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Abstract: This paper is concerned with analysing the potential impact of changes to enterprise systems, and in particular
on how regression testing following such changes can be minimised. The target scope of the approach we
describe in this paper is systems containing hundreds of thousands of classes and millions of methods. It
is extremely difficult and costly to apply regular regression testing techniques to such systems. Retesting
everything after a change is very expensive, and in practice often unnecessary. Selective retesting is dangerous
if the impacts of change are not understood, and analysing such systems to understand what is being changed
and what the impacts are is difficult. This paper proposes a way to perform a change impact analysis which
makes it possible to do efficient, targeted regression testing of enterprise systems. Our approach has been
tried on a large system comprising 4.6 million methods with 10 million dependences between them. Using
our approach, maintainers can focus on a smaller, relevant subset of their test suites instead of doing testing
blindly. We include a case study that illustrates the savings that can be attained.

1 INTRODUCTION

Enterprise systems are typically large, complicated,
and may also be inadequately documented and date
back a number of decades. As a consequence they are
also often legacy systems: poorly understood and dif-
ficult to maintain. To make matters worse, they are
often mission critical, being found in critical roles as
strategic systems in large companies. So they are typ-
ically seen as both critical and fragile.

Patches are supplied by vendors to the underlying
middleware, and for a number of reasons may need
to be applied. The latest IT Key Metrics Data from
Gartner (gartner12, 2011) report that in 2011 some
16% of application support activity was devoted to
technical upgrades, rising to 24% in the banking and
financial services sector. Hardware and operating sys-
tems change. The user organization develops new or
changed requirements that need to be implemented.
A perpetual problem for the organization is how to
manage such changes with minimum risk and cost.

Risk of unintended change is typically addressed
by regression testing. The problem is that regres-
sion testing can be expensive and time-consuming for
large systems with interactive interfaces. Organiza-
tions can spend millions of dollars per annum on it.
The actual effect of a middleware patch or an appli-
cation software change may in fact be minimal, so

a small fraction of the regression tests may be suffi-
cient; but, with an enterprise system, it is very risky
to make a judgement about what should be tested and
what can be assumed to be OK.

What is needed is a way to identify the impact of
any change. What business processes might be af-
fected by a patch to the middleware, or by a planned
change to the application software, or the way data
is stored in the database? If organizations know the
possible impact of a change they can select only the
relevant regression tests, confident that the others do
not need to be run, because the results will not change.

The techniques and tools we have developed are
based on static analysis of the code in the system and
the code in the patch. Static analysis may be com-
pared with the informal approach of reading the doc-
umentation, or with the formal one of dynamic anal-
ysis, where the code is instrumented in some way to
generate output, logs in particular, that show what it is
doing. Documentation, especially for legacy systems,
may be incomplete, misleading, or just plain wrong.
Dynamic analysis is precise, but essentially incom-
plete in the same way that testing is, and for the same
reason: unless you have run your system with all pos-
sible inputs, you cannot know if you have found all
possible behaviours. Static analysis looks for possi-
ble behaviours, or (in our case) possible dependen-
cies. It typically finds too many, depending on how
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fine grained the analysis is, and how sophisticated it
is, but what it rules out can be ruled out for certain.
For example, if method A mentions in its code meth-
ods B and C, then we decide that A depends on B
and C. It may be that, in practice, A never calls B,
only C, but unless our tools can be certain about this,
they take the conservative approach of assuming that
if either B or C change, A may change. What we can
be certain about is that A cannot change just because
some other method D changes (unless the recursive
analysis of B or C leads us to it). Static analysis is
accurate, unlike documentation, because it is the ac-
tual system code we analyze, not a description of it. It
is complete, unlike dynamic analysis, because it takes
the conservative but safe approach outlined.

The approach is conventional. First, we calcu-
late the dependencies between methods and fields in
the existing middleware library and user’s applica-
tion, between objects in the database, and between
database objects and program methods: dependency
analysis. Second, we identify what is changed by a
patch: patch analysis. Third, we calculate, by starting
with the things changed in the patch and following
the dependencies in reverse, what might be changed
when the patch is applied: impact analysis.

