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Abstract: The development of a parallel batch pattern back propagation training algorithm of a recirculation neural 
network is presented in this paper. The model of a recirculation neural network and usual sequential batch 
pattern algorithm of its training are theoretically described. An algorithmic description of the parallel 
version of the batch pattern training method is presented. The parallelization efficiency of the developed 
parallel algorithm is investigated on the example of data compression and principal component analysis. 
The results of the experimental researches show that the developed parallel algorithm provides high 
parallelization efficiency on a parallel symmetric multiprocessor computer system. It allows applying the 
developed parallel software for the facilitation of scientific research of neural network-based intrusion 
detection system for computer networks. 

1 INTRODUCTION 

Artificial neural networks (NNs) have excellent 
abilities to model difficult nonlinear systems. They 
represent a very good alternative to traditional 
methods for solving complex problems in many 
fields, including image processing, predictions, 
pattern recognition, robotics, optimization, etc 
(Haykin, 2008). However, most NN models require 
high computational load in the training phase (on a 
range from several hours to several days). This is, 
indeed, the main obstacle to face for an efficient use 
of NNs in real-world applications. The use of 
general-purpose high performance computers, 
clusters and computational grids to speed up the 
training phase of NNs is one of the ways to 
outperform this obstacle. Therefore the research of a 
parallelization efficiency of NNs parallel training 
algorithms on such kind of parallel systems is still 
remaining an urgent research problem. 

Taking into account the parallel nature of NNs, 
many researchers have already focused their 
attention on NNs parallelization on specialized 
computing hardware and transputers (Mahapatra et 
al, 1997, Hanzalek, 1998), but these solutions 
require an availability of the mentioned devices for 
the use by wide scientific community. Instead 

general-purpose high performance computers and 
computational clusters are widely used now for 
scientific experiments and modeling using remote 
access. 

There are developed several grid-based 
frameworks for NNs parallelization (Vin et al., 
2005); (Krammer et al., 2006), however they do not 
deal with parallelization efficiency issues. The 
authors of (De Llano, 2010) investigate parallel 
training of multi-layer perceptron (MLP) on SMP 
computer, cluster and computational grid using MPI 
(Message Passing Interface) parallelization. They 
have researched big NN models which process huge 
number of the training patterns (around 20000) 
coming from Large Hadron Collider. However their 
implementation of relatively small MLP architecture 
16-10-10-1 (16 neurons in the input layer, two 
hidden layers with 10 neurons in each layer and one 
output neuron) with 270 internal connections 
(number of weights of neurons and their thresholds) 
does not provide positive parallelization speedup 
due to large communication overhead, i.e. the 
speedup is less than 1. 

The development of parallel training algorithm 
of Elman’s simple recurrent neural network (RNN) 
based on Extended Kalman Filter on multicore 
processor and Graphic Processing Unit (GPU) is 
presented in (Cernansky et al., 2009). The author has 
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showed a reduction of the RNN training time using a 
GPU solution (4 times better performance was 
achieved), however it is impossible to assess the 
parallelization efficiency of this parallel algorithm 
because it was not clearly stated a number of GPU 
threats used for parallelization. The authors of 
(Lotric et al., 2009) have presented the development 
of parallel training algorithm of fully connected 
RNN based on linear reward penalty correction 
scheme. 

The authors of (Turchenko and Grandinetti, 
2010); (Turchenko et al., 2012) have researched the 
problem of parallelization of NN training on the 
example of feed-forward NNs with direct (MLP) and 
inverse (RNN) connections. They have developed 
the parallel batch pattern back propagation (BP) 
training algorithm for both types of NNs and 
presented their good parallelization efficiency on 
general-purpose parallel computers and 
computational clusters. 

Meantime Recirculation Neural Networks 
(RCNN) are successfully used for data compression 
and decompression, image processing and Principal 
Component Analysis (PCA) (Golovko et al., 2001); 
(Bryliuk et al., 2001). However, the parallelization 
techniques for RCNN training are not enough 
addressed by the world’s scientific community yet. 
Our analysis has shown a lack of research papers in 
this issue. 

