature selection (Battiti, 1994).
However, this involves estimation of the conditional
mutual information (CMI), i.e. the amount of infor-
mation between the feature and the class given the
already selected features, which requires multivari-
ate density estimation. To circumvent this problem,
Battiti approximated CMI by pairwise mutual infor-
mation. Kernel density estimation (discussed below
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in subsection 2.2.1) is a non-parametric technique
widely used for multivariate density estimation. It
was successfully applied to estimate CMI for the ex-
haustive search procedure (Bonnlander and Weigend,
1994) and forward feature selection (Kwak and Choi,
2002; Bonnlander, 1996).

Ideally, it should be possible to describe all obser-
vations by the same small subset of features. How-
ever, when the amount of available training data is
limited and the number of features exceeds the num-
ber of training samples, it is very likely that no sin-
gle feature subset is good enough for classification of
all observations. For example, one may need differ-
ent features to discriminate between classes, or even
different objects belonging to one class may have dif-
ferent discriminative features. One can partially over-
come this problem by having a collection of all rele-
vant feature subsets. This, however, will lead to an in-
crease in the classifier complexity, which in turn will
lead to its poor performance, since there is not enough
data for training the classifier in high-dimensional
space, e.g. see (Raudys and Jain, 1991). Thus, con-
ventional feature selection schemes, which select a
fixed subset of features before they are handed to a
classifier, can be inefficient.

Thereby, in cases of small data sets, we propose
to use different subsets of features for every testing
sample, i.e. select the relevant features in an “adap-
tive” manner. Here, by adaptivity we mean that for
a certain testing sample every selected feature should
yield the maximum additional information about the
class given the already selected features with values
observed on this testing sample.

The idea of adaptivity was used by Geman and
Jedynak in their active testing model (1996) where
they sequentially select tests in order to reduce uncer-
tainty about the true hypothesis. For their problem do-
main, they assumed that features are conditionally in-
dependent given the class. Jiang also used an adaptive
scheme (Jiang, 2008), however, without conditioning
on the already selected features, which are employed
only to update a set of currently active classes. In con-
trast to these schemes, we adaptively select features
taking into account high-order dependencies between
them.

Here, we propose an adaptive feature selection al-
gorithm based on CMI that sequentially adds features
one by one to a subset of features relevant for a certain
testing sample. Even though the multivariate prob-
ability densities are hard to estimate in general and
from small data sets especially, the algorithm is still
able to select informative features in high dimensions.

Our model is also inspired by sequential visual
processing, i.e. a principle of eye movements when

performing a task. Since a human can foveate only
on a small part of an image at time, the scene is per-
ceived sequentially. Moreover, only a few eye fixa-
tions are usually enough to analyze the whole scene.
This might suggest that optimal saccades for a cer-
tain task follow the sequence of the most informative
scene-specific locations. For experimental support
see (Renninger et al., 2007; Najemnik and Geisler,
2005).

Sec. 2.1 explains the mathematical basis and gen-
eral idea of our method, whereas Sec. 2.2 gives imple-
mentation details. Then, in Sec. 3, we provide results
for two image classification tasks using artificially
constructed bitmap images of digits and real-world
data from the MNIST database of hand-written dig-
its. We show that our method outperforms the Parzen
window feature selector (Kwak and Choi, 2002) and
the active testing model (Geman and Jedynak, 1996),
which are static and adaptive CMI-based feature se-
lectors. Finally, in Sec. 4 we discuss benefits of our
approach and future extensions.

2 MODEL

For our model, we start with a standard classification
setup. Suppose we have a space of possible inputs
F = ×n

i=1Fi , i.e each input is ann-dimensional fea-
ture vectorf = ( f1, . . . , fn), where theith feature takes
valuesfi ∈ Fi . Our notion of feature is rather general,
ranging from simple ones, such as the gray-value of a
certain pixel, to sophisticated ones, such as counting
faces in an image. Feature combinations are consid-
ered as a random variableF with a joint distribution
on F1× ·· ·×Fn and the observationf is drawn from
that distribution.