The things that might be changed, the affected
methods or methods, can stretch right through the
middleware library and the user’s application soft-
ware. In practice, we will only be interested in some
of these, usually those in the application software that
appear in test cases. Identifying these means the user
can identify the regression tests that will need to be
applied and hence, as test cases are usually grouped
by business process, which business processes may
be affected. The methods we select we term the meth-
ods of interest: the precise way we identify these will
depend on how the test cases are organized.

The remainder of this paper is organized as fol-
lows. Section 2 discusses related work. Section 3
describes dependency analysis. Patch analysis is in-
troduced in Section 4, and impact analysis in Section
5. Section 6 describes a case study. Section 7 summa-
rizes the paper, draws some conclusions, and outlines
future work.

2 RELATED WORK

Change Impact Analysis applied to software systems
can be traced back to the 1970s. Reasons for doing
change impact analysis are well known and under-
stood: “As software components and middleware oc-
cupy more and more of the software engineering land-
scape, interoperability relationships point to increas-

ingly relevant software change impacts.” (Bohner,
1996) Moreover, due to the increasing use of tech-
niques such as inheritance and dynamic dispatch-
ing/binding, which come from widely used object-
oriented languages, small changes can have major and
nonlocal effects. To make matters worse, those major
and nonlocal effects might not be easily identified, es-
pecially when the size of the software puts it beyond
any maintainer’s ability to adequately comprehend.

There is considerable research related to this field,
but it seems that there are limited known ways of per-
forming change impact analysis. Bohner and Arnold
(Bohner, 1996) identify two classes of impact analy-
sis: traceability and dependency. What we are inter-
ested in in this work is dependency: linkages between
parts, variables, methods, modules etc. are assessed to
determine the consequences of a change.

Dependency impact analysis can be either static,
dynamic or a hybrid of the two. We discuss some of
the work using these techniques below.

Static impact analysis (Bohner, 1996; Ren et al.,
2004; Pfleeger and Atlee, 2006; Ayewah et al., 2008;
Khare et al., 2011) identifies the impact set - the sub-
set of elements in the program that may be affected by
the changes made to the system. For instance, Chianti
(Ren et al., 2004) is a static change impact analysis
tool for Java that is implemented in the context of the
Eclipse environment, which analyzes two versions of
an application and decomposes their differences into
a set of atomic changes. The change impact is then
reported in terms of affected tests. This is similar to
our approach, but lacks the capability to deal with the
database components.

Apiwattanapong et al. (Apiwattanapong, 2005) ar-
gue that static impact analysis algorithms often come
up with too large impact sets due to their over conser-
vative assumptions: the actual dependencies may turn
out to be considerably smaller than the possible ones.
Therefore, recently, researchers have investigated and
defined impact analysis techniques that rely on dy-
namic, rather than static, information about program
behaviour (Orso et al., 2003; Breech et al., 2004; Patel
et al., 2009; Li, 2012).

The dynamic information consists of execution
data for a specific set of program executions, such as
executions in the field, executions based on an oper-
ational profile, or executions of test suites. (Apiwat-
tanapong, 2005) defines the dynamic impact set to be
the subset of program entities that are affected by the
changes during at least one of the considered program
executions. CoverageImpact (Orso et al., 2003) and
PathImpact (Law and Rothermel, 2003) are two well
known dynamic impact analysis techniques that use
dynamic impact sets. PathImpact works at the method
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level and uses compressed execution traces to com-
pute impact sets. CoverageImpact also works at the
method level but it uses coverage, rather than trace,
information to compute impact sets. Though the dy-
namic approach can make the analysis more efficient,
it doesn’t guarantee that all system behaviors can be
captured by it. Thus it might cause a good number of
false negatives, i.e. potential impacts that are missed.

Recently, a hybrid of static and dynamic analy-
sis is being investigated. (Maia et al., 2010) pro-
poses a hybrid technique for object-oriented software
change impact analysis. The technique consists of
three steps: static analysis to identify structural de-
pendencies between code entities, dynamic analysis
to identify dependencies based on a succession rela-
tion derived from execution traces, and a ranking of
results from both analyses that takes into account the
relevance of dynamic dependencies. The evaluation
of this work showed it produced fewer false negatives
but more false positives than a precise and efficient
dynamic tool CollectEA(Apiwattanapong, 2005).

