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Abstract: Evolutionary structural testing uses specific approaches based on guided searches that involve evaluating 
fitness functions to determine whether test data satisfy or not various structural testing criteria. For testing 
switch-case constructs the nested if-then-else structure and Alternative Critical Branches (ACBs) 
approaches were used so far. In this paper a new evolutionary structural approach based on Compact and 
Minimized Control Flow Graph (CMCFG), which is derived from the concept of Control Flow Graph 
(CFG), is presented. Experiments on different levels of imbrications demonstrate that this new approach has 
significantly better results in finding test data which cover a particular target branch in comparison with the 
previous approaches reported in the literature. 

1 INTRODUCTION 

The main idea behind evolutionary testing process is 
to transform the test goal into an optimization 
problem that is solved using evolutionary algorithms 
(Wegener et al., 2001). The evolutionary process 
search space is represented by the domains of the 
input variables of the software program under test. 
Evolutionary structural testing has been intensively 
used for generating test data by many researchers. 
Harman and McMinn (2010) present a theoretical 
exploration of global search techniques embodied by 
Genetic Algorithms. Other approaches related to 
evolutionary testing with flag conditions are 
presented in Baresel and Sthamer (2003), Baresel et 
al., (2004), and Wappler et al., (2007). Different 
transformations were applied and reported in the 
literature for Evolutionary Testing in order to 
improve the fitness function calculation, because a 
well-defined fitness function is essential for the 
efficiency of evolutionary search process ((Harman, 
et al., 2002), (McMinn and Holcombe, 2005), and 
(McMinn et al., 2009)). 

The main software programs constructs (loops, 
simple statements, if-then-else decision structures) 
were extensively tested in the literature using 
evolutionary algorithms. Less work has been done 
on the switch-case constructs which are used to 
express multi-way decisions and were studied in 
Wang, et al. (2008), where the switch-case construct 

was tested using the concept of Alternative Critical 
Branches (ACBs). ACBs consist of all case branches 
that can lead to a miss of chosen target branch when 
the target branch is leaving a switch node. The 
ACBs consist of one element that is the alternative 
branch of target if it is leaving a two-way decision 
node. Each control dependent node has assigned 
only one ACB. All the ACBs with respect to the 
target branch make up a set. The array of all the 
corresponding ACBs for the target branch forms the 
Critical Branches Set (CBS). This is extended from 
the single critical branch concept. If any element 
which is contained in CBS corresponding to target 
branch is taken, then there is no chance to cover the 
target branch. The focus in this approach is on 
structural testing of multi-way decision statements, 
in particular on branch coverage. 

Our paper proposed a new evolutionary approach 
for testing switch-case constructs. The main idea of 
this approach is to generate a Compact and 
Minimized Control Flow Graph (CMCFG), derived 
from Control Flow Graph (CFG). The CFG is a 
directed graph where each node has at most two 
successors (Ferrante et al., 1987). Inside this new 
Compact and Minimized Control Flow Graph 
(CMCFG) each node can have more than two 
successors and all the case branches which 
correspond to the same switch node are on the same 
level. The case branches which don’t have any break 
or return options are merged with the next case 
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branches which have one of these options and thus a 
new, improved fitness function was proposed, tested 
and compared against the previous ones reported in 
the literature (Wang,  et al., 2008). 

The rest of this paper is organized as follows: 
Section II describes the evolutionary testing 
methodology and the switch-case constructs. Section 
III describes different fitness function calculation 
approaches used for structural testing in case of 
switch-case constructs. Section IV presents the 
experimental results and Section V presents the final 
conclusions and future work. 

2 EVOLUTIONARY TESTING 
METHODOLOGY AND 
SWITCH-CASE CONSTRUCTS 

Evolutionary testing (ET) is a meta-heuristic 
approach by which test data can be generated 
automatically using optimization search algorithms. 
The search space is represented by the variation 
domains of the input variables of the software under 
test, in which test data fulfil the specific test 
objectives. ET is generally used in many search 
problems in software testing, because it has a very 
good capacity of adapting itself to the system under 
test. The main steps of ET process are presented in 
Figure 1: 
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Figure 1: Evolutionary testing process. 

ET was successfully applied for different forms 
of testing, namely: specification testing (Tracey et 
al., 1998), unit testing (Gupta and Rohil, 2008), and 
extreme execution time testing (Wegener and 
Grochtmann, 1998). 