Furthermore, each observation has an associated
class labelc ∈ C = {c1, . . . ,cm}. The task of the
classifier is to assign a class label to each observa-
tion f. Thus, formally it is considered as a map
φ : F → C or, more generally, assigning to eachf the
conditional probabilitiesp(c|f) of the classesc. To
learn such a classification, we are given a training set
X = {(xi ,ci)}T

i=1 of labeled observations, which are
assumed to be drawn independently from the distribu-
tion relating feature vectors and class labels. Then the
goal is to find a classification ruleφ that correctly pre-
dicts the class of future samples with unknown class
label, called testing samples. That is, confronted with
a feature vectorξ we would classify it asc = φ(ξ).
Feature selection then means that for this particular
task only a subset of features rather than the full fea-
ture vector is used.
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2.1 Adaptive Feature Selection

Adaptivity: For classification problems with small
training sets, we suggest to select features adaptively.
Thus, we do not predefine a single subset of the rele-
vant features but rather select a specific one for every
new testing sample. The proposed feature selection
scheme is a sequential feedforward algorithm. Every
next feature added to the subset should be discrimina-
tive together with the already selected features, which
take particular values observed on the current testing
sample.

Sequential feedforward feature selection algo-
rithms use a greedy search strategy, which does not
assume the full search and evaluating the relevance
of every possible feature subset. Such feedforward
algorithms start from the empty set and add features
one by one so that every next feature maximizes some
selection criterionS considering features selected on
the previous steps. Thus, conventionally the feature
Fαi+1 selected on the(i +1)th step should satisfy the
following:

αi+1 = argmax
k

S(Fα1, . . . ,Fαi ,Fk),

Fk ∈ {F1, . . . ,Fn} \ {Fα1, ...,Fαi},
(1)

whereFα1, . . . ,Fαi is a subset of the features selected
before the(i +1)th iteration.

Let us consider an adaptive case. Suppose that
we have a testing sampleξ. Suppose also that af-
ter i steps we have selected the featuresFα1, . . . ,Fαi

and observed their valuesξα1, . . . ,ξαi on this testing
sample. Then, for this testing sample the next feature
Fαi+1 is selected according to the adaptive criterion:

αi+1 = argmax
k

S(Fα1 = ξα1, . . . ,Fαi = ξαi ,Fk). (2)

In contrast to the static criterion (1), the adaptive crite-
rion also takes into account thevaluesof the already
selected features,which are observed on the current
testing sample.
Probabilistic Selection Criterion: The feature selec-
tion scheme proposed here uses a probabilistic selec-
tion criterion and is based on the mutual information
between the features and class variables (Cover and
Thomas, 1991).

The mutual information between two continuous
random variablesA andB measures the amount of in-
formation between them and is defined as follows:

I(A;B) =
∫

A

∫

B

p(a,b) log
p(a,b)

pA(a)pB(b)
dbda, (3)

where p(a,b) is the joint probability density func-
tion (pdf) of A andB, and pA(a) =

∫
B

p(a,b)db and

pB(b) =
∫
A

p(a,b)da are their marginal densities. In

case of discrete variables, the integration is substi-
tuted by summation over the values of the variables.

Our goal is a sequential selection of features
that bring the maximum additional information about
classes, i.e. those that are both discriminative and
non-redundant with respect to the already selected
features. Thus, we propose the adaptive mutual infor-
mation feature selector (AMIFS), which is based on
the expected mutual information between the classes
and a feature candidatek conditioned on the outcome
of the selected features which is observed on the test-
ing sampleI(C;Fk|ξi). Then, according to AMIFS
every next selected feature should satisfy the follow-
ing:

αi+1 = argmax
k

S(Fα1 = ξ1, . . . ,Fαi = ξαi ,Fk) =

argmax
k

{∫
Fk

∑
c∈C

p( fk,c|ξi) log
p( fk,c|ξi)

p( fk|ξi)p(c|ξi)
d fk

}

,

(4)

where the variableC represents the classes,C =
{c1, . . . ,cm}, andξi = {Fα1 = ξα1, . . . ,Fαi = ξαi} is
a shorthand for the set of values which are observed
on the selected features of the sampleξ.