The Program Dependency Graph (PDG) (Ferrante
et al., 1987) and associated Slicing (Ottenstein and
Ottenstein, 1984) techniques work at the statement
level. We need to work at the level of methods and
fields because of the size of the program being ana-
lyzed. Rothermel and Harrold (Rothermel and Har-
rold, 1996) identified two kinds of Regression Test
Selection (RTA) techniques: minimization and safe
coverage. Minimization selects minimal sets of tests
through modified or affected program components,
while safe coverage selects every test in the test suite
that may test the changed parts of the program. Ac-
cording to the definition, our work is a safe coverage
approach. In our problem domain, precision is less
important than safety.

The size of the program we want to analyse is a
major factor driving our approach. The sizes of the
software systems most current impact analysis asso-
ciated techniques (Orso et al., 2003; Apiwattanapong
et al., 2004; Canfora and Cerulo, 2005) are dealing
with are orders of magnitude smaller than the enter-
prise systems we have targeted. Taking DEJAVOO
(Orso et al., 2004) as an example, the largest system
analyzed in the empirical study was JBOSS, which
contains 2400 classes. As the two-phase process takes
a considerable time to complete, systems of the size
we are concerned with were clearly beyond the scope
of that research. We have not found any related work
that claims to handle such large systems.

Our approach is based on static analysis (a) be-
cause of the feasibility issue for large programs and
(b) because we consider false negatives (missed im-
pacts) much more dangerous than false positives

(identified impacts which in practice cannot occur).
The very large size of the middleware component
means that in practice only small parts of it are likely
to be exercised by a particular user, and so even a
coarse analysis can produce dramatic savings in re-
gression testing. In addition, dynamic analysis re-
quires run-time information from running test suites
and/or actual executions, which may not be available,
may be very expensive to produce, and may interfere
with the execution and so produce spurious results.

3 DEPENDENCY ANALYSIS

We consider a system having, typically, three layers:
(i) the user’s application code, (ii) the middleware li-
brary, and (iii) a database. Our intention is to con-
struct a dependency graph which we can use to cal-
culate the potential impact of a change within such a
system. In general, if item A refers to item B, then a
change to B has a potential effect on A: A is depen-
dent on B. A and B might be database tables, other
database objects such as stored procedures or triggers,
or methods or fields in the application code or library.
In practice we divide this analysis into three parts,
which we will discuss in turn. Program dependen-
cies are between methods and/or class fields within
the application code and library (which we analyse as
a single program). Program-database dependencies
are between the program and the database. Database
dependencies are between database objects.

3.1 Program Dependencies

The system for which we have so far developed tools
is written in Java, so we will use Java terminology
and discuss the particular problems an object-oriented
language supporting dynamic binding introduces.

Method invocations are candidates for dynamic
binding, meaning that compile time calling of a
method might cause calling of another method at run-
time, due to class inheritance, interface implementa-
tion and method overriding. We illustrate the dynamic
problem with two examples. Consider the situation
in Figure 1 where classes B and C override class A’s
method m(). Although statically all three calls are to
A:m(), dynamically they redirect to A:m(), B:m() and
C:m(), respectively.

As a second example, consider Figure 2 where
classes B and C don’t override class A’s m() method.
Here, the compile time call to C:m() redirects to
A:m() at runtime.

One way to handle dynamic binding statically is
to include all classes from the inheritance hierarchy,
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Figure 1: Dynamic Binding Example 1.

Figure 2: Dynamic Binding Example 2.

as in Class Hierarchy Analysis (CHA) (Bacon and
Sweeney, 1996). The drawback of this approach is
the huge number of redundant call edges that might
result: it creates an edge from each caller of a method
m to every possible instance of m. Consider Figure 3
where the edges to C: f oo() are redundant because
only A: f oo() and B: f oo() have real bodies defined.

Similarly, in Figure 4 the edge to B: f oo() is re-
dundant because A is actually the closest transitive su-
perclass of C that has a body of method f oo() defined.

In the java library we analysed there was an inter-
face with more than 50,000 transitive subclasses. If
there were, say, 100 callers of a method of this inter-
face, 5 million edges would be generated. In prac-
tice we found that only a few dozen of the transi-
tive subclasses would define a particular method, and
a more precise analysis could save perhaps 99% of
these edges.

