
Parallel Batch Pattern Training of Recirculation Neural Network

Volodymyr Turchenko1, Vladimir Golovko2 and Anatoly Sachenko1
1Research Institute of Intelligent Computer Systems, Ternopil National Economic University,

3 Peremoga Square, 46009, Ternopil, Ukraine
2Laboratory of Artificial Neural Networks, Intelligent Information Technologies Department,

Brest State Technical University, Moskowskaja 267, 224017, Brest, Belarus

Keywords: Parallel Batch Pattern Training, Recirculation Neural Network, Parallelization Efficiency.

Abstract: The development of a parallel batch pattern back propagation training algorithm of a recirculation neural
network is presented in this paper. The model of a recirculation neural network and usual sequential batch
pattern algorithm of its training are theoretically described. An algorithmic description of the parallel
version of the batch pattern training method is presented. The parallelization efficiency of the developed
parallel algorithm is investigated on the example of data compression and principal component analysis.
The results of the experimental researches show that the developed parallel algorithm provides high
parallelization efficiency on a parallel symmetric multiprocessor computer system. It allows applying the
developed parallel software for the facilitation of scientific research of neural network-based intrusion
detection system for computer networks.

1 INTRODUCTION

Artificial neural networks (NNs) have excellent
abilities to model difficult nonlinear systems. They
represent a very good alternative to traditional
methods for solving complex problems in many
fields, including image processing, predictions,
pattern recognition, robotics, optimization, etc
(Haykin, 2008). However, most NN models require
high computational load in the training phase (on a
range from several hours to several days). This is,
indeed, the main obstacle to face for an efficient use
of NNs in real-world applications. The use of
general-purpose high performance computers,
clusters and computational grids to speed up the
training phase of NNs is one of the ways to
outperform this obstacle. Therefore the research of a
parallelization efficiency of NNs parallel training
algorithms on such kind of parallel systems is still
remaining an urgent research problem.

Taking into account the parallel nature of NNs,
many researchers have already focused their
attention on NNs parallelization on specialized
computing hardware and transputers (Mahapatra et
al, 1997, Hanzalek, 1998), but these solutions
require an availability of the mentioned devices for
the use by wide scientific community. Instead

general-purpose high performance computers and
computational clusters are widely used now for
scientific experiments and modeling using remote
access.

There are developed several grid-based
frameworks for NNs parallelization (Vin et al.,
2005); (Krammer et al., 2006), however they do not
deal with parallelization efficiency issues. The
authors of (De Llano, 2010) investigate parallel
training of multi-layer perceptron (MLP) on SMP
computer, cluster and computational grid using MPI
(Message Passing Interface) parallelization. They
have researched big NN models which process huge
number of the training patterns (around 20000)
coming from Large Hadron Collider. However their
implementation of relatively small MLP architecture
16-10-10-1 (16 neurons in the input layer, two
hidden layers with 10 neurons in each layer and one
output neuron) with 270 internal connections
(number of weights of neurons and their thresholds)
does not provide positive parallelization speedup
due to large communication overhead, i.e. the
speedup is less than 1.

The development of parallel training algorithm
of Elman’s simple recurrent neural network (RNN)
based on Extended Kalman Filter on multicore
processor and Graphic Processing Unit (GPU) is
presented in (Cernansky et al., 2009). The author has

644 Turchenko V., Golovko V. and Sachenko A..
Parallel Batch Pattern Training of Recirculation Neural Network.
DOI: 10.5220/0004150206440650
In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics (ANNIIP-2012), pages 644-650
ISBN: 978-989-8565-21-1
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

showed a reduction of the RNN training time using a
GPU solution (4 times better performance was
achieved), however it is impossible to assess the
parallelization efficiency of this parallel algorithm
because it was not clearly stated a number of GPU
threats used for parallelization. The authors of
(Lotric et al., 2009) have presented the development
of parallel training algorithm of fully connected
RNN based on linear reward penalty correction
scheme.

The authors of (Turchenko and Grandinetti,
2010); (Turchenko et al., 2012) have researched the
problem of parallelization of NN training on the
example of feed-forward NNs with direct (MLP) and
inverse (RNN) connections. They have developed
the parallel batch pattern back propagation (BP)
training algorithm for both types of NNs and
presented their good parallelization efficiency on
general-purpose parallel computers and
computational clusters.