The goal of this paper is to present the 
development of a parallel training algorithm for 
recirculation neural network and research its 
parallelization efficiency on a general-purpose 
parallel computer. The rest of this paper is ordered 
as follows: Section 2 details the mathematical 
description of a batch pattern back propagation 
training algorithm for RCNN, Sections 3 describes 
the parallel implementation of this algorithm, 
Section 4 presents the obtained experimental results 
and concluding remarks in Section 5 finishes this 
paper. 

2 BATCH PATTERN BP 
TRAINING ALGORITHM OF 
RECIRCULATION NN  

In our previous research we have proven that the 
parallelization of a batch pattern training approach is 
efficient on general-purpose parallel computers and 
computational clusters instead of the parallelization 
on the level of neuron or synapses of neurons 
(Turchenko et al., 2010); (Turchenko et al., 2009) on 

the examples of MLP and RNNs. The batch pattern 
training algorithm updates neurons’ weights and 
thresholds at the end of each training epoch, i.e. after 
processing of all training patterns, instead of 
updating weights and thresholds after processing of 
each pattern in the usual sequential training mode. 
Therefore it is expedient to apply this parallelization 
scheme to a RCNN. 

Recirculation neural network (Fig. 1) performs 
compression of the input pattern space X  to obtain 
the principal components. The principal components 
are the output values Y  of the neurons of the hidden 
layer. Then the RCNN restores the compressed data 
(principal components) into the output vector X . 
The output value of the RCNN can be formulated as: 
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where p  is the number of neurons in the hidden 
layer, jiw′  is the weight of the synapse from the 
neuron j  of the hidden layer to the neuron i  of the 
output layer, n  is the number of neurons in the input 
and output layers, ijw  is the weight from the input 
neuron i  to neuron j  in the hidden layer, ix  are the 
input values (Golovko et al., 2001). 
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Figure 1: The structure of a recirculation neural network. 

The batch pattern BP training algorithm consists 
of the following steps (Golovko et al., 2001): 
1 Set the desired Sum Squared Error (SSE) to a 
value minE  and the number of training epochs t ; 
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2 Initialize the weights and the thresholds of the 
neurons with values in range (-0.1…0.1) (Golovko 
et al, 1999); 
3 For the training pattern pt : 

3.1. Calculate the output value )(txi  by 
expression (1); 
3.2. Calculate the errors of the output neurons 

))()(()( txtxt pt
i

pt
i

pt
i −=γ , where )(tx pt

i  is the 
output value of the i  output neuron and )(tx pt

i  is 
the value with index i  of the input pattern of the 
RCNN; 
3.3. Calculate the errors of the hidden layer 
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where )(tS pt
i  is the weighted sum of the i  output 

neuron, 3F ′  is a derivative of the logistic 
activation function with )(tS pt

i argument; 
3.4. Calculate the delta weights and delta 
thresholds of all neurons and add the result to the 
value of the previous pattern 
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j  are the weighted sum and the 
output value of the neuron j  of the hidden layer 
respectively; 
3.5. Calculate the SSE using 
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4 Repeat the step 3 above for all training patterns 
pt , { }PTpt ,...,1∈ , PT  is the size of the training 

set; 
5 Update the weights and thresholds of neurons 
using expressions jijiji wstwPTw ′Δ⋅−′=′ )()0()( 3α  
and ijijij wstwPTw Δ⋅−= )()0()( 2α , where )0(jiw′  
and )0(ijw  are the values of the weights of the 
hidden and output layers from the previous training 
epoch, )(2 tα  and )(3 tα  are the learning rates for the 
neurons of the hidden and output layers respectively; 
6 Calculate the total SSE )(tE  on the training 

epoch t  using ∑
=

=
PT

pt

pt tEtE
1

)()( ; 

7 If )(tE  is greater than the desired error minE  
then increase the number of training epochs to 1+t  
and go to step 3, otherwise stop the training process. 