Some techniques like Rapid Type Analysis (RTA)
and Variable Type Analysis (Bacon and Sweeney,
1996) do exist to tackle this problem and we tried
these approaches using the tool Soot (Lam et al.,
2010), but had to abandon it due to excessive memory
consumption and memory overflow problems. These
approaches turned out be unsuitable for our huge do-
main. This is one of the reasons we resorted to a new
technique which we call access dependency analysis.

The full details of access dependency analysis are
in a technical report (Chen et al., 2011), but we illus-
trate it with our two examples. Consider Figure 5.
The graph shown is the dependency graph result-
ing from the access dependency analysis of the code
shown in Figure 3(a). Note that since C: f oo() has no

Class A{

public void foo(){

...

}

}

Class B extends A{

public void foo(){

...

}

}

Class C extends B{

//does not override foo()

}

Class D1{

public void test(){

A a = new A();

a.foo();

}

}

Class D2{

public void test(){

A a = new B();

a.foo();

}

}

(a) Sample code segment

(b) Graph generated

Figure 3: Conservative Analysis Example 1.

real body of its own, it is not in the graph. We only
consider the overridden versions of methods during
the addition of extra edges for handling dynamic bind-
ing, which reduces the number of edges. Also instead
of adding call edges from D1:test() and D2:test() to
B: f oo(), we add an edge from A: f oo() to B: f oo().
What this edge implies is that a compile time call
to A: f oo() might result in a runtime call to B: f oo().
This kind of edge reduces the number of edges even
further because each additional caller only increases
the number by one (like the edge from D2:test() to
A: f oo()).

As for the second example, consider Figure 6
where the graph shown is the dependency graph re-
sulting from the access dependency analysis of the
code shown in Figure 4(a). Here, since A is the clos-
est transitive superclass of C for the function f oo(), a
compile time call to C: f oo() redirects to A: f oo(), and
we don’t include B: f oo() in the graph. The result is,
once again, a reduced number of edges.

We see that we get an efficient dependency graph
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Class A{

public void foo(){

...

}

}

Class B extends A{

//does not override foo()

}

Class C extends B{

//does not override foo()

}

Class D{

public void test(){

C c = new C();

c.foo();

}

}

(a) Sample code segment

(b) Graph generated

Figure 4: Conservative Analysis Example 2.

Figure 5: Access Dependency Analysis Example 1.

Figure 6: Access Dependency Analysis Example 2.

because (i) links for each overridden method are only
included for the actual overrides and (ii) the size of
the graph grows linearly with the number of callers.

As mentioned earlier, a class with over 50,000
transitive subclasses was found to have only a few
dozen of them which override a particular method.
Using our access dependency analysis, we only get
a few hundred edges (rather than almost 5 million
edges generated by the conservative analysis). Since
the number of edges are reduced, we also get rid of
the memory overflow problem we faced in applying
other existing approaches.

3.2 Program-database Dependencies

Program code interacts with the database via SQL

commands generated as strings, and passed to the
database through the SQL-API. Such strings are of-
ten dynamically created, so we used a string analy-
sis tool, the Java String Analyzer (Christensen et al.,
2003) (JSA), which is capable of statically analyz-
ing a section of code and determining all the strings
which might possibly occur at a given string expres-
sion, including dynamically constructed strings. Cur-
rently the JSA can only work with Java code, but it is
architected in such a way that a single layer of it can
be replaced to add support for a different language,
leaving the majority of the JSA unchanged.

Ideally, all of the Java classes in a program would
be passed simultaneously to the JSA, all usage of
the SQL would be checked, and a report would be
provided showing which strings, and therefore which
database object names, are possible for each SQL
string. Unfortunately, the process used by the JSA is
extremely resource intensive. Using just a small num-
ber of classes (�50) will often cause memory usage
to explode. On a 32GB RAM machine, all available
memory was quickly exhausted in many tests.

A way to segment the classes into small sets which
the JSA can handle is thus required. The technique
used for this was to identify all of the unique “call-
chains” which exist in the program, for which the
bottom-level of a chain is any method which makes
use of SQL, and the top-level of the chain is any one
of the “methods of interest”. These chains can be
constructed via analysis of the program dependency
graph.