During the ET process the test data are initially 
randomly generated and take values from the 
domains of input variables of the software under 

test. Then the test data performance is evaluated 
based on the fitness function which represents a 
formalized version of the test objective. If the 
established testing criteria are met, then the process 
stops and the best solution found will be the testing 
solution, otherwise the test data will be modified 
using specific evolutionary operators and the process 
will restart by evaluating the new test data.  The 
most important evolutionary operators used during 
ET process are crossover and mutation. Crossover is 
used to combine two parents to produce a new 
offspring. Mutation is used for altering a gene value 
from the chromosome (switching from 1 to 0 in case 
of binary chromosomes). 

Based on the ET methodology the goal of this 
research was to study the switch-case construct in 
the context of structural testing, aiming to find test 
data which executes a particular branch in a program 
containing multi-way decision constructs. In order to 
retrieve the input data which triggers the execution 
of a particular branch of the program, every possible 
solution is evaluated with respect to the test 
objective. 

The switch-case construct is a multi-way 
selection control mechanism which is used as a 
substitute for the nested if-then-else structure. It is 
extensively used in software programs because it 
improves the readability of the software program 
source code and it reduces repetitive coding. 

The general structure of a switch-case construct 
is presented in Figure 2: 
 

 

Figure 2: General switch-case conditional construct. 

The switch-case construct gives the developer 
the possibility of choosing between many 
statements, by passing the flow control to one of the 
case statements within its body. The switch 
statement evaluates the expression which can be an 
expression of any type and executes the case branch 
that corresponds to the expression’s value. It can 
include any number of case statements. Each case 
branch is followed by an optional break, return or 
goto statement (named breaking statements). These 
statements are used either to break out of the switch 
construct when a match is found, or return a value 
and exit the switch body, or go to a specific location 
in the code. 
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If the optional statements break, return and goto 
are not present after a case branch then the control 
flow is transferred to next case branch until it will 
meet one of the breaking statements. If an 
expression passed to switch-case construct does not 
match any case statement, the control will go to the 
default statement. If no default statement exists, the 
control will go outside the switch body. 

A simple switch-case construct is presented in 
Figure 3. 
 

 

Figure 3: Simple switch-case conditional construct. 

A previous work (Wang, et al., 2008) has argued 
that for a particular branch condition, the Critical 
Branches Set (CBS) should be defined.  This array is 
composed by all case branches causing the target to 
be missed. The CBS which corresponds to the target 
branch from the source code listed in Figure 3 is 
composed by {branch “case 1”, branch “case 5”, 
branch “case 2”, and branch “default”}. The branch 
target is definitely missed when the execution of test 
data diverges away down any branch which is in 
CBS. 

The fitness function used for evaluating each test 
data is calculated using the sum between two 
metrics: the approximation level and the branch 
distance. The approximation level is calculated by 
subtracting 1 from the number of ACBs which are 
between the node from which the test data diverges 
away and the target itself (the branch that 
corresponds to “case 0”). The branch distance is 
calculated using the following expression |expr - C| 
+ 1, where expr is the value of the expression which 
appears after switch keyword, C is the constant value 
for the desired case statement and 1 is the positive 
failure constant (Tracey et al., 1998). For example, if 
x = 10, then the branch distance metric for the target 
branch specified in Figure 3 is |10 - 0| + 1 = 11. The 
fitness value indicates how close the test data are to 
triggering the execution of the code located on the 
particular branch of the switch statement, which 
constitutes the target of the current evaluation. 

3 FITNESS CALCULATION 
APPROACHES FOR 
SWITCH-CASE CONSTRUCTS  

3.1 Fitness Calculation based on Nested 
If-then-Else Statements 

Switch-case constructs are considered to be 
equivalent to nested if-then-else constructs with 
respect to the Control Flow Graph (CFG). The 
switch-case construct presented in Figure 3 is 
equivalent to the nested if-then-else construct shown 
in Figure 4: 
 

 

Figure 4: Transformation of switch-case conditional 
constructs in nested if-then-else statements. 

The target branch for which test data should be 
generated is the case branch corresponding to x = 0. 
In order to be able to generate test data which cover 
this specific branch, every potential solution 
randomly generated by the evolutionary search 
process must be evaluated using a fitness function. 
The aim of the fitness function is to guide the 
evolutionary search to find the proper test data 
which execute the target branch. 

In structural testing, previous work (Gursaran, 
2012) has demonstrated that the fitness function 
having the expression illustrated in (1) evaluates 
how close the test object is to cover the target 
branch. 
 

Fitness(test_data) = Approximation_Level + 
Normalized_branch_distance (1)

The normalized branch distance is computed using 
(2) and indicates how close the test object is to take 
the alternative branch. 
 