3 PARALLEL 
IMPLEMENTATION OF 
BATCH PATTERN BP 
TRAINING ALGORITHM OF 
RCNN 

Similarly to the parallel batch pattern training 
algorithm of an MLP presented in (Turchenko et al., 
2012); (Turchenko et al., 2009), sequential execution 
of points 3.1-3.5 above for all training patterns in the 
training set could be parallelized, because the sum 
operations jiws ′Δ  and ijwsΔ  are independent of each 
other. For the development of the parallel algorithm 
all the computational work should be divided among 
the Master (executing assigning functions and 
calculations) and the Workers (executing only 
calculations) processors.  

The algorithms for Master and Worker 
processors are depicted in Fig. 2. The Master starts 
with definition (i) the number of patterns PT in the 
training data set and (ii) the number of processors p 
used for the parallel executing of the training 
algorithm. The Master divides all patterns in equal 
parts corresponding to the number of the Workers 
and assigns one part of patterns to itself. Then the 
Master sends to the Workers the numbers of the 
appropriate patterns to train.  

Each Worker executes the following operations 
for each pattern pt of the PT/p patterns assigned to 
it: 
1. calculate the points 3.1-3.5 and 4, only for its 
assigned number of training patterns. The values of 
the partial sums of delta weights jiws ′Δ  and ijwsΔ are 
calculated there; 
2. calculate the partial SSE for its assigned number 
of training patterns. 
After processing all assigned patterns, only one all-
reduce collective communication operation (it 
provides the summation as well) is executed. 
Synchronization with other processors is 
automatically provided by internal implementation 
of this all-reduce operation (Turchenko et al., 2010). 
However from the algorithmic point of view it is 
showed as an independent operator in Fig. 2 before 
the operation of data reduce. Then the summarized 
values jiws ′Δ  and ijwsΔ  are sent to all processors 
working in parallel. Instead of three communication 
messages in (De Llano et al., 2010), using only one 
all-reduce collective communication message, which 
also returns the reduced values back to the Workers, 
allows decreasing a communication overhead in this 
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point. Then the summarized values jiws ′Δ  and ijwsΔ  
are placed into the local memory of each processor. 
Each processor uses these values for updating the 
weights according to the point 5 of the algorithm 
above. These updated weights will be used on the 
next iteration of the training algorithm. As the 
summarized value of )(tE  is also received as a 
result of the reducing operation, the Master decides 
whether to continue the training or not. 
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Message to 
finish work?

End 
 

Figure 2: The algorithms of the Master (a) and the Worker 
(b) processors. 

The software routine is developed using C 
programming language with the standard MPI 
functions. The parallel part of the algorithm starts 
with the call of MPI_Init() function. An 
MPI_Allreduce() function reduces the deltas of 
weights jiws ′Δ  and ijwsΔ , summarizes them and 
sends them back to all processors in the group. 

Since the weights and thresholds are physically 
located in the different matrixes of the software 
routine, we have done pre-encoding of all data into 
one communication message before sending and 
reverse post-decoding the data to the appropriate 
matrixes after message receiving in order to provide 
only one physical call of the function 
MPI_Allreduce() in the communication section of 
the algorithm. Function MPI_Finalize() finishes the 
parallel part of the algorithm. 

4 EXPERIMENTAL RESULTS 

The application task of data compression and PCA 
within NN-based method of intrusion detection and 
classification in computer networks (Vaisekhovich 
et al., 2009) is used for the experimental research of 
the parallelization efficiency of the developed 
parallel algorithm. NN-based detector consists of 
two NNs (Fig. 3): (i) recirculation neural network is 
used for finding 12 principal components by 
compression of input 41-element record about 
network intrusion and (ii) multilayer perceptron, 
which takes these 12 principal components in order 
to detect whether there was an attack or not. The 
choice of the 12 principal components has proven in 
(Vaisekhovich et al., 2009); (Komar et al., 2011) 
allowing to significantly improve the true positive 
detection rate of the detector and decrease the 
complexity of the MLP model. Also other 
architectures of the detector are available 
(Vaisekhovich et al., 2009) which consist of multiple 
RCNN+MLP models, each model for separate type 
of the network intrusion. 