Meantime Recirculation Neural Networks
(RCNN) are successfully used for data compression
and decompression, image processing and Principal
Component Analysis (PCA) (Golovko et al., 2001);
(Bryliuk et al., 2001). However, the parallelization
techniques for RCNN training are not enough
addressed by the world’s scientific community yet.
Our analysis has shown a lack of research papers in
this issue.

The goal of this paper is to present the
development of a parallel training algorithm for
recirculation neural network and research its
parallelization efficiency on a general-purpose
parallel computer. The rest of this paper is ordered
as follows: Section 2 details the mathematical
description of a batch pattern back propagation
training algorithm for RCNN, Sections 3 describes
the parallel implementation of this algorithm,
Section 4 presents the obtained experimental results
and concluding remarks in Section 5 finishes this
paper.

2 BATCH PATTERN BP
TRAINING ALGORITHM OF
RECIRCULATION NN

In our previous research we have proven that the
parallelization of a batch pattern training approach is
efficient on general-purpose parallel computers and
computational clusters instead of the parallelization
on the level of neuron or synapses of neurons
(Turchenko et al., 2010); (Turchenko et al., 2009) on

the examples of MLP and RNNs. The batch pattern
training algorithm updates neurons’ weights and
thresholds at the end of each training epoch, i.e. after
processing of all training patterns, instead of
updating weights and thresholds after processing of
each pattern in the usual sequential training mode.
Therefore it is expedient to apply this parallelization
scheme to a RCNN.

Recirculation neural network (Fig. 1) performs
compression of the input pattern space X to obtain
the principal components. The principal components
are the output values Y of the neurons of the hidden
layer. Then the RCNN restores the compressed data
(principal components) into the output vector X .
The output value of the RCNN can be formulated as:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛⋅′= ∑ ∑
= =

p

j

n

i
iijjii xwFwFx

1 1
23 , (1)

where p is the number of neurons in the hidden
layer, jiw′ is the weight of the synapse from the
neuron j of the hidden layer to the neuron i of the
output layer, n is the number of neurons in the input
and output layers, ijw is the weight from the input
neuron i to neuron j in the hidden layer, ix are the
input values (Golovko et al., 2001).

Note that the principal components are

calculated by expression ⎟
⎠

⎞
⎜
⎝

⎛= ∑
=

n

i
iijj xwFy

1
2 . The

logistic activation function
xe

xF
−+

=
1

1)(is used

for the neurons of the hidden (2F) and output layers
(3F).

jiw ′ijw

p

2x

nx

1x

n n

2x

nx

1x1y

2y

py
Figure 1: The structure of a recirculation neural network.

The batch pattern BP training algorithm consists
of the following steps (Golovko et al., 2001):
1 Set the desired Sum Squared Error (SSE) to a
value minE and the number of training epochs t ;

Parallel�Batch�Pattern�Training�of�Recirculation�Neural�Network

645

2 Initialize the weights and the thresholds of the
neurons with values in range (-0.1…0.1) (Golovko
et al, 1999);
3 For the training pattern pt :

3.1. Calculate the output value)(txi by
expression (1);
3.2. Calculate the errors of the output neurons

))()(()(txtxt pt
i

pt
i

pt
i −=γ , where)(tx pt

i is the
output value of the i output neuron and)(tx pt

i is
the value with index i of the input pattern of the
RCNN;
3.3. Calculate the errors of the hidden layer

neurons ∑
=

′⋅′⋅=
n

i

pt
iji

pt
i

pt
j tSFtwtt

1
3))(()()()(γγ ,

where)(tS pt
i is the weighted sum of the i output

neuron, 3F ′ is a derivative of the logistic
activation function with)(tS pt

i argument;
3.4. Calculate the delta weights and delta
thresholds of all neurons and add the result to the
value of the previous pattern

)())(()(3 tytSFtwsws pt
j

pt
i

pt
ijiji ⋅′⋅+′Δ=′Δ γ ,

)())(()(2 txtSFtwsws pt
i

pt
j

pt
jijij ⋅′⋅+Δ=Δ γ , where

)(tS pt
j and)(ty pt

j are the weighted sum and the
output value of the neuron j of the hidden layer
respectively;
3.5. Calculate the SSE using

()2)()(
2
1)(txtxtE pt

i
pt

i
pt −= ;

4 Repeat the step 3 above for all training patterns
pt , { }PTpt ,...,1∈ , PT is the size of the training

set;
5 Update the weights and thresholds of neurons
using expressions jijiji wstwPTw ′Δ⋅−′=′)()0()(3α
and ijijij wstwPTw Δ⋅−=)()0()(2α , where)0(jiw′
and)0(ijw are the values of the weights of the
hidden and output layers from the previous training
epoch,)(2 tα and)(3 tα are the learning rates for the
neurons of the hidden and output layers respectively;
6 Calculate the total SSE)(tE on the training

epoch t using ∑
=

=
PT

pt

pt tEtE
1

)()(;

7 If)(tE is greater than the desired error minE
then increase the number of training epochs to 1+t
and go to step 3, otherwise stop the training process.