Note that the expression (4) is not a conventional
CMI since we do not average over all possible out-
comes of the featuresFα1, . . . ,Fαi , but rather condition
on the specific values that we observe on the particu-
lar testing sample. This implies that we look for the
featureFαi+1 that is informative for the certain region
of the input space, which is specified by the observed
values of the already selected features. Thefore, we
adaptively select a different subset of the relevant fea-
tures for every sample we want to classify.

Using the definition of the Kullback-Leibler diver-
gence,

D(p||q) =
∫

p(x) log
p(x)
q(x)

dx (5)

for two distributionsp andq, (4) can be rewritten as
follows:

αi+1 = argmax
k

{

∑
c∈C

p(c|ξi)D(p( fk|c,ξi)||p( fk|ξi))

}

(6)
This is the average distance between the pdf of the

featureFk given a certain class and its marginal pdf,
where both pdfs are updated after observing the cur-
rent feature subset on the sampleξ. Thus, the selec-
tion criterion favors features with distinctive posterior
distributions for data drawn from the different classes,
that is, features that on the(i +1)th step are expected
to best discriminate between the classes.
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In our algorithm, the first feature is selected inde-
pendently of the testing sampleξ and should maxi-
mize the mutual information with classes:

α1 = argmax
k

I(C;Fk), Fk ∈ {F1, . . . ,Fn}. (7)

The scheme becomes adaptive only after the first fea-
ture is selected and the value it takes on the testing
sample is known.
Stopping Rule: Ideally, the algorithm can be stopped
when one of the classes has been unambiguously
identified. In practice, this is not possible and other
stopping criteria have to be used, e.g. minimum addi-
tional information that the next feature brings or sim-
ply a maximum number of iterations. However, in
this paper, we shall not address the issue of stopping
rules.

2.2 Estimation of the Selection
Criterion

The selection criterion (4) can be rewritten as

αi+1 = argmax
k

{

m

∑
j=1

p(c j |ξi)×

∫
p( fk|ξi

,c j) log
p( fk,ξi |c j)p(c j)p(ξi)

p(c j ,ξi)p( fk,ξi)
d fk

}

.

(8)

The pdfs under the logarithm, that do not depend
on fk and therefore do not contribute to argmax

k
, can

be dropped. Thus, we obtain

αi+1 = argmax
k

{

m

∑
j=1

p(c j |ξi)Ep( fk|ξi
,c j )[log

p( fk,ξi |c j)

p( fk,ξi)
]

}

.

(9)

The expression (9) requires estimation of multi-
variate pdfs as well as the conditional expectation
over multivariate pdf.

2.2.1 Kernel Density Method

In our case, we solve both problems with the ker-
nel method, a nonparametric smoothing technique de-
veloped by Rosenblatt (Rosenblatt, 1956) and Parzen
(Parzen, 1962).
Density Estimation: For a training set consisting of
T independently and identically distributed (iid)n-
dimensional samplesX = {x1, ...,xT},xi ∈ R

n, the
kernel density estimate (KDE) of the pdf ˆp(y) is

p̂(y) = (T
n

∏
j=1

h j)
−1 ∑

xi∈X

n

∏
j=1

K(
y j − xi, j)

h j
), (10)

where K(·) is a univariate kernel function,h j is a
kernel bandwidth parameter andxi, j is the value of
the jth feature of the samplexi . Here, we use a so-
called product kernel, which is a commonly used sim-
plification of the general multivariate kernel. Since
quality of the density estimation does not particu-
larly depend on the choice of the kernel, for con-
venience we restrict ourselves to Gaussian kernels
K(w) = 1√

2π exp(−w2

2 ).

Bandwidth selection: The bandwidth parameters
h j control the smoothness of the estimated density.
Setting them too large, all details of the density struc-
ture are lost, whereas setting them too small will lead
to a highly variable estimate with many false peaks
around every sample point. Therefore, a choice of the
proper bandwidth parameters is important. We only
briefly mention the bandwidth selection method that
we used, for details and an overview of other meth-
ods see (Turlach, 1993).