RCNN
 

 
MLP 

 
Not attack

Attack 1
2

41
. . . 

1
2 

12
. . . 

 
Figure 3: NN-based intrusion detector. 

The database KDD cup 99 (KDD, 1999) 
containing information about network intrusions is 
used for the training and testing of this NN-based 
detector. This database is very huge. Therefore only 
10% part of it (500 thousand records) is used on 
practice. The 6168 records of network intrusions 
have been used for the NN-based detector training in 
(Vaisekhovich et al., 2009). However, bigger 
number of the processed record leads to the better 
classification ability of the NN-based detector. 

We have used only 2203 records, the content of 
the file with the description of the DoS attacks, for 
our experiments. We have chosen this not very big 
number of the input training patterns because with 
the increasing the number of input patterns the 
parallelization efficiency of the batch pattern 
training algorithm normally is increased (Turchenko 
et al., 2012). Thus the RCNN architecture with 41 
input, 12 hidden and 41 output neurons (984 
connections) is used for the experiments 
compressing 2203 input patterns about DoS attacks. 
The RCNN was trained 104 training epochs, the SSE 
= 0.087 was reached. The learning rates )(2 tα  and 

)(3 tα  were fixed to 0.05. 
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The SMP parallel supercomputer Skopa (TYAN 
Transport VX50), located in the Research Institute 
for Intelligent Computer Systems, Ternopil, 
Ukraine, is used for the computations. It consists of 
two identical blocks VX50_1 and VX50_2. We have 
used only one block which consists of four 64-bit 
dual-core processors AMD Opteron 8220 with a 
clock rate of 2800 MHz and 16 GB of local RAM. 
Each processor has a primary data and instruction 
cache of 128 Kb and the second level cache of 2 Mb. 
There are 4 RAM access channels at the block. The 
speed of data transfer between processors inside 
block is 2.0 GT/s. The supercomputer is operating 
under Linux operation system, the MPICH2 message 
passing library (MPICH2, 2011) is installed for 
parallelization. 

The results of sequential and parallel routine 
execution are presented in Table 1. The column 
“Execution time” shows the total execution time of 
the routine, the column “Computation time” shows 
the execution time of the computational part of the 
algorithm, the column “Communication time” shows 
the execution time of the communication part of the 
algorithm. As we can see, the sequential routine 
compiled by the standard Linux compiler cc, is 
executed for 1347,18 seconds, when the parallel 
version, compiled by the MPI compiler mpicc, is 
executed for only 240,06 seconds on 1 processor of 
the parallel computer. This behavior can be 
explained by the fact, that mpicc compiler is better 
designed to account the features of the parallel 
machine and can produce faster execution code than 
standard cc. Therefore for the research of the 
parallelization efficiency we will compare the 
execution time of the parallel routine on 2,4,8 
processors with the execution time of the parallel 
routine on 1 processor. Thus the expressions 

 

S=Ts/Tp, (2)

E=S/p×100% (3)

are used to calculate a speedup and efficiency of 
parallelization, where Ts is the time of sequential 
executing the parallel routine on 1 processor, Tp is 
the time of parallel executing of the same routine on 
p processors of parallel computer. 

The results of speedup and efficiency analysis 
(Fig. 4) have shown that the developed batch pattern 
parallel algorithm of RCNN training provides 
practically linear speedup and high parallelization 
efficiency. It allows successfully using this parallel 
algorithm within developing PaGaLiNNeT library 
(PaGaLiNNeT, 2011) for the intensification of 
scientific research on network intrusion detection 
approaches using neural networks. 

