
A New Evolutionary Approach for the Structural Testing of
Switch-case Constructs

Gentiana Ioana Latiu, Octavian Augustin Cret and Lucia Vacariu
Technical University of Cluj-Napoca, Computer Science Department, Bariţiu Street, Cluj-Napoca, Romania

Keywords: Evolutionary Structural Testing, Control Flow Graph, Switch Case Constructs.

Abstract: Evolutionary structural testing uses specific approaches based on guided searches that involve evaluating
fitness functions to determine whether test data satisfy or not various structural testing criteria. For testing
switch-case constructs the nested if-then-else structure and Alternative Critical Branches (ACBs)
approaches were used so far. In this paper a new evolutionary structural approach based on Compact and
Minimized Control Flow Graph (CMCFG), which is derived from the concept of Control Flow Graph
(CFG), is presented. Experiments on different levels of imbrications demonstrate that this new approach has
significantly better results in finding test data which cover a particular target branch in comparison with the
previous approaches reported in the literature.

1 INTRODUCTION

The main idea behind evolutionary testing process is
to transform the test goal into an optimization
problem that is solved using evolutionary algorithms
(Wegener et al., 2001). The evolutionary process
search space is represented by the domains of the
input variables of the software program under test.
Evolutionary structural testing has been intensively
used for generating test data by many researchers.
Harman and McMinn (2010) present a theoretical
exploration of global search techniques embodied by
Genetic Algorithms. Other approaches related to
evolutionary testing with flag conditions are
presented in Baresel and Sthamer (2003), Baresel et
al., (2004), and Wappler et al., (2007). Different
transformations were applied and reported in the
literature for Evolutionary Testing in order to
improve the fitness function calculation, because a
well-defined fitness function is essential for the
efficiency of evolutionary search process ((Harman,
et al., 2002), (McMinn and Holcombe, 2005), and
(McMinn et al., 2009)).

The main software programs constructs (loops,
simple statements, if-then-else decision structures)
were extensively tested in the literature using
evolutionary algorithms. Less work has been done
on the switch-case constructs which are used to
express multi-way decisions and were studied in
Wang, et al. (2008), where the switch-case construct

was tested using the concept of Alternative Critical
Branches (ACBs). ACBs consist of all case branches
that can lead to a miss of chosen target branch when
the target branch is leaving a switch node. The
ACBs consist of one element that is the alternative
branch of target if it is leaving a two-way decision
node. Each control dependent node has assigned
only one ACB. All the ACBs with respect to the
target branch make up a set. The array of all the
corresponding ACBs for the target branch forms the
Critical Branches Set (CBS). This is extended from
the single critical branch concept. If any element
which is contained in CBS corresponding to target
branch is taken, then there is no chance to cover the
target branch. The focus in this approach is on
structural testing of multi-way decision statements,
in particular on branch coverage.

Our paper proposed a new evolutionary approach
for testing switch-case constructs. The main idea of
this approach is to generate a Compact and
Minimized Control Flow Graph (CMCFG), derived
from Control Flow Graph (CFG). The CFG is a
directed graph where each node has at most two
successors (Ferrante et al., 1987). Inside this new
Compact and Minimized Control Flow Graph
(CMCFG) each node can have more than two
successors and all the case branches which
correspond to the same switch node are on the same
level. The case branches which don’t have any break
or return options are merged with the next case

42 Latiu G., Cret O. and Vacariu L..
A New Evolutionary Approach for the Structural Testing of Switch-case Constructs .
DOI: 10.5220/0004149000420051
In Proceedings of the 4th International Joint Conference on Computational Intelligence (ECTA-2012), pages 42-51
ISBN: 978-989-8565-33-4
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

branches which have one of these options and thus a
new, improved fitness function was proposed, tested
and compared against the previous ones reported in
the literature (Wang, et al., 2008).

The rest of this paper is organized as follows:
Section II describes the evolutionary testing
methodology and the switch-case constructs. Section
III describes different fitness function calculation
approaches used for structural testing in case of
switch-case constructs. Section IV presents the
experimental results and Section V presents the final
conclusions and future work.