The normal reference rule (Silverman, 1986) is
one of the simplest methods based on the asymp-
totic mean integrated squared error between the true
and estimated densities and assumes that the data
is Gaussian. The method produces good estimates
for univariate densities but tends to oversmooth for
multivariate cases. Among more sophisticated meth-
ods that can be easily extended to the multivariate
densities are Markov chain Monte Carlo (MCMC)
methods. They estimate a bandwidth matrix through
the data likelihood using cross-validation and are re-
ported to have a good performance, e.g. see (Zhang
et al., 2004).

In higher dimensions data become sparser and
tend to move away from the modes of the distribution
(Scott, 1992). Therefore, the bandwidth parameter of
kernel functions should be adjusted to the data dimen-
sionality so that estimates are based on a sufficient
number of data points. In our case, the dimension of
estimated densities grows iteratively. Moreover, we
estimate joint densities of different feature subsets.
Ideally, one has to select a unique optimal bandwidth
vector for every feature combination of different car-
dinality. Since it is computationally infeasible, we
pick the normal reference rule, which does not require
any optimization and automatically gives a bandwidth
depending on the dimension of the estimated density.
So the bandwidth for featureFi is defined as

hi = (
4

d+2
)

1
d+4 σiT

− 1
d+4

, (11)

whered is the dimension of the estimated multivariate
density,σi is the standard deviation of the data points
andT is the number of training samples.
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2.2.2 Conditional Expectation

We estimate the conditional expectation over the mul-
tivariate pdf p( fk|ξi

,c j) using a kernel-based esti-
mator as well. Let us consider a training setX =
{(x1,y1), ...,(xT ,yT)}, wherexi and yi are realiza-
tions ofnx− andny−dimensional continuous random
variablesx andy, respectively. Suppose, one needs
to estimate the expectation of some functiong(x)
over the conditional distributionp(x|y = a), wherea
is a particular observation of the variabley. Then,
using the nonparametric kernel regression estimator
proposed by Nadaraya (1964) and Watson (1964), the
conditional expectation ofg(x) is:

Ep(x|y=a)[g(x)] =

(T
ny

∏
j=1

h j)
−1 ∑

xi∈X

ny

∏
j=1

K j(a,yi)g(x)

(T
ny

∏
j=1

h j)−1 ∑
xi∈X

ny

∏
j=1

K j(a,yi)

,

(12)

where(h1, ...,hny) is a bandwidth vector of the ker-

nel for the variabley andK j (a,yi) denotesK(
a j−yi, j

h j
).

Note that the denominator is KDE of ˆp(y = a).
Plugging (12) into the selection criterion (9), we

have:

αi+1 = argmax
k

{

m

∑
j=1

p(c j |ξi)

p(ξi |c j)
(Tj

i

∏
q=1

hαq)
−1×

∑
xr∈X j

i

∏
q=1

Kαq(ξ,xr) log
p( fk = xr,k,ξi |c j)

p( fk = xr,k,ξi)

}

,

(13)

whereX j is a subset of the training samples belonging
to the classc j andTj = |X j |.

Note that the expression in the first fraction sim-

plifies just top(c j), because
p(cj |ξi)

p(ξi |cj )
=

p(cj )

p(ξi)
andp(ξi)

can be dropped as it does not influence argmax
k

. Fi-

nally, using the kernel method to estimate densities
and after some simple algebraic transformations, the
expression (13) is of the form:

αi+1 = argmax
k

{

m

∑
j=1

p(c j)Tj
−1×

∑
xr∈X j

i

∏
q=1

Kαq(ξ,xr) log

∑
xs∈X j

Kk(xr ,xs)
i

∏
q=1

Kαq(ξ,xs)

∑
xu∈X

Kk(xr ,xu)
i

∏
q=1

Kαq(ξ,xu)



















.