3 PARALLEL
IMPLEMENTATION OF
BATCH PATTERN BP
TRAINING ALGORITHM OF
RCNN

Similarly to the parallel batch pattern training
algorithm of an MLP presented in (Turchenko et al.,
2012); (Turchenko et al., 2009), sequential execution
of points 3.1-3.5 above for all training patterns in the
training set could be parallelized, because the sum
operations jiws ′Δ and ijwsΔ are independent of each
other. For the development of the parallel algorithm
all the computational work should be divided among
the Master (executing assigning functions and
calculations) and the Workers (executing only
calculations) processors.

The algorithms for Master and Worker
processors are depicted in Fig. 2. The Master starts
with definition (i) the number of patterns PT in the
training data set and (ii) the number of processors p
used for the parallel executing of the training
algorithm. The Master divides all patterns in equal
parts corresponding to the number of the Workers
and assigns one part of patterns to itself. Then the
Master sends to the Workers the numbers of the
appropriate patterns to train.

Each Worker executes the following operations
for each pattern pt of the PT/p patterns assigned to
it:
1. calculate the points 3.1-3.5 and 4, only for its
assigned number of training patterns. The values of
the partial sums of delta weights jiws ′Δ and ijwsΔ are
calculated there;
2. calculate the partial SSE for its assigned number
of training patterns.
After processing all assigned patterns, only one all-
reduce collective communication operation (it
provides the summation as well) is executed.
Synchronization with other processors is
automatically provided by internal implementation
of this all-reduce operation (Turchenko et al., 2010).
However from the algorithmic point of view it is
showed as an independent operator in Fig. 2 before
the operation of data reduce. Then the summarized
values jiws ′Δ and ijwsΔ are sent to all processors
working in parallel. Instead of three communication
messages in (De Llano et al., 2010), using only one
all-reduce collective communication message, which
also returns the reduced values back to the Workers,
allows decreasing a communication overhead in this

ICINCO�2012�-�9th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

646

point. Then the summarized values jiws ′Δ and ijwsΔ
are placed into the local memory of each processor.
Each processor uses these values for updating the
weights according to the point 5 of the algorithm
above. These updated weights will be used on the
next iteration of the training algorithm. As the
summarized value of)(tE is also received as a
result of the reducing operation, the Master decides
whether to continue the training or not.

Yes

No

No

Yes

Start

Read the input data

Update jiw ′ and ijw ,
according to p.5

Reduce and Sum jiws ′Δ ,

ijwsΔ ,)(tE from all
processors and send it

back to them

min)(EtE >

End a)

Start

Read the input data

Receive PT/p patterns
from Master

b)

Define PT and p

Send PT/p patterns to
each Worker

Calculate p.3 and p.4 for
own training patterns

Synchronization with
other Workers

Reduce and Sum jiws ′Δ ,

ijwsΔ ,)(tE from all
Workers & Master

Calculate p.3 and p.4 for
assigned training patterns

Synchronization with
other Workers & Master

Update jiw′ and ijw
according to p.5

Message to
finish work?

End

Figure 2: The algorithms of the Master (a) and the Worker
(b) processors.

The software routine is developed using C
programming language with the standard MPI
functions. The parallel part of the algorithm starts
with the call of MPI_Init() function. An
MPI_Allreduce() function reduces the deltas of
weights jiws ′Δ and ijwsΔ , summarizes them and
sends them back to all processors in the group.

Since the weights and thresholds are physically
located in the different matrixes of the software
routine, we have done pre-encoding of all data into
one communication message before sending and
reverse post-decoding the data to the appropriate
matrixes after message receiving in order to provide
only one physical call of the function
MPI_Allreduce() in the communication section of
the algorithm. Function MPI_Finalize() finishes the
parallel part of the algorithm.