2 EVOLUTIONARY TESTING
METHODOLOGY AND
SWITCH-CASE CONSTRUCTS

Evolutionary testing (ET) is a meta-heuristic
approach by which test data can be generated
automatically using optimization search algorithms.
The search space is represented by the variation
domains of the input variables of the software under
test, in which test data fulfil the specific test
objectives. ET is generally used in many search
problems in software testing, because it has a very
good capacity of adapting itself to the system under
test. The main steps of ET process are presented in
Figure 1:

Generate random
test data

Evaluate test data
using fitness

function

Testing
criteria met?

Modify test
data

Stop

Yes

No

Start

Figure 1: Evolutionary testing process.

ET was successfully applied for different forms
of testing, namely: specification testing (Tracey et
al., 1998), unit testing (Gupta and Rohil, 2008), and
extreme execution time testing (Wegener and
Grochtmann, 1998).

During the ET process the test data are initially
randomly generated and take values from the
domains of input variables of the software under

test. Then the test data performance is evaluated
based on the fitness function which represents a
formalized version of the test objective. If the
established testing criteria are met, then the process
stops and the best solution found will be the testing
solution, otherwise the test data will be modified
using specific evolutionary operators and the process
will restart by evaluating the new test data. The
most important evolutionary operators used during
ET process are crossover and mutation. Crossover is
used to combine two parents to produce a new
offspring. Mutation is used for altering a gene value
from the chromosome (switching from 1 to 0 in case
of binary chromosomes).

Based on the ET methodology the goal of this
research was to study the switch-case construct in
the context of structural testing, aiming to find test
data which executes a particular branch in a program
containing multi-way decision constructs. In order to
retrieve the input data which triggers the execution
of a particular branch of the program, every possible
solution is evaluated with respect to the test
objective.

The switch-case construct is a multi-way
selection control mechanism which is used as a
substitute for the nested if-then-else structure. It is
extensively used in software programs because it
improves the readability of the software program
source code and it reduces repetitive coding.

The general structure of a switch-case construct
is presented in Figure 2:

Figure 2: General switch-case conditional construct.

The switch-case construct gives the developer
the possibility of choosing between many
statements, by passing the flow control to one of the
case statements within its body. The switch
statement evaluates the expression which can be an
expression of any type and executes the case branch
that corresponds to the expression’s value. It can
include any number of case statements. Each case
branch is followed by an optional break, return or
goto statement (named breaking statements). These
statements are used either to break out of the switch
construct when a match is found, or return a value
and exit the switch body, or go to a specific location
in the code.

A�New�Evolutionary�Approach�for�the�Structural�Testing�of�Switch-case�Constructs

43

If the optional statements break, return and goto
are not present after a case branch then the control
flow is transferred to next case branch until it will
meet one of the breaking statements. If an
expression passed to switch-case construct does not
match any case statement, the control will go to the
default statement. If no default statement exists, the
control will go outside the switch body.

A simple switch-case construct is presented in
Figure 3.

Figure 3: Simple switch-case conditional construct.

A previous work (Wang, et al., 2008) has argued
that for a particular branch condition, the Critical
Branches Set (CBS) should be defined. This array is
composed by all case branches causing the target to
be missed. The CBS which corresponds to the target
branch from the source code listed in Figure 3 is
composed by {branch “case 1”, branch “case 5”,
branch “case 2”, and branch “default”}. The branch
target is definitely missed when the execution of test
data diverges away down any branch which is in
CBS.

The fitness function used for evaluating each test
data is calculated using the sum between two
metrics: the approximation level and the branch
distance. The approximation level is calculated by
subtracting 1 from the number of ACBs which are
between the node from which the test data diverges
away and the target itself (the branch that
corresponds to “case 0”). The branch distance is
calculated using the following expression |expr - C|
+ 1, where expr is the value of the expression which
appears after switch keyword, C is the constant value
for the desired case statement and 1 is the positive
failure constant (Tracey et al., 1998). For example, if
x = 10, then the branch distance metric for the target
branch specified in Figure 3 is |10 - 0| + 1 = 11. The
fitness value indicates how close the test data are to
triggering the execution of the code located on the
particular branch of the switch statement, which
constitutes the target of the current evaluation.

3 FITNESS CALCULATION
APPROACHES FOR
SWITCH-CASE CONSTRUCTS

3.1 Fitness Calculation based on Nested
If-then-Else Statements

Switch-case constructs are considered to be
equivalent to nested if-then-else constructs with
respect to the Control Flow Graph (CFG). The
switch-case construct presented in Figure 3 is
equivalent to the nested if-then-else construct shown
in Figure 4:

Figure 4: Transformation of switch-case conditional
constructs in nested if-then-else statements.