Normalized_branch_distance = 1 – 1.001-distance (2)
 

The approximation level counts the number of 
decision nodes lying between the decision node 
where the actual test data diverge away from the 
target branch itself. In Figure 5 given x = 1 the 
control flow takes the true branch at decision node 1. 
The approximation level is 3. The branch distance is 
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computed according to (2) using the values of the 
variables or constants involved in the conditions of 
the branching statement (Gursaran, 2012). For the 
branching condition x = 1 the branch distance is |x - 
1|. 
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Figure 5: CFG for simple switch-case construct which was 
transformed in nested if-then-else statements. 

As shown in Figure 5 each decision node is 
control dependent on the previous control nodes. For 
switch-case constructs represented as nested if-then-
else statements, each case branch is dependent on 
the case branching node it leaves and all the case 
branching nodes located before it. For example in 
Figure 3 branch “case 2” is control dependent on 
branches “case 1” and “case  5”. Considering that 
the target branch is the branch corresponding with 
the “case 0”, the test data will receive approximation 
level 0 if it diverge away at condition x==0, will 
receive approximation level 1 if it diverge away at 
condition x==2 and approximation level 3 if it 
diverge away at condition node x==1. If the fitness 
function is calculated for two specific values of the x 
variable, which are 1 and 5, the branch distance for 
both these test data are 0 according with the 
traditional approach for calculating branch distance 
which uses the branch predicate (Tracey et al., 
1998). So the fitness value for these two numbers (1 
and 5) differs only in terms of the approximation 
level. For the constant 1 the approximation level 
value equals 3 and for the constant 5 the 
approximation level equals 2. 

Taking into consideration the principle that better 
test data have smaller fitness, value 5 is considered 
to be better than 1 because it has a smaller fitness 
value. This choice is contrary to the traditional 
approach, because value 1 is much closer to the 0, 
which is the target branch. 

In conclusion the approach which uses nested if-
then-else statements to represent switch-case 
constructs is not a perfect one because the fitness 
value for x = 5 is smaller than the fitness value for x 
= 1 even though 1 is much closer to 0 in comparison 
with 5. This approach is not guiding the evolutionary 
search algorithm in the correct direction, because the 
dependencies between case branches result in an 
inappropriate approximation value. 

3.2 Fitness Calculation based on 
Alternative Critical Branches 
Approach 

The approach for fitness calculation based on ACBs 
assumes that all case branches in the switch-case 
construct are mutually exclusive in semantics. A 
special CFG called Flattened Control Flow Graph 
(FCFG) is described in Gursaran (2012). This graph 
is extended from the traditional CFG, with the only 
difference that the switch node is allowed to have 
more than two successors. In this graph each case 
branch is control dependent only on the switch 
branching node. 

Figure 6 presents the FCFG corresponding to the 
switch-case construct presented in Figure 3: 
 

 
Switch x 

Case 1 Case 5 Case 2 Case  0 Default 

 

Figure 6: FCFG for simple switch-case construct. 

Based on the FCFG definition each node has 
assigned an array of control nodes on which it 
depends. The target branch is definitely missed 
when the execution of test data diverges away in any 
node from the CBS.  When any node in the CBS is 
taken by the test data, then there is no chance that 
the test data cover the target branch. In the example 
shown in Figure 6 the CBS attached to the target 
branch is composed by: branch “case 1”, branch 
“case 5”, branch “case 2” and “default”. If the 
actual test data object executes one of the case 
statements from the CBS, it has no chance to 
execute the target branch case 0. 

With this proposed concept of CBS and FCFG 
the approximation level metric (that is part of the 
fitness function expression) is calculated by 
subtracting 1 from the number of critical branches 
situated between the node from which the test data 
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diverge away from target and the target itself. The 
target branch is the case branch for which the 
evolutionary algorithm should generate test data. 
The branch distance metric used for evaluating the 
test data uses the value which comes after the switch 
expression and the constant for the target branch. 

Using this approach for the case when x equals 1 
or 5, the approximation level value will be 0 and the 
branch distance will be |1 – 0| + 1 = 2 and |5 – 0| + 1 
= 6, respectively. The fitness calculated based on (1) 
will be equal to 2 in case x = 1 and equal to 6 in case 
x = 5. 

For this simple case it is obvious that the fitness 
value based on ACBs approach is guiding the 
evolutionary search in a correct direction compared 
to the nested if-then-else approach, because x = 1 
has a smaller fitness value in comparison with x = 5. 