4 EXPERIMENTAL RESULTS

The application task of data compression and PCA
within NN-based method of intrusion detection and
classification in computer networks (Vaisekhovich
et al., 2009) is used for the experimental research of
the parallelization efficiency of the developed
parallel algorithm. NN-based detector consists of
two NNs (Fig. 3): (i) recirculation neural network is
used for finding 12 principal components by
compression of input 41-element record about
network intrusion and (ii) multilayer perceptron,
which takes these 12 principal components in order
to detect whether there was an attack or not. The
choice of the 12 principal components has proven in
(Vaisekhovich et al., 2009); (Komar et al., 2011)
allowing to significantly improve the true positive
detection rate of the detector and decrease the
complexity of the MLP model. Also other
architectures of the detector are available
(Vaisekhovich et al., 2009) which consist of multiple
RCNN+MLP models, each model for separate type
of the network intrusion.

RCNN

MLP

Not attack

Attack 1
2

41
. . .

1
2

12
. . .

Figure 3: NN-based intrusion detector.

The database KDD cup 99 (KDD, 1999)
containing information about network intrusions is
used for the training and testing of this NN-based
detector. This database is very huge. Therefore only
10% part of it (500 thousand records) is used on
practice. The 6168 records of network intrusions
have been used for the NN-based detector training in
(Vaisekhovich et al., 2009). However, bigger
number of the processed record leads to the better
classification ability of the NN-based detector.

We have used only 2203 records, the content of
the file with the description of the DoS attacks, for
our experiments. We have chosen this not very big
number of the input training patterns because with
the increasing the number of input patterns the
parallelization efficiency of the batch pattern
training algorithm normally is increased (Turchenko
et al., 2012). Thus the RCNN architecture with 41
input, 12 hidden and 41 output neurons (984
connections) is used for the experiments
compressing 2203 input patterns about DoS attacks.
The RCNN was trained 104 training epochs, the SSE
= 0.087 was reached. The learning rates)(2 tα and

)(3 tα were fixed to 0.05.

Parallel�Batch�Pattern�Training�of�Recirculation�Neural�Network

647

The SMP parallel supercomputer Skopa (TYAN
Transport VX50), located in the Research Institute
for Intelligent Computer Systems, Ternopil,
Ukraine, is used for the computations. It consists of
two identical blocks VX50_1 and VX50_2. We have
used only one block which consists of four 64-bit
dual-core processors AMD Opteron 8220 with a
clock rate of 2800 MHz and 16 GB of local RAM.
Each processor has a primary data and instruction
cache of 128 Kb and the second level cache of 2 Mb.
There are 4 RAM access channels at the block. The
speed of data transfer between processors inside
block is 2.0 GT/s. The supercomputer is operating
under Linux operation system, the MPICH2 message
passing library (MPICH2, 2011) is installed for
parallelization.

The results of sequential and parallel routine
execution are presented in Table 1. The column
“Execution time” shows the total execution time of
the routine, the column “Computation time” shows
the execution time of the computational part of the
algorithm, the column “Communication time” shows
the execution time of the communication part of the
algorithm. As we can see, the sequential routine
compiled by the standard Linux compiler cc, is
executed for 1347,18 seconds, when the parallel
version, compiled by the MPI compiler mpicc, is
executed for only 240,06 seconds on 1 processor of
the parallel computer. This behavior can be
explained by the fact, that mpicc compiler is better
designed to account the features of the parallel
machine and can produce faster execution code than
standard cc. Therefore for the research of the
parallelization efficiency we will compare the
execution time of the parallel routine on 2,4,8
processors with the execution time of the parallel
routine on 1 processor. Thus the expressions

S=Ts/Tp, (2)

E=S/p×100% (3)

are used to calculate a speedup and efficiency of
parallelization, where Ts is the time of sequential
executing the parallel routine on 1 processor, Tp is
the time of parallel executing of the same routine on
p processors of parallel computer.

The results of speedup and efficiency analysis
(Fig. 4) have shown that the developed batch pattern
parallel algorithm of RCNN training provides
practically linear speedup and high parallelization
efficiency. It allows successfully using this parallel
algorithm within developing PaGaLiNNeT library
(PaGaLiNNeT, 2011) for the intensification of
scientific research on network intrusion detection
approaches using neural networks.

Table 1: Execution results of the sequential and parallel
routines.