The target branch for which test data should be
generated is the case branch corresponding to x = 0.
In order to be able to generate test data which cover
this specific branch, every potential solution
randomly generated by the evolutionary search
process must be evaluated using a fitness function.
The aim of the fitness function is to guide the
evolutionary search to find the proper test data
which execute the target branch.

In structural testing, previous work (Gursaran,
2012) has demonstrated that the fitness function
having the expression illustrated in (1) evaluates
how close the test object is to cover the target
branch.

Fitness(test_data) = Approximation_Level +
Normalized_branch_distance (1)

The normalized branch distance is computed using
(2) and indicates how close the test object is to take
the alternative branch.

Normalized_branch_distance = 1 – 1.001-distance (2)

The approximation level counts the number of
decision nodes lying between the decision node
where the actual test data diverge away from the
target branch itself. In Figure 5 given x = 1 the
control flow takes the true branch at decision node 1.
The approximation level is 3. The branch distance is

IJCCI�2012�-�International�Joint�Conference�on�Computational�Intelligence

44

computed according to (2) using the values of the
variables or constants involved in the conditions of
the branching statement (Gursaran, 2012). For the
branching condition x = 1 the branch distance is |x -
1|.

 start

x==1

x==0

x==5

x==2

stop

y=4

y=30

y=8

y=0

Yes

No

Yes

No

Yes

No

Yes

No

Figure 5: CFG for simple switch-case construct which was
transformed in nested if-then-else statements.

As shown in Figure 5 each decision node is
control dependent on the previous control nodes. For
switch-case constructs represented as nested if-then-
else statements, each case branch is dependent on
the case branching node it leaves and all the case
branching nodes located before it. For example in
Figure 3 branch “case 2” is control dependent on
branches “case 1” and “case 5”. Considering that
the target branch is the branch corresponding with
the “case 0”, the test data will receive approximation
level 0 if it diverge away at condition x==0, will
receive approximation level 1 if it diverge away at
condition x==2 and approximation level 3 if it
diverge away at condition node x==1. If the fitness
function is calculated for two specific values of the x
variable, which are 1 and 5, the branch distance for
both these test data are 0 according with the
traditional approach for calculating branch distance
which uses the branch predicate (Tracey et al.,
1998). So the fitness value for these two numbers (1
and 5) differs only in terms of the approximation
level. For the constant 1 the approximation level
value equals 3 and for the constant 5 the
approximation level equals 2.

Taking into consideration the principle that better
test data have smaller fitness, value 5 is considered
to be better than 1 because it has a smaller fitness
value. This choice is contrary to the traditional
approach, because value 1 is much closer to the 0,
which is the target branch.

In conclusion the approach which uses nested if-
then-else statements to represent switch-case
constructs is not a perfect one because the fitness
value for x = 5 is smaller than the fitness value for x
= 1 even though 1 is much closer to 0 in comparison
with 5. This approach is not guiding the evolutionary
search algorithm in the correct direction, because the
dependencies between case branches result in an
inappropriate approximation value.

3.2 Fitness Calculation based on
Alternative Critical Branches
Approach

The approach for fitness calculation based on ACBs
assumes that all case branches in the switch-case
construct are mutually exclusive in semantics. A
special CFG called Flattened Control Flow Graph
(FCFG) is described in Gursaran (2012). This graph
is extended from the traditional CFG, with the only
difference that the switch node is allowed to have
more than two successors. In this graph each case
branch is control dependent only on the switch
branching node.

Figure 6 presents the FCFG corresponding to the
switch-case construct presented in Figure 3:

Switch x

Case 1 Case 5 Case 2 Case 0 Default

Figure 6: FCFG for simple switch-case construct.

Based on the FCFG definition each node has
assigned an array of control nodes on which it
depends. The target branch is definitely missed
when the execution of test data diverges away in any
node from the CBS. When any node in the CBS is
taken by the test data, then there is no chance that
the test data cover the target branch. In the example
shown in Figure 6 the CBS attached to the target
branch is composed by: branch “case 1”, branch
“case 5”, branch “case 2” and “default”. If the
actual test data object executes one of the case
statements from the CBS, it has no chance to
execute the target branch case 0.