If the simple switch-case construct becomes a 
more complex one, containing case statements 
without break options and one level of nesting, then 
it can look like in Figure 7: 
 

 

Figure 7: Complex switch-case conditional construct. 

The corresponding FCFG is shown in Figure 8: 

Switch x 

Case 1 Case 10 Case 2 Switch y default

Case 7 Case 8 Case 13 default

 

Figure 8: Flattened control flow graph. 

For the complex switch-case structure presented 

in Figure 7, if test data is composed by x = 1 and y = 
7 the approximation level is 1 and the branch 
distance is |1 - 0| + 1 = 2. The total fitness function 
value is 3. If x = 0 and y = 7 then the approximation 
level is 0 and the branch distance is |7 - 13| + 1 = 7. 
The total fitness function value is 7. So the pair of 
values (x = 1, y = 7) has a smaller fitness value than 
(x = 0, y = 7), even though the second pair of values 
is closer to the solution values (x = 0, y = 0). 

So it is obvious that the fitness value calculation 
approach proposed in Wang, et al. (2008), which is 
based on ACBs approach, misleads the evolutionary 
search process. 

3.3 Fitness Calculation based on 
CMCFG Approach 

To correctly guide the evolutionary search algorithm 
in a correct direction we propose a new approach, 
CMCFG. 

As shown in Figure 8 all the switch nodes have 
as descendants several case branches. For the target 
branch, one or more case branches can lead to the 
target branch being missed. 

In the CMCFG approach each switch statement 
is represented on a different level. The 
approximation level is calculated based on the 
number of switch nodes from which we subtract 1. 
The numbering of approximation level starts in 
CMCFG top-down. As shown in Figure 8, if test 
data derive away from target branch at first switch 
have an approximation level of 1, and if the test data 
derive away from target branch at the second switch 
have an approximation level of 0. 

All the case branches which prevent the target 
branch from being executed are the case branches 
which have one of the following options: break, 
return or goto statement. All these branches stop the 
execution of the switch-case constructs and force the 
exit from this structure. For the case branches which 
don’t have a jump or break option, they are 
considered as not preventing the target branch to be 
missed and they are merged in the CMCFG graph 
with the next case branches which have a break 
option. 

The CMCFG that corresponds to the complex 
switch-case structure presented in Figure 7 is shown 
in Figure 9: 

The node which corresponds to the “case 8” 
branch has no break or return statements and 
therefore it is merged with the node which 
corresponds to the “case 13” branch. In Figure 9 
node 13 has resulted by merging “case 8” and “case 
13” nodes. So it doesn’t matter whether is 8 or 13, 
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because the target is prevented to be executed only 
when break option is met. 
 

 
Switch x 

Case 1 Case 10 Case 2 Switch y default

Case 7 Case 13 default

 

Figure 9: CMCFG for switch-case construct with 1 nesting 
level. 

In CMCFG the case branches which have no 
break, return or goto statements are not represented. 
Instead of these cases, the next case branch which 
has a break or a return statement is represented. 
Compared to the approach based on critical 
branches, this approach is more compact because it 
can be successfully used for modeling different type 
of switch constructs and the decision nodes which 
don’t prevent the target to be covered are not present 
in the graph. The processing time of this new graph 
is smaller in comparison with the processing time 
for FCFG, because the graph has fewer nodes. 

The fitness function which evaluates each test 
data is presented in (3): 
 

Fitness(test_data) = Approximation_Level + 
∑Normalized_branch_distance (3)

The sum that appears in (3) refers to the sum of the 
normalized branch distances computed for each 
gene of the individuals using (4): 
 

Normalized_branch_distance = branch_distance 
/ (branch_distance + 1) (4)

 

In fitness function calculation the normalized branch 
distance is chosen because the approximation level 
is more important in comparison with branch 
distance. We use the equation (4) for branch 
distance normalization based on the study presented 
in Arcuri (2010). The formula used for our proposed 
fitness function is derived from (1). The sum of 
normalized branch distance allows the algorithm to 
converge faster. This formula was chosen based on 
some experimental practical trials made before. 

The branch distance is calculated using the 
switch expression value and the target case value: 
|switch_expr – target_case |. 