Routine CPUs Execution
time, sec

Computation
time, sec

Communi-
cation time,

sec
Sequential
cc compiler 1 1347.18 n/a n/a

Parallel
mpicc

compiler
1 240.06 239.99 0.03

Parallel
mpicc

compiler
2 123.96 120.47 3.44

Parallel
mpicc

compiler
4 64.36 60.76 3.56

Parallel
mpicc

compiler
8 33.45 28.44 4.90

We have used the developed parallel batch

pattern training algorithm of RCNN for the research
of reconstruction accuracy of the input data (quality
of finding the principal components). The goal of
this research is to find the limitation values of the
training epochs and SSE which provide reasonable
(the lowest) reconstruction accuracy of the input
data in terms of execution time. The results of this
research are presented in Table 2. The average
reconstruction error of the 2203 patterns is presented
in the last column of the Table. These results were
obtained by the developed software routine on 8
processors of the Skopa supercomputer having
approximately 7-time speedup of the execution time.
The analysis of the results has shown that most
reasonable to train RCNN by 106 epochs which
provide average relative reconstruction error 14.9 %,
because 107 epochs provides 10-time bigger
execution time with just 1% decreasing of the
reconstruction error. The analysis of the numerical
results of the reconstruction error has shown that, for
the case of 106 training epochs, the 83% of the
reconstruction errors of all the 41 values of each
2203 record are less than 1% and this 14.9% result is
caused by “outliers”.

Table 2: Obtained average relative reconstruction errors
by different numbers of training epochs.

Number
of epochs

Reached
SSE

Execution
time, sec

Average
relative

reconstruction
error, %

104 0.087 33.45 37.0
105 0.078 339.83 19.0
106 0.052 3385.12 14.9
107 0.019 34412.39 13.8

ICINCO�2012�-�9th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

648

2 4 8
0

2

4

6

8

CPUs

Ti
m

es

Speedup for 984 connections, 2203 patterns

2 4 8
88

90

92

94

96

98

CPUs

P
er

ce
nt

s

Efficiency for 984 connections, 2203 patterns

Figure 4: Speedup (2) and parallelization efficiency (3) of the parallel algorithm.

Also the 7-time faster execution time of the
developed parallel routine allowed us to speed up
our research in finding the dependence between the
average reconstruction error and the number of the
principal components (the number of neurons of the
hidden layer). The results of this research at 105
training epochs on 8 processors of the Skopa
supercomputer are collected in Table 3. As we can
see, the average reconstruction error is decreasing at
the increasing the number of the principal
components. Therefore the correct number of the
principal components should be chosen on the base
of the classification results obtained by the second
NN - MLP classifier (see Fig. 3).

Table 3: Results of research the number of the principal
components.

Number of
principal

components

Reached
SSE

Execution
time, sec

Average
relative

reconstruction
error, %

6 0.0852 200.91 21.0
8 0.0850 236.67 19.7

10 0.0842 308.28 19.5
12 0.0780 339.83 19.0
14 0.0765 353.77 18.4
16 0.0749 402.42 18.1
18 0.0779 463.75 17.9
20 0.0805 504.60 17.7
24 0.0817 596.54 17.6

5 CONCLUSIONS

The development of the parallel batch pattern back
propagation training algorithm of recirculation
neural network and the research of its parallelization
efficiency on the parallel supercomputer are
presented in this paper. The algorithm is well
designed because it provides high parallelization
efficiency on the level of 97-89% on 2-8 processors
of the SMP supercomputer. The use of the
developed parallel algorithm has allowed facilitating
the scientific research on the development of neural
network-based classifiers for computer network
intrusion detection system.

The future direction of research can be
considered as investigation of the parallelization
efficiency of the developed algorithm with the use of
adaptive learning rates under a grid middleware
environment.

ACKNOWLEDGEMENTS

This research is financially supported by the Marie
Curie International Incoming Fellowship grant
(return phase) of the corresponding author Dr.
Volodymyr Turchenko, Ref. Num. 221524-908524
“PaGaLiNNeT - Parallel Grid-aware Library for
Neural Networks Training", within the 7th European
Community Framework Programme. The authors

Parallel�Batch�Pattern�Training�of�Recirculation�Neural�Network

649

would like to acknowledge the help of Mr. Myroslav
Komar, the Research Institute of Intelligent
Computer Systems, TNEU for the providing
formatted data of KDD99 database ready for the
experiments.