With this proposed concept of CBS and FCFG
the approximation level metric (that is part of the
fitness function expression) is calculated by
subtracting 1 from the number of critical branches
situated between the node from which the test data

A�New�Evolutionary�Approach�for�the�Structural�Testing�of�Switch-case�Constructs

45

diverge away from target and the target itself. The
target branch is the case branch for which the
evolutionary algorithm should generate test data.
The branch distance metric used for evaluating the
test data uses the value which comes after the switch
expression and the constant for the target branch.

Using this approach for the case when x equals 1
or 5, the approximation level value will be 0 and the
branch distance will be |1 – 0| + 1 = 2 and |5 – 0| + 1
= 6, respectively. The fitness calculated based on (1)
will be equal to 2 in case x = 1 and equal to 6 in case
x = 5.

For this simple case it is obvious that the fitness
value based on ACBs approach is guiding the
evolutionary search in a correct direction compared
to the nested if-then-else approach, because x = 1
has a smaller fitness value in comparison with x = 5.

If the simple switch-case construct becomes a
more complex one, containing case statements
without break options and one level of nesting, then
it can look like in Figure 7:

Figure 7: Complex switch-case conditional construct.

The corresponding FCFG is shown in Figure 8:

Switch x

Case 1 Case 10 Case 2 Switch y default

Case 7 Case 8 Case 13 default

Figure 8: Flattened control flow graph.

For the complex switch-case structure presented

in Figure 7, if test data is composed by x = 1 and y =
7 the approximation level is 1 and the branch
distance is |1 - 0| + 1 = 2. The total fitness function
value is 3. If x = 0 and y = 7 then the approximation
level is 0 and the branch distance is |7 - 13| + 1 = 7.
The total fitness function value is 7. So the pair of
values (x = 1, y = 7) has a smaller fitness value than
(x = 0, y = 7), even though the second pair of values
is closer to the solution values (x = 0, y = 0).

So it is obvious that the fitness value calculation
approach proposed in Wang, et al. (2008), which is
based on ACBs approach, misleads the evolutionary
search process.

3.3 Fitness Calculation based on
CMCFG Approach

To correctly guide the evolutionary search algorithm
in a correct direction we propose a new approach,
CMCFG.

As shown in Figure 8 all the switch nodes have
as descendants several case branches. For the target
branch, one or more case branches can lead to the
target branch being missed.

In the CMCFG approach each switch statement
is represented on a different level. The
approximation level is calculated based on the
number of switch nodes from which we subtract 1.
The numbering of approximation level starts in
CMCFG top-down. As shown in Figure 8, if test
data derive away from target branch at first switch
have an approximation level of 1, and if the test data
derive away from target branch at the second switch
have an approximation level of 0.

All the case branches which prevent the target
branch from being executed are the case branches
which have one of the following options: break,
return or goto statement. All these branches stop the
execution of the switch-case constructs and force the
exit from this structure. For the case branches which
don’t have a jump or break option, they are
considered as not preventing the target branch to be
missed and they are merged in the CMCFG graph
with the next case branches which have a break
option.

The CMCFG that corresponds to the complex
switch-case structure presented in Figure 7 is shown
in Figure 9:

The node which corresponds to the “case 8”
branch has no break or return statements and
therefore it is merged with the node which
corresponds to the “case 13” branch. In Figure 9
node 13 has resulted by merging “case 8” and “case
13” nodes. So it doesn’t matter whether is 8 or 13,

IJCCI�2012�-�International�Joint�Conference�on�Computational�Intelligence

46

because the target is prevented to be executed only
when break option is met.

Switch x

Case 1 Case 10 Case 2 Switch y default

Case 7 Case 13 default

Figure 9: CMCFG for switch-case construct with 1 nesting
level.

In CMCFG the case branches which have no
break, return or goto statements are not represented.
Instead of these cases, the next case branch which
has a break or a return statement is represented.
Compared to the approach based on critical
branches, this approach is more compact because it
can be successfully used for modeling different type
of switch constructs and the decision nodes which
don’t prevent the target to be covered are not present
in the graph. The processing time of this new graph
is smaller in comparison with the processing time
for FCFG, because the graph has fewer nodes.