(14)

The expression under the logarithm measures a ra-
tio between values of two pdfs in the pointxr . When

the pdfs are estimated from small training sets, unre-
liabilities can lead to large ratios even though there is
no real evidence for that. To cope with this, we add a
small value to both pdfs which can be interpreted as
smoothing them with an improper base distribution.
The smoothing should be adjusted to the current di-
mension of the pdf, thus, we take it to be proportional
to the maximum response of the product kernel of the
selected features over all training points. Such a sim-
ple smoothing works fine for our problem, since we
do not need precise values of the criterion in (14), but
rather want to find a feature that maximizes it.

3 EXPERIMENTS

Here, we provide an experimental comparison of our
method with two feature selection algorithms based
on CMI: Parzen window feature selector (PWFS)
(Kwak and Choi, 2002) and active testing model
(ATM) (Geman and Jedynak, 1996). In our terminol-
ogy PWFS is a static selection scheme (1). It is based
on the conventional CMI estimated with the kernel
method. ATM is a feature selector based on the adap-
tive CMI which uses a simplifying assumption that
features are conditionally independent given a class.
Since the estimation of the selection criterion, pro-
posed by Geman and Jedynak, was problem-specific,
here we use just the general idea of their method. That
is, in our experiments ATM selects features as fol-
lows:

αi+1 = argmax
k



















m

∑
j=1

p(c j )
i

∏
q=1

p( fαq = ξαq|c j )

Tj
×

∑
xr∈X j

log
p( fk = xr,k|c j)

m
∑

v=1
p(cv)p( fk = xr,k|cv)

i
∏

q=1
p( fαq = ξαq|cv)



















.

(15)

To make a fair comparison, all criteria are esti-
mated using KDE with the same bandwidth vector as
chosen by the normal reference rule (11).

3.1 Artificial Data Set

For the first experiment, we artificially constructed a
data set for image classification. It contains pixel-
based black-and-white images of digits belonging to
10 different classes. First, we constructed four dis-
tinct examples of every class. From this data set
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we generated a new one with 1000 samples by ran-
domly adding 5 pixels of noise to the original images
(Fig. 1). Further, we formed 20 training sets with 30
and 300 samples in each and one testing set contain-
ing 100 samples by randomly selecting an equal num-
ber of samples from each class.

Figure 1: Examples of original and noisy digits.

In our setup, each image is described by a vector
of complex features. These, in turn, are functions of
simple features of the image. Our simple features are
inspired by the complex cells in the primary visual
cortex discovered by D. Hubel and T. Wiesel in the
1960s (Hubel and Wiesel, 2005). Both are responsive
to primitive stimuli that are independent of their spa-
tial location. Here, each simple feature corresponds
to a 3× 3 image patch and is activated proportional
to the frequency with which the corresponding patch
occurs in the image. For normalization and smooth-
ing purposes, patch frequencies are squashed in the
interval[−1,1] via a sigmoidal function.

The complex features correspond to 3× 3 image
patches as well. Their activation value is computed as
a weighted sum of the activations of the simple fea-
tures. The weight from the simple feature responding
to the same patch is 1. For the others, it drops in the
number of pixels that differ between the correspond-
ing image patches according to a Gaussian. Thus, the
complex features react more robust against pixel noise
than the simple features. Since there are 9 binary pix-
els in each 3× 3 patch, an image is described by a
vector of 29 = 512 complex feature values.

As a classifier we used the weighted k-nearest
neighbor algorithm (wk-NN). It assigns a class to a
testing sample based on a distance-weighted vote of
thek nearest training samples. The wk-NN is one of
the simplest classifiers, but the fact that it does not
need learning is useful because the adaptive scheme
requires multiple running of the classifier with differ-
ent features. Here, we usedk=20 hand-tuned using
validation sets.