The test data values x = 1 and y = 7 will diverge 

away at node “case 1”; therefore the approximation 
level will be 1. The fitness function will be (|1 - 0| / 
|1 - 0| + 1) + (|7 - 13| / |7 - 13| + 1) + 1 = 2.35. The 
second test data values x = 0 and y = 7 will diverge 
away at node “case 7”; therefore the approximation 
level will be 0. The fitness function will be (|7 - 13| / 
|7 - 13| + 1) = 0.85.  The second test data object has 
a fitness function value smaller than the first test 
data object, which means it is closer to the desired 
test data values (x = 0 and y = 13). This means that 
the approach based on CMCFG gives a better 
guidance to the evolutionary search process in 
finding test data covering the target branch in 
comparison with the approaches based on nested if-
then-else and ACBs. 

4 EXPERIMENTAL RESULTS 

Experiments using the new approach based on 
CMCFG were executed on eight different switch-
case constructs having different nested levels – from 
0 to 7. All these switch-case constructs were also 
tested using the nested if-then-else approach and the 
ACBs approach. 

The tool used for testing the switch-case 
constructs was written in C# and all the experiments 
were performed using a PC having the following 
configuration: Intel I3 processor running at 2.2 GHz, 
and Windows 7 Operating System. 

For all the three approaches ten runs were 
performed for testing each switch-case construct and 
the results were compared. The architecture of the 
software program used for generating test data to 
cover the target branch using the three approaches 
presented in Section III is presented in Figure 10: 
 

Program Static Analyzer 

  Construct nested 
if-then-else 
structure 

Code 
instrumented

Control 
dependency 
graph 

Code 
instrumented 

Compact and 
minimized graph

Code 
instrumented 

Evolutionary module 
Run evolutionary search process 

Display module 
Display evolutionary process results in graphical user interface 
 

 

Figure 10: High-level architecture of the software 
program. 
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The software program used for experiments is 
composed of three parts: a static analyzer module, a 
module for running the evolutionary process and a 
module for displaying the graphical results. 

The module that performs the static analysis 
consists of three sub-modules which build the nested 
if-then-else structures, or build the dependency 
graph for ACBs approach, or build the CMCFG 
(depending on which approach is to be executed). 
The static analyzer instruments the code with the 
information needed for calculating the fitness 
function. 

The module that executes the evolutionary 
process uses the data provided by the program 
analyzer component and performs the evolutionary 
process. This is using genetic algorithms for 
evolutionary process. This module runs the 
evolutionary process for 100 generations and uses an 
initial population composed of 40 randomly 
generated individuals. For all three approaches the 
individuals are generated using Random class 
instance from .Net. This class uses a time-dependent 
default seed value. The default seed value is based 
on system clock and has finite resolution. Each 
individual from the population consists of a set of 
genes in which each gene corresponds to a data input 
variable of the program under test.  

The last module takes the results provided by the 
evolutionary module and displays them in a 
graphical user interface. The best solution for each 
generation is displayed in a data grid.  For the 
current generation, the table displays the best 
individual genes values, the fitness function value 
and the computational time needed for current 
generation. 

Figure 11 and Figure 12 show the user interface 
of the software program that was created for 
performing experiments. Figure 11 shows the 
settings area from the user interface of the software 
program, where the user can choose which 
evolutionary algorithm will be used for generating 
test data, which switch-case construct will be tested 
(selected as target) and also which fitness calculation 
approach will be used. 

By checking “ACB” or ”Nested” options, the 
ACBs approach or the nested if – then-else approach 
will be applied. If none of these options is checked 
then the CMCFG approach is applied by default. 
The parameters for the current evolutionary 
algorithms can be set up as well: population size, 
number of generations, individual length and also 
the selection method. 

Figure 12 shows the results obtained for testing a 
switch-case construct which has the nested level 0. 

These results are obtained for a random run. The 
results table allows the developer to trace the current 
algorithm’s execution and displays all the important 
information: the generation number, the value of the 
best individual from the current generation, the 
fitness function for the best individual and the 
processing time for current generation in 
milliseconds. 

 

 

Figure 11: Software application’s user interface. 

For the run shown in Figure 12, the algorithm 
found test data which cover the target case branch at 
generation 4. The Current iteration column displays 
the current iteration of the evolutionary search 
process. The second column contains the best 
individual from the current generation. The column 
called Performance display the fitness function value 
corresponding to the best individual from the current 
iteration. The last column from the data grid display 
the Time needed for processing the entire population 
of 40 individuals. 

 

Figure 12: Software application’s results view. 

Table 1 presents the best run for each of the three 
evolutionary approaches out of ten runs for each. It 
shows that the iteration number at which the 
evolutionary algorithm is able to find test data which 
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covers the target branch is smaller for the CMCFG 
approach compared to the two other approaches. 