The fitness function which evaluates each test
data is presented in (3):

Fitness(test_data) = Approximation_Level +
∑Normalized_branch_distance (3)

The sum that appears in (3) refers to the sum of the
normalized branch distances computed for each
gene of the individuals using (4):

Normalized_branch_distance = branch_distance
/ (branch_distance + 1) (4)

In fitness function calculation the normalized branch
distance is chosen because the approximation level
is more important in comparison with branch
distance. We use the equation (4) for branch
distance normalization based on the study presented
in Arcuri (2010). The formula used for our proposed
fitness function is derived from (1). The sum of
normalized branch distance allows the algorithm to
converge faster. This formula was chosen based on
some experimental practical trials made before.

The branch distance is calculated using the
switch expression value and the target case value:
|switch_expr – target_case |.

The test data values x = 1 and y = 7 will diverge

away at node “case 1”; therefore the approximation
level will be 1. The fitness function will be (|1 - 0| /
|1 - 0| + 1) + (|7 - 13| / |7 - 13| + 1) + 1 = 2.35. The
second test data values x = 0 and y = 7 will diverge
away at node “case 7”; therefore the approximation
level will be 0. The fitness function will be (|7 - 13| /
|7 - 13| + 1) = 0.85. The second test data object has
a fitness function value smaller than the first test
data object, which means it is closer to the desired
test data values (x = 0 and y = 13). This means that
the approach based on CMCFG gives a better
guidance to the evolutionary search process in
finding test data covering the target branch in
comparison with the approaches based on nested if-
then-else and ACBs.

4 EXPERIMENTAL RESULTS

Experiments using the new approach based on
CMCFG were executed on eight different switch-
case constructs having different nested levels – from
0 to 7. All these switch-case constructs were also
tested using the nested if-then-else approach and the
ACBs approach.

The tool used for testing the switch-case
constructs was written in C# and all the experiments
were performed using a PC having the following
configuration: Intel I3 processor running at 2.2 GHz,
and Windows 7 Operating System.

For all the three approaches ten runs were
performed for testing each switch-case construct and
the results were compared. The architecture of the
software program used for generating test data to
cover the target branch using the three approaches
presented in Section III is presented in Figure 10:

Program Static Analyzer

 Construct nested
if-then-else
structure

Code
instrumented

Control
dependency
graph

Code
instrumented

Compact and
minimized graph

Code
instrumented

Evolutionary module
Run evolutionary search process

Display module
Display evolutionary process results in graphical user interface

Figure 10: High-level architecture of the software
program.

A�New�Evolutionary�Approach�for�the�Structural�Testing�of�Switch-case�Constructs

47

The software program used for experiments is
composed of three parts: a static analyzer module, a
module for running the evolutionary process and a
module for displaying the graphical results.

The module that performs the static analysis
consists of three sub-modules which build the nested
if-then-else structures, or build the dependency
graph for ACBs approach, or build the CMCFG
(depending on which approach is to be executed).
The static analyzer instruments the code with the
information needed for calculating the fitness
function.

The module that executes the evolutionary
process uses the data provided by the program
analyzer component and performs the evolutionary
process. This is using genetic algorithms for
evolutionary process. This module runs the
evolutionary process for 100 generations and uses an
initial population composed of 40 randomly
generated individuals. For all three approaches the
individuals are generated using Random class
instance from .Net. This class uses a time-dependent
default seed value. The default seed value is based
on system clock and has finite resolution. Each
individual from the population consists of a set of
genes in which each gene corresponds to a data input
variable of the program under test.

The last module takes the results provided by the
evolutionary module and displays them in a
graphical user interface. The best solution for each
generation is displayed in a data grid. For the
current generation, the table displays the best
individual genes values, the fitness function value
and the computational time needed for current
generation.

Figure 11 and Figure 12 show the user interface
of the software program that was created for
performing experiments. Figure 11 shows the
settings area from the user interface of the software
program, where the user can choose which
evolutionary algorithm will be used for generating
test data, which switch-case construct will be tested
(selected as target) and also which fitness calculation
approach will be used.

By checking “ACB” or ”Nested” options, the
ACBs approach or the nested if – then-else approach
will be applied. If none of these options is checked
then the CMCFG approach is applied by default.
The parameters for the current evolutionary
algorithms can be set up as well: population size,
number of generations, individual length and also
the selection method.

Figure 12 shows the results obtained for testing a
switch-case construct which has the nested level 0.

These results are obtained for a random run. The
results table allows the developer to trace the current
algorithm’s execution and displays all the important
information: the generation number, the value of the
best individual from the current generation, the
fitness function for the best individual and the
processing time for current generation in
milliseconds.

Figure 11: Software application’s user interface.