To investigate the usefulness of the proposed AM-
IFS we ran experiments on training sets withT= 30
and 300 samples. Note, that all sets have fewer train-
ing samples than features which easily leads to over-
fitting. The classification errors were evaluated on
separate testing samples and compared with the cases
when feature selection was done using PWFS, ATM
and when the classifier was run on the full feature vec-
tor, i.e. without feature selection (Fig. 2). All results
are averaged over 20 runs with the different training

sets.
One clearly sees the advantage of using an adap-

tive scheme for feature selection. Not only does the
error rate drop very quickly with an increasing num-
ber of features, it goes even below the error that the
classifier achieves when using all available features.
In all our simulations, this effect never occurred for
the static scheme PWFS and was particularly pro-
nounced when using an extremely small number of
training samples (T = 30), i.e. when the classifier
is prone to overfitting. Furthermore, our algorithm
outperforms the ATM scheme which assumes condi-
tional independence of the features. Thus, especially
at the beginning, i.e. when selecting the first few fea-
tures, it is beneficial to take dependencies between
features into account.
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Figure 2: Error against the number of features for dig-
its classification, the black markers indicate regions where
AMIFS is significantly better than ATM according to the
Wilcoxon signed-rank test at thep-level= 0.05.

Further, we test the ability of the considered
schemes to select informative features in high dimen-
sions for the caseT = 300. For this, we start with
initial feature subsets of size 50 and 100, which are
preselected by PWFS, and then select further fea-
tures according to the different algorithms. The re-
sults (Fig. 3) show that both adaptive schemes find
additional features that are markedly better than the
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statically selected ones. Also one can see that at
some point ATM, the adaptive scheme assuming con-
ditional independence of the features given a class,
starts outperforming AMIFS. This fact suggests that
after certain dimension AMIFS is not able anymore to
estimate correctly high-order dependencies between
the features. Interestingly, when AMIFS selects the
features from the beginning (see Fig. 2), it performs
better than ATM almost up to 200 features, meaning
that the first good features can compensate for un-
reliable pdf estimates further in higher dimensions.
Based on this observation, one could think of a com-
bined scheme that starts with AMIFS and after select-
ing some features switches to ATM.
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Figure 3: Comparison of ability to add informative features
to subsets of 50 and 100 features preselected by PWFS.

3.2 MNIST Data Set

We compared performance of PWFS, ATM and our
AMIFS on a real-world data set, the MNIST database
of handwritten digits (LeCun and Cortes, nd). The
images are 28× 28 pixel, black and white, size-
normalized and centered. The original training and
testing sets consist of 60,000 and 10,000 samples, re-
spectively.

The features were learned by LeNetConvPool
(Bergstra et al., nd), a convolutional neural network
based on the LeNet5 architecture, which was origi-

nally proposed by LeCun (LeCun et al., 1998). The
convolutional networks are biologically inspired mul-
tilayered neural networks. In order to achieve some
degree of location, scale and distortion invariance,
they imitate arrangement and properties of simple and
complex cells in primary visual cortex by implement-
ing local filters of increasing size, shared weights and
spatial subsampling.

LeNetConvPool consists of 6 layers: 4 successive
convolutional and down-sampling layers (C- and S-
layers), a hidden fully-connected layer and a logistic
regressor as a classifier. C-layers consist of several
feature maps with overlapping 5×5 linear filters. So
every filter receives an input from the 5× 5 region
of the previous layer, computes its weighted sum and
passes it through a sigmoidal function. The S-layers
perform max-pooling with 2×2 non-overlapping fil-
ters. That is, an output of such filter is the maximum
activation of units from 2× 2 region of the corre-
sponding feature map in the previous C-layer. For
both types of the layers, all filters share the same
weight parameters within one feature map. First C-
and S-layers have 20 feature maps, the next ones -
50. The succeeding hidden layer, which is fully-
connected to all units of all feature maps in the previ-
ous S-layer, has 500 units with the sigmoidal activa-
tion function. The last classification layer consists of
10 units, according to the number of classes, and per-
forms a logistic regression. The weight parameters of
all layers are learned using the gradient descent. For
all implementation details see (Bergstra et al., nd).