Table 1: Experimental results – the iteration number at 
which the solution is found. 

Nested 
level 

Evolutionary approaches 

IF-THEN-ELSE 
(nested if-then-else 

structure) 

ACBs 
(Alternative 

Critical Branches 
Approach) 

CMCFG 
(Compact and 

Minimized Control 
Flow Graph) 

0 27 18 7 

1 90 56 30 
2 98 65 40 
3 100 79 52 
4 >100 83 60 

5 >100 91 68 

6 >100 96 80 
7 >100 100 89 

 

The test data were generated for unstructured 
switch-case constructs having case branches with no 
break or return options. The processing time for the 
CMCFG-based method was smaller compared to the 
processing time needed for the ACBs approach and 
the nested if-then-else constructs approach. The 
processing time strongly depends on the number of 
nodes in the control flow graph. If the CMCFG has 
one branch node less than the normal control flow 
graph, then from our experiments the processing 
time resulted to be significantly smaller in 
comparison with the processing time for a normal 
control flow graph. From the experiments 
implemented was found out that for each nested 
level our proposed method managed successfully to 
find test data which cover the target branch in less 
number of iterations. 

Figures 13 ÷ 20 show the results obtained for 
each nested level of the switch-case construct. All 
three approaches are displayed on the same figure in 
order to facilitate their comparison. 
 

 

Figure 13: Test data generation for a particular case 
branch in nested level 0 – switch-case construct. 

 

Figure 14: Test data generation for a particular case 
branch in nested level 1 – switch-case construct. 

 

Figure 15: Test data generation for a particular case 
branch in nested level 2 – switch-case construct. 

 

Figure 16: Test data generation for a particular case 
branch in nested level 3 – switch-case construct. 

 

Figure 17: Test data generation for a particular case 
branch in nested level 4 – switch-case construct. 
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Figure 18: Test data generation for a particular case 
branch in nested level 5 – switch-case construct. 

 

Figure 19: Test data generation for a particular case 
branch in nested level 6 – switch-case construct. 

 

Figure 20: Test data generation for a particular case 
branch in nested level 7 – switch-case construct. 

 

Figure 21: Iteration number at which each approach is able 
to find test data for different nesting levels of switch-case 
construct. 

As shown in the previous Figures, the proposed 
CMCFG-based approach converges faster than the 
two other approaches. The nested if-then-else 
approach is not able to generate test data for a 
particular case in 100 generations for a switch-case 
construct with more than 3 nested levels. The ACBs 
based approach converges much slower in 
comparison with our proposed approach. This means 
that the fitness function formula used in this paper 
improves the guidance of the evolutionary search 
process, compared with the other tested approaches. 
The process was improved with approximation 15 
iterations in comparison with ACBs approach and 
with approximation 50 iterations in comparison with 
nested if-then-else approach.  

In Figure 21 there is displayed a comparison 
between the three approaches for generating test data 
which cover target branch in switch-case constructs 
which have the nesting level between 0 and 7. As it 
is shown for all tested switch-case constructs our 
approach was able to generate test data in less 
number of iterations in comparison with ACBs 
approach and nested if-then-else approach.  

5 CONCLUSIONS AND FUTURE 
WORK 

Evolutionary testing uses evolutionary search 
algorithms to generate test data that cover a 
particular path in a software program. The approach 
based on nested if-then-else constructs and the one 
based on ACBs have been pointed out to be 
problematic because of a poor guidance of the 
search algorithm. This paper introduced a new 
approach for calculating the fitness function for 
switch-case constructs which improves the 
evolutionary testing process.   

For generating test data which cover a particular 
case branch in a switch-case construct the CMCFG 
approach was used. The solution was tested on 
switch-case constructs having different levels of 
nesting and which can also have case branches 
without break or return options. 

The proposed improvements solve the problem 
of generating test data for a particular case branch in 
a switch-case construct faster with approximation 15 
iterations in comparison with ACBs approach and 
with approximation 50 iterations faster than nested 
if-then-else approach. The representation of the 
switch–case construct as a CMCFG structure is an 
original approach proposed here. The formula used 
for fitness function is also an original metric 
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proposed here which improves the guidance of the 
evolutionary search method. 

Future work will involve using evolutionary 
algorithms for generating test data that cover a 
particular case branch in larger projects. Also 
Simulated Annealing and PSO algorithms will be 
implemented for testing switch-case constructs. A 
testing framework based on evolutionary algorithms 
could be designed and implemented, for completely 
automate the test data generation process. 
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