For the run shown in Figure 12, the algorithm
found test data which cover the target case branch at
generation 4. The Current iteration column displays
the current iteration of the evolutionary search
process. The second column contains the best
individual from the current generation. The column
called Performance display the fitness function value
corresponding to the best individual from the current
iteration. The last column from the data grid display
the Time needed for processing the entire population
of 40 individuals.

Figure 12: Software application’s results view.

Table 1 presents the best run for each of the three
evolutionary approaches out of ten runs for each. It
shows that the iteration number at which the
evolutionary algorithm is able to find test data which

IJCCI�2012�-�International�Joint�Conference�on�Computational�Intelligence

48

covers the target branch is smaller for the CMCFG
approach compared to the two other approaches.

Table 1: Experimental results – the iteration number at
which the solution is found.

Nested
level

Evolutionary approaches

IF-THEN-ELSE
(nested if-then-else

structure)

ACBs
(Alternative

Critical Branches
Approach)

CMCFG
(Compact and

Minimized Control
Flow Graph)

0 27 18 7

1 90 56 30
2 98 65 40
3 100 79 52
4 >100 83 60

5 >100 91 68

6 >100 96 80
7 >100 100 89

The test data were generated for unstructured
switch-case constructs having case branches with no
break or return options. The processing time for the
CMCFG-based method was smaller compared to the
processing time needed for the ACBs approach and
the nested if-then-else constructs approach. The
processing time strongly depends on the number of
nodes in the control flow graph. If the CMCFG has
one branch node less than the normal control flow
graph, then from our experiments the processing
time resulted to be significantly smaller in
comparison with the processing time for a normal
control flow graph. From the experiments
implemented was found out that for each nested
level our proposed method managed successfully to
find test data which cover the target branch in less
number of iterations.

Figures 13 ÷ 20 show the results obtained for
each nested level of the switch-case construct. All
three approaches are displayed on the same figure in
order to facilitate their comparison.

Figure 13: Test data generation for a particular case
branch in nested level 0 – switch-case construct.

Figure 14: Test data generation for a particular case
branch in nested level 1 – switch-case construct.

Figure 15: Test data generation for a particular case
branch in nested level 2 – switch-case construct.

Figure 16: Test data generation for a particular case
branch in nested level 3 – switch-case construct.

Figure 17: Test data generation for a particular case
branch in nested level 4 – switch-case construct.

A�New�Evolutionary�Approach�for�the�Structural�Testing�of�Switch-case�Constructs

49

Figure 18: Test data generation for a particular case
branch in nested level 5 – switch-case construct.

Figure 19: Test data generation for a particular case
branch in nested level 6 – switch-case construct.

Figure 20: Test data generation for a particular case
branch in nested level 7 – switch-case construct.

Figure 21: Iteration number at which each approach is able
to find test data for different nesting levels of switch-case
construct.

As shown in the previous Figures, the proposed
CMCFG-based approach converges faster than the
two other approaches. The nested if-then-else
approach is not able to generate test data for a
particular case in 100 generations for a switch-case
construct with more than 3 nested levels. The ACBs
based approach converges much slower in
comparison with our proposed approach. This means
that the fitness function formula used in this paper
improves the guidance of the evolutionary search
process, compared with the other tested approaches.
The process was improved with approximation 15
iterations in comparison with ACBs approach and
with approximation 50 iterations in comparison with
nested if-then-else approach.

In Figure 21 there is displayed a comparison
between the three approaches for generating test data
which cover target branch in switch-case constructs
which have the nesting level between 0 and 7. As it
is shown for all tested switch-case constructs our
approach was able to generate test data in less
number of iterations in comparison with ACBs
approach and nested if-then-else approach.

5 CONCLUSIONS AND FUTURE
WORK

Evolutionary testing uses evolutionary search
algorithms to generate test data that cover a
particular path in a software program. The approach
based on nested if-then-else constructs and the one
based on ACBs have been pointed out to be
problematic because of a poor guidance of the
search algorithm. This paper introduced a new
approach for calculating the fitness function for
switch-case constructs which improves the
evolutionary testing process.

For generating test data which cover a particular
case branch in a switch-case construct the CMCFG
approach was used. The solution was tested on
switch-case constructs having different levels of
nesting and which can also have case branches
without break or return options.