Using this technique on a large Java program,
“call-chain explosion” was quickly encountered, due
to cycles in the dependency graph. Initially we were
using a modified depth-first search to go through
the graph. Traditional depth-first search algorithms
are only concerned with finding if one node can be
reached from another. Generating a listing for each
path is not their goal. We needed a modified version
because all possible call-chains through the graph
were required. This modified version ended up falling
victim to the cycles, resulting in an infinite number of
chains.

To solve this, Tarjan’s Algorithm (Tarjan, 1972)
was employed to identify all the strongly connected
components (i.e. cycles). These components were
then compacted into a single node, preserving all of
the incoming and outgoing edges of all nodes in the
strongly connected component. The modified depth-
first search is then run, recording all the possible
SQL-related call-chains through the the graph.

This approach still has two problems. First, some
classes cause the JSA to fail. We built up a list of
such classes and adapted JSA to exclude them from
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the analysis. Second, some strings are effectively just
wild cards, because they depend on user inputs, or be-
cause of incomplete analysis (the use of call chains in-
stead of complete call trees, and the exclusion of some
classes). Again we take the conservative approach,
and assume that a wildcard string can be dependent
on any database object. Fortunately, the proportion of
these in practice seems to be quite small.

3.3 Database Dependencies

The third component of our dependency graph are de-
pendencies between database objects: tables, triggers,
procedures, etc. Fortunately, we had a database in
which such dependencies were already stored. Other-
wise it would be fairly straightforward to write some
SQL procedures to calculate them.

4 PATCH ANALYSIS

As software evolves, there are incremental changes to
an existing, perhaps large, set of code and documen-
tation (Mockus and Weiss, 2000). Users often have to
apply vendor patches to potentially fix issues or en-
sure continuing vendor support.

A single patch can consist of multiple files, and
depending on its type, a patch may update the li-
brary or database (or both) of a system. Patches typ-
ically contain a large number of different types of
files, such as program code, SQL, and documentation.
It is necessary to distinguish between files that will
change the program or database, and files that will
not, and for the first category be able to parse them
to see which methods, tables, procedures etc. may be
changed. Vendor documentation of the patch is typ-
ically inadequately detailed for this task. It is also
better to rely on the source files themselves than on
the accuracy and completeness of the documentation.

4.1 Database Changes

We need to identify which changes are capable of
affecting database objects. Major changes to Ora-
cle databases (for example), come from SQL and
PL/SQL scripts. To do this, we employed an SQL
parser to capture the names of those objects. We had
to extend the original tool to deal with SQL state-
ments that themselves contained SQL definitions.

Other patch files also use SQL for making their
changes. In some the SQL is contained in other text,
in others it is compiled and has to be decompiled to
extract the SQL for the parser. We developed a suite

of tools to handle all the relevant files found in Oracle
patches.

4.2 Library Changes

Patches to Java libraries often come in the form of
class and jar files, and techniques are necessary for
detecting changes at the method and field levels be-
tween the original software and the patch.

Some tools and techniques do exist to detect dif-
ference between two versions of a program. The
Aristotle research group from Georgia Tech. (Api-
wattanapong et al., 2004) showed an approach for
comparing object-oriented programs. Their approach
was not applicable to our domain because it com-
pares both versions of the whole program, rather than
making individual class to class comparisons. More-
over, their application domain was several orders of
magnitude smaller than ours. Meanwhile, there exist
some open source tools like JDiff (Doar, 2007), Jar
Comparer Tool (jarc, ), JarJarDiff and ClassClass-
Diff (Tessier, 2010) which only give API differences
between two class or two jar files. To achieve the
level of detail we require, namely which methods and
fields are changed, we decided to write our own mod-
ification detecting tool for class and jar files. This op-
erates by first converting the Java to XML. We com-
pare the two versions of an XML file, node by node,
to detect differences in methods, fields, access flags,
superclass, interfaces, etc. and list them in another
XML file for use in the impact analysis phase.

As an example, Figures 7(a) and 7(b) show an
original and modified code sample, respectively. Note
that the only difference is the inclusion of the call to
method bar() inside method f oo(). The XML seg-
ment in Figure 7(c) contains this modification infor-
mation.