Table 1: Execution results of the sequential and parallel 
routines. 

Routine CPUs Execution 
time, sec 

Computation 
time, sec 

Communi-
cation time, 

sec 
Sequential 
cc compiler 1 1347.18 n/a n/a 

Parallel 
mpicc 

compiler 
1 240.06 239.99 0.03 

Parallel 
mpicc 

compiler 
2 123.96 120.47 3.44 

Parallel 
mpicc 

compiler 
4 64.36 60.76 3.56 

Parallel 
mpicc 

compiler 
8 33.45 28.44 4.90 

 
We have used the developed parallel batch 

pattern training algorithm of RCNN for the research 
of reconstruction accuracy of the input data (quality 
of finding the principal components). The goal of 
this research is to find the limitation values of the 
training epochs and SSE which provide reasonable 
(the lowest) reconstruction accuracy of the input 
data in terms of execution time. The results of this 
research are presented in Table 2. The average 
reconstruction error of the 2203 patterns is presented 
in the last column of the Table. These results were 
obtained by the developed software routine on 8 
processors of the Skopa supercomputer having 
approximately 7-time speedup of the execution time. 
The analysis of the results has shown that most 
reasonable to train RCNN by 106 epochs which 
provide average relative reconstruction error 14.9 %, 
because 107 epochs provides 10-time bigger 
execution time with just 1% decreasing of the 
reconstruction error. The analysis of the numerical 
results of the reconstruction error has shown that, for 
the case of 106 training epochs, the 83% of the 
reconstruction errors of all the 41 values of each 
2203 record are less than 1% and this 14.9% result is 
caused by “outliers”. 

Table 2: Obtained average relative reconstruction errors 
by different numbers of training epochs. 

Number 
of epochs 

Reached 
SSE 

Execution 
time, sec 

Average 
relative 

reconstruction 
error, % 

104 0.087 33.45 37.0 
105 0.078 339.83 19.0 
106 0.052 3385.12 14.9 
107 0.019 34412.39 13.8 
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Figure 4: Speedup (2) and parallelization efficiency (3) of the parallel algorithm. 

Also the 7-time faster execution time of the 
developed parallel routine allowed us to speed up 
our research in finding the dependence between the 
average reconstruction error and the number of the 
principal components (the number of neurons of the 
hidden layer). The results of this research at 105 
training epochs on 8 processors of the Skopa 
supercomputer are collected in Table 3. As we can 
see, the average reconstruction error is decreasing at 
the increasing the number of the principal 
components. Therefore the correct number of the 
principal components should be chosen on the base 
of the classification results obtained by the second 
NN - MLP classifier (see Fig. 3). 

Table 3: Results of research the number of the principal 
components. 

Number of 
principal 

components 

Reached 
SSE 

Execution 
time, sec 

Average 
relative 

reconstruction 
error, % 

6 0.0852 200.91 21.0 
8 0.0850 236.67 19.7 

10 0.0842 308.28 19.5 
12 0.0780 339.83 19.0 
14 0.0765 353.77 18.4 
16 0.0749 402.42 18.1 
18 0.0779 463.75 17.9 
20 0.0805 504.60 17.7 
24 0.0817 596.54 17.6 

5 CONCLUSIONS 

The development of the parallel batch pattern back 
propagation training algorithm of recirculation 
neural network and the research of its parallelization 
efficiency on the parallel supercomputer are 
presented in this paper. The algorithm is well 
designed because it provides high parallelization 
efficiency on the level of 97-89% on 2-8 processors 
of the SMP supercomputer. The use of the 
developed parallel algorithm has allowed facilitating 
the scientific research on the development of neural 
network-based classifiers for computer network 
intrusion detection system.  

The future direction of research can be 
considered as investigation of the parallelization 
efficiency of the developed algorithm with the use of 
adaptive learning rates under a grid middleware 
environment. 
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