The proposed improvements solve the problem
of generating test data for a particular case branch in
a switch-case construct faster with approximation 15
iterations in comparison with ACBs approach and
with approximation 50 iterations faster than nested
if-then-else approach. The representation of the
switch–case construct as a CMCFG structure is an
original approach proposed here. The formula used
for fitness function is also an original metric

IJCCI�2012�-�International�Joint�Conference�on�Computational�Intelligence

50

proposed here which improves the guidance of the
evolutionary search method.

Future work will involve using evolutionary
algorithms for generating test data that cover a
particular case branch in larger projects. Also
Simulated Annealing and PSO algorithms will be
implemented for testing switch-case constructs. A
testing framework based on evolutionary algorithms
could be designed and implemented, for completely
automate the test data generation process.

REFERENCES

Arcuri, A., 2010. It Does Matter How You Normalise the
Branch Distance in Search Based Software Testing. In
Software Testing, Verification and Validation, pp.
205-214.

Baresel, A., Sthamer, H., 2003. Evolutionary testing of
flag conditions. In Proceeding of the Genetic and
Evolutionary Computation Conference, GECCO’03,
pp. 2428-2441.

Baresel, A., Binkley, D., Harman, M., 2004. Evolutionary
Testing in the Presence of Loop-Assigned Flags: A
Testability Transformation Approach. In Proceedings
of the ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA ’04, vol. 29, pp.
43-52.

Ferrante, J., Ottenstein, K., Warren, J., 1987. The program
Dependence Graph and Its Use in Optimization. In
ACM Transactions on Programming Languages and
Systems, vol. 9, pp. 319-349.

Harman, M., Hu, L., Hierons, R., Baresel, A., Sthamer, H.,
2002. Improving Evolutionary Testing by Flag
Removal. Proceeding of the Genetic and Evolutionary
Computation Conference, GECCO’02, pp. 1359-1366.

Harman, M., McMinn P., 2010. A Theoretical and
Empirical Study of Search-Based Testing: Local,
Global, and Hybrid Search. In IEEE Transactions on
Software Engineering, Journal vol. 36, pp. 226-247.

McMinn, P., Holcombe, M., 2005. Evolutionary testing of
state-based programs. In Proceedings of the Genetic
and Evolutionary Computation Conference,
GECCO’05, pp. 1013-1020.

McMinn, P., Binkley, D., Harman M., 2009. Empirical
Evaluation of a Nesting Testability Transformation for
Evolutionary Testing. In ACM Transformation
Software Engineering Methodology, vol. 18, pp. 1-27.

Tracey, N., Clark, J., Mander, K., 1998. Automated
program flaw finding using simulated annealing. In
Proceeding of the ACM SIGSOFT International
Symposium of Software Testing and Analysis,
ISSTA’98, pp. 73-81.

Gupta, N. K., Rohil, M. K., 2008. Using Genetic
Algorithm for Unit Testing of Object Oriented
Software. In Emerging Trends in Engineering and
Technology, pp. 308-313.

Gursaran, A. P., 2012. Program test data generation

branch coverage with genetic algorithm: Comparative
evaluation of a maximization and minimization
approach. In International Journal of Software
Engineering and Applications, vol. 3, pp. 207-218.

Tracey, N., Clark, J., Mander, K., McDermin, J., 1998. An
Automated Framework for Structural Test-Data
Generation. In Proocedings of the 13th IEEE
International Conference on Automated Software
Engineering, pp. 285.

Wang, Y., Bai, Z., Zhang, M., Du, W., Qin, Y., Liu, X.,
2008. Fitness Calculation Approach for the Switch-
Case Construct in Evolutionary Testing. In
Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO’08, pp. 1767-1774.

Wappler, S., Baresel, A., Wegener, J., 2007. Improving
Evolutionary Testing in the Presence of Function-
Assigned Flags. In Testing: Academic and Industrial
Conference Practice and Research Techniques-
Mutation, pp. 23-34.

Wegener, J., Grochtmann, M., 1998. Verifying Timing
Constraints of Real-Time Systems by Means of
Evolutionary Testing. In Real Time Systems Journal,
vol. 15, pp. 275-298.

Wegener, J., Baresel, A., Sthamer H., 2001. Evolutionary
test environment for automatic structural testing. In
Information and Software Technology, Journal vol. 43
(14), pp. 841-854.

A�New�Evolutionary�Approach�for�the�Structural�Testing�of�Switch-case�Constructs

51