5 IMPACT ANALYSIS

Our aim is to identify a subset of the previously
selected methods of interest, typically methods ap-
pearing in test suites, that are affected by a directly
changed method, field, or database object that has
been identified by patch analysis (or, perhaps, is a
candidate for change by the user).

The overall process, illustrated in Figure 8, is:

1. We create the program dependency graph. The
graph edges are in fact the reverse of the depen-
dency relation, from each method or field to those
methods which depend on it, because that is the
direction in which we search.
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class Test{

int i;

public void foo(){

i++;

}

public void bar(){

System.out.println();

}

}

(a) Original Code

class Test{

int i;

public void foo(){

i++;

bar();

}

public void bar(){

System.out.println();

}

}

(b) Modified Code

<changed signature="foo()">

<methodinfo>

<instructions/>

<dependencies>

<addedcall>Test:bar()</addedcall>

</dependencies>

</methodinfo>

</changed>

(c) XML Segment Describing Difference

Figure 7: Detecting Modifications.

Figure 8: System Flow Chart.

2. We similarly build the database dependency
graph.

3. For each instance of the SQL-API, we use the
program dependency graph to identify call chains
which terminate in a method of interest, and so
create a relation between methods of interest and
SQL strings. This is the program-database depen-
dency.

4. We use patch analysis to identify changed meth-
ods and fields in the library, and changed database
objects. (If impact analysis is being used to in-
vestigate the impact of proposed changes by the
user to application code and/or database objects,
patch analysis is replaced by analysis of the de-
sign of the proposed changes to see what exist-
ing methods, fields, and database objects are to be
changed.)

5. To calculate the dependencies on a database ob-
ject, we proceed as follows:

(a) We calculate the reflexive transitive closure
of the dependents of our element using the
database dependency graph, a set S, say.

(b) For each element in S we find each SQL string
in the program-database dependency that can
include its name as a substring, and for each

such add the corresponding method of interest
to our results.

6. To calculate the dependencies on a program
method or field, we simply search the program
dependency graph to find all dependents of the
method or field, noting any methods of interest
that we encounter.

7. The last two steps constitute impact analysis. In
either case, the result is a subset of the methods of
interest.

Impact analysis is illustrated in Figure 9. In this
figure, stars are methods of interest, circles are library
methods and fields, and squares are database objects.
Directly changed items (methods, fields, or database
objects) are black, and potentially affected ones are
grey. Unaffected items are white. The dashed lines
represent dependencies between items. Note the de-
pendencies may occur not only between items of dif-
ferent layers, but also between items within the same
layer. For simplicity and clarity, we only show depen-
dencies between layers here. We are searching for the
grey stars, the potentially affected methods of interest.
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Figure 9: Impact Analysis.

6 CASE STUDY

For a case study we took a particular (recent) vendor
patch for a commonly used middleware system. The
library is written in Java, and contains some 230,000
classes, and over 4.6 million methods. The database
as supplied by the vendor contains over 100,000 ob-
jects: tables, triggers, procedures, etc.

The calculation of the program dependency graph
took over 7 hours on a quad core 3.2 GHz machine
with 32 GB RAM running 64-bit Linux. This is a
little above the average desktop, but by no means a
supercomputer. The time is large, but quite manage-
able, especially as this analysis is independent of any
patch or proposed change, and can be prepared in ad-
vance. This graph forms a substantial corporate as-
set for other kinds of analysis, and can be easily and
quickly updated as the system changes, provided we
do the proper analysis of the changes. The depen-
dency graph has over 10 million edges. Searching this
dependency graph takes only a few seconds for each
starting point method or field.

The patch contained 1,326 files with 35 different
file types. Among those 35 file types, 11 can possibly
affect either the library or the database, or both. We
ran our tools on each file with one of these 11 types
and identified 1,040 directly changed database ob-
jects (to which database dependency analysis added
no more) and just 3 directly changed Java methods.

The program-database dependency approach de-
scribed in section 3.2 found that 19,224 out of the 4.6
million methods had SQL-API calls, and that 2,939 of
these methods (just over 15%) had a possible depen-
dency on one of the 1,040 affected database objects.