REFERENCES

Haykin, S., 2008. Neural networks and learning machines.
Prentice Hall, 936 p.

Mahapatra, S., Mahapatra, R., Chatterji B., 1997. A
Parallel Formulation of Back-propagation Learning on
Distributed Memory Multiprocessors. Parallel
Computing. Vol. 22, No. 12, pp. 1661-1675.

Hanzálek, Z., 1998. A Parallel Algorithm for Gradient
Training of Feed-forward Neural Networks. Parallel
Computer. Vol. 24, No. 5-6, pp. 823-839.

Vin, T.K., Seng, P.Z., Kuan, M.N.P., Haron, F., 2005. A
Framework for Grid-based Neural Networks.
Proceedings of First International Conference on
Distributed Frameworks for Multimedia Applications.
pp. 246-250.

Krammer, L., Schikuta, E., Wanek, H., 2006. A Grid-
based Neural Network Execution Service Source.
Proceedings of 24th IASTED International Conference
on Parallel and Distributed Computations and
Networking. pp. 35-40.

De Llano, R.M., Bosque, J.L., 2010. Study of Neural Net
Training Methods in Parallel and Distributed
Architectures. Future Generation Computer Systems.
Vol. 26, Issue 2, pp. 183-190.

Cernansky M., 2009. Training Recurrent Neural Network
Using Multistream Extended Kalman Filter on
Multicore Processor and Cuda Enabled Graphic
Processor Unit. Lecture Notes in Computer Science.
Volume 5768, Part I, pp. 381-390.

Lotric, U., Dobnikar, A., 2009. Parallel Implementations
of Recurrent Neural Network Learning. M.
Kolehmainen et al. (Eds.): ICANNGA 2009, LNCS
5495. Springer-Verlag, Berlin, Heidelberg, pp. 99–
108.

Turchenko, V., Grandinetti, L., 2010. Parallel Batch
Pattern BP Training Algorithm of Recurrent Neural
Network. Proceedings of the 14th IEEE International
Conference on Intelligent Engineering Systems. Las
Palmas of Gran Canaria, Spain, pp. 25-30.

Turchenko, V., Grandinetti, L., Sachenko, A., 2012.
Parallel Batch Pattern Training of Neural Networks on
Computational Clusters. Proceedings of the 2012
International Conference on High Performance
Computing & Simulation HPCS 2012. July 2 – 6,
Madrid, Spain, in press.

Golovko, V., Galushkin A., 2001. Neural Networks:
training, models and applications, Moscow,
Radiotechnika (in Russian).

Bryliuk, D., Starovoitov, V., 2001. Application of
Recirculation Neural Network and Principal
Component Analysis for Face Recognition. The 2nd

International Conference on Neural Networks and
Artificial Intelligence. Minsk, BSUIR, pp.136-142.

Turchenko, V., Grandinetti, L., 2009. Efficiency Research
of Batch and Single Pattern MLP Parallel Training
Algorithms. Proceedings 5th IEEE International
Workshop on Intelligent Data Acquisition and
Advanced Computing Systems IDAACS2009. Rende,
Italy, pp. 218-224.

Golovko, V., Gladyschuk, V., 1999. Recirculation Neural
Network Training for Image Processing. Advanced
Computer Systems. pp. 73-78.

Turchenko, V., Grandinetti, L., Bosilca, G., Dongarra, J.,
2010. Improvement of parallelization efficiency of
batch pattern BP training algorithm using Open MPI.
Elsevier Procedia Computer Science 2010. Volume 1,
Issue 1, pp. 525-533.

Vaitsekhovich, L., Golovko, V., 2009. Intrusion Detection
in TCP/IP Networks Using Immune Systems
Paradigm and Neural Network Detectors. XI
International PhD Workshop OWD 2009. pp. 219-224.

Komar, M., Golovko, V., Sachenko, A., Bezobrazov S.,
2011. Intelligent system for detection of networking
intrusion. Proceedings of the 6th IEEE International
Conference on Intelligent Data Acquisition and
Advanced Computing Systems IDAACS-2011. Prague
(Czech Republic), V1, pp. 374-377.

KDD Cup Competition 1999. – Information on:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.ht
ml.

MPICH2, 2011. http://www.mcs.anl.gov/research/projects
/mpich2/

PAGaLiNNeT, 2011. http://uweb.deis.unical.it/turchenko/
research-projects/pagalinnet/

ICINCO�2012�-�9th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

650