We trained LeNetConvPool on 15 training sets
with 5,000 samples each. After that, the last classifi-
cation layer was removed and the resulting networks
with 500 output units were used as feature extractors.
These units are initial features for the feature selec-
tors. Then, from every training set we formed 2 sets
of different size, withT = 100 andT = 300 samples,
which were used for feature selection and for clas-
sification. We use different amount of training data
for feature extraction and for further feature selection
and classification to model a situation, when one has
good features but there is not enough training data to
build an efficient classifier. As a classifier, we used an
unweighted k-NN withk = 5 (again, hand-tuned on
validation sets), which in contrast to wk-NN uses a
simple majority vote. For computational reasons, the
testing set was reduced to 500 samples, which were
randomly selected from the original MNIST testing
set, with an equal number of samples per class.

Overall, all algorithms show a similar behavior as
on the artificial data set (see Fig. 4). The smaller dif-
ferences can be attributed to the better available fea-
tures, as reflected in the much lower error rates, which
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Figure 4: Error against the number of features for MNIST
classification. k-NN was run on the same set as feature se-
lection, the black markers indicate regions where AMIFS
is significantly better than ATM according to the Wilcoxon
signed-rank test at thep-level= 0.05.

have been tuned by the LeNetConvPool. Again, AM-
IFS outperforms ATM on the first selected features
and both adaptive schemes provide some robustness
against overfitting.

To see whether feature selection is as beneficial
when the classifier is well-trained, we repeated the ex-
periments with a training set of 5,000 samples. How-
ever, as in the previous experiment, the feature selec-
tion was done on the small sets of 100 and 300 sam-
ples for computational reasons.

Fig. 5 shows that for this particular example one
needs approximately 200 features to achieve the min-
imum error. However, there is no advantage of us-
ing any sophisticated feature selection algorithm, and
one can see that a size of the training set used for se-
lecting features does not have much influence as well.
Moreover, even the random selection works about as
good as other methods. We do not want to generalize
results of this test by saying that for large data sets
one can always select features randomly. We rather
emphasize that for small data sets one can achieve
better performance with features selected adaptively
with our AMIFS .
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Figure 5: Error against the number of features for MNIST
classification. k-NN was run on 5,000 training samples,
feature selection on A: 100 and B: 300 training samples.

4 DISCUSSION

Feature selection is a standard technique to reduce
data dimensionality. In high-dimensional spaces this
can be an efficient way to cope with limited amounts
of training data. Usually, features are selected in a
preprocessing step. However, we propose an adap-
tive scheme for feature selection, where each feature
is selected as maximizing the expected mutual infor-
mation with the class given the data point, as well as
values of the features already considered.

Despite the fact that estimating the mutual infor-
mation in high-dimensional spaces is a difficult prob-
lem on its own, we find that adaptive feature selection
robustly improves the classification performance. In
the considered examples, a small number of features
is sufficient to achieve a good classification. Since the
first few features can be reliably detected, our method
does not overfit and can even compensate for short-
comings of the classifier. Our results on both artificial
and real-world data show that in case of limited train-
ing data, when a classifier is usually prone to over-
fitting, AMIFS can even improve the error rate com-
pared to using all available features.

Even though the algorithm is less advantageous
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on large datasets, we believe that this is not a short-
coming, but merely shows that the need to select fea-
tures is less pressing if enough data are available.
From the point of view of computational expenses,
in order to make AMIFS more applicable to large
amount of data, one has to think about an approxi-
mate implementation which can cut down the compu-
tational complexity or, for example, consider using a
hybrid scheme, i.e. starting with AMIFS and then af-
ter some iterations switching to ATM, which does not
require estimating multivariate densities and therefore
is computationally cheaper.

In the future, we want to develop a neural imple-
mentation of our feature selection scheme. The brain
certainly faces a similar problem when it has to decide
which features are really relevant to classify a new ob-
servation. A neural model could thus provide insights
into how this ability can be achieved. Furthermore,
we would like to investigate to what extent informa-
tion theory provides guiding principles for informa-
tion processing in the brain. In addition, adaptive
feature selection could be accomplished via recurrent
processing interleaving bottom-up and top-down pro-
cesses.
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