We adopted as our definition of “methods of inter-
est” those which were not themselves called by any-
thing else, “top callers”, and there were 33,896 of

these, a fraction over 2% of all top callers. The patch,
as might be expected, only affects a tiny part of the
library, and we can identify that part, and do so in a
short space of time.

7 CONCLUSIONS

7.1 Achievement

The achievement of this work is threefold:

� We have developed an improved dependency
model for dealing with object-oriented languages
like Java that support inheritance and dynamic
binding, and shown it to be equivalent (in terms
of finding static dependencies) to other tech-
niques that typically create much larger depen-
dency graphs.

� We have demonstrated the practical applicabil-
ity of the improved model to a very large enter-
prise system involving hundreds of thousands of
classes. Such systems may be perhaps 2 orders
of magnitude larger than the systems analyzed by
other approaches, so our technique seems to be
uniquely powerful.

� We have developed the techniques of string anal-
ysis beyond those of the Java String Analyser we
started with in order again to deal with large size,
and to overcome its inability to deal with some of
the classes we encountered.

The last point is typical of the work we have done,
in developing existing tools to deal with large size,
and in developing our own tools, techniques, and data
structures to deal with the magnitude of the problem.
This has been above all else an exercise in software
engineering.

Change impact analysis is performed in three
stages: dependency analysis with granularity at the
level of method or field for program code and
database object (table, trigger, procedure, etc) for
the database component. The granularity choice is
coarser than examining code at the statement level, or
database tables at the attribute or data item level, but
enables the technique to be used on large, real sys-
tems. Dependency analysis generates dependency re-
lations between methods, fields, and database objects
that can be searched. The second stage is patch analy-
sis, the identification of changed methods, fields, and
database objects. Third, impact analysis combines the
first two outputs to identify the potentially affected
methods of interest in the user application. If the
methods of interest are chosen to be those methods
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appearing in test cases, then we can identify a sub-
set of the regression tests that need to be rerun after a
change. Current indications from our case study are
that these subsets may be comparatively small, giving
a consequent substantial reduction in the considerable
costs, resources and time involved.

The analysis is conservative: while we would like
to reduce false positives, we are determined that there
will be no false negatives, i.e. potential impacts that
remain undetected. We can not tell our users that run-
ning the reduced set of tests our analysis generates
will find any problems caused by the changes: that
will depend on the quality of their test sets. But we
can tell them that running any more of their test sets
will be a waste of resources.

7.2 Future Work

Organizations tend to identify their test suites by the
business process that is being tested, and to think of
their system as consisting of (or supporting) business
processes rather than code classes. HP Quality Cen-
tre, for example, organizes tests by business process.
By analysis of test cases we will be able to relate the
affected methods of interest to the business processes
that might be affected, and hence present results in a
way that is more meaningful to testing departments.

In the medium term, there are a number of other
related applications that can be achieved with the
techniques we have developed. First, we need to ex-
tend the work beyond the current Java tools, to sys-
tems written in other languages such as COBOL. The
modular design of our system, especially an analysis
based on XML, means that only language-dependent
front ends would be needed for each such extension.

We started out intending to analyse vendor-
supplied patches. But we could have started out with
any method, field or database object that the user
might intend to change. We can then identify which
existing tests might execute or depend on that selected
item. This can help users improve test cases. Such
work might be a prelude, and complementary, to dy-
namic analysis to examine test coverage. Indeed, our
analysis makes such dynamic analysis feasible. The
dependency graph identifies the possible methods that
might be called from a given method. If you are test-
ing that method, and want to have some idea of the
coverage of your tests, the relevant baseline is the sub-
graph of the dependency graph with the method being
tested at its apex, not the whole of the library, which
is otherwise all you have. Any particular organization
probably only uses a tiny fraction of the whole library,
and the subgraph of the dependency graph containing
that organization’s methods of interest is the only part

they need to be concerned with.
Finally, impact analysis can be used in plan-

ning enhancements to applications. Once methods or
database objects that are intended to be changed are
identified, typically in the detailed design stage, the
same impact analysis as we use on changes caused by
patches can be done to indicate where the potential
effects are. This raises a number of possibilities. The
testing necessary to cover all possible impacts can be
planned. Or, perhaps, the design may be revisited to
try to reduce the possible impact.
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