
Performance Impact of Fuzz Testing Windows Embedded Handheld
Applications

Nizam Abdallah1 and Sita Ramakrishnan2
1Software Test Automation Research and Consulting, Oakleigh South, Victoria, Australia

2Faculty of Information Technology, Monash University, Clayton, Victoria, Australia

Keywords: Fuzz Testing, Random Testing, Automated Testing, Mobile Applications, Windows Embedded, .Net
Reflection, Gui Testing, Performance.

Abstract: Mobile systems are increasingly impacting our personal and business lives. It is crucial that we develop
mobile software applications that are robust, efficient and deliver value to a wide range of users. As a result,
appropriate software testing methodologies need to be employed during the development of these mobile
applications to ensure high level of quality and robustness. Software test automation methodologies and
fuzz testing techniques have proven to be successful in finding defects during the development lifecycle.
However, due to the fact that mobile devices are resource constrained devices with limited memory and
CPU, there are performance constraints that need to be considered when developing a test automation
framework for mobile devices. This research introduces Torqueo. Torqueo is an automated fuzz testing tool
designed specifically to target Windows Embedded Handheld GUI applications. It is capable of interacting
with GUI applications using either Win32 API or .NET reflection API, and it is also capable of executing
test scenarios from pre-generated test data and randomly generated test data at run time. The experiments
described in this paper discuss the performance impact on memory usage of invoking GUI controls using
the Win32 API vs. .NET reflection.

1 INTRODUCTION

Today, many software systems are ubiquitous and as
a result the complexity of designing, implementing
and testing these systems has increased. As people
interact with computer systems throughout their daily
lives, it is expected that these systems operate safely,
correctly and are robust against all types of users and
the varying types of user input data these systems are
accepting. As the complexity increases, developers
need to employ suitable testing techniques that allow
them to test these systems effectively and efficiently.
Two areas of testing that have proven useful in
finding defects in software systems include
automated testing (Alsmadi, 2008) and Fuzz testing
(Sutton, Green, Amini, 2007). This paper looks at the
design and implementation of an automated fuzz
testing tool named Torqueo and the performance
impact it had on a Windows Embedded handheld
device when used to automatically generate and
execute tests using Win32 API and .NET Reflection.

The remainder of this paper is divided into five
sections. Section 2 discusses the background and

motivation for conducting this research and
developing Torqueo. Section 3 discusses Torqueo’s
features. Section 4 describes the experiment
conducted to determine the performance impact of
executing GUI based tests using two GUI invocation
techniques, Win32 API and .NET Reflection. Finally
Section 5 details the how Torqueo has been used on
real-world applications and outlines future
enhancements.

2 BACKGROUND

People interact with computer systems (including
embedded systems) many times throughout their
daily lives. These interactions include, but not limited
to, the alarm clock, radio, mobile phone, GPS
navigation system, car, DVD player, television,
reading information from an electronic billboard,
using ATMs, and personal computers. As these
systems continue to impact our daily lives, there is an
expectation that these systems be robust, safe and
operate correctly. As a result we need to ensure that

371Abdallah N. and Ramakrishnan S..
Performance Impact of Fuzz Testing Windows Embedded Handheld Applications.
DOI: 10.5220/0004152103710376
In Proceedings of the 14th International Conference on Enterprise Information Systems (NTMIST-2012), pages 371-376
ISBN: 978-989-8565-11-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

development and testing methodologies used are also
robust, but at the same time, efficient and effective.

Windows Embedded is a set of technologies
provided by Microsoft for the development of
embedded software systems (Microsoft, 2010). There
are several operating systems available to allow
developers to develop software including:

• Windows Embedded Compact 7
• Windows Embedded Standard 7
• Windows Embedded Automotive 7
• Windows Embedded POSReady 2011
• Windows Embedded Handheld 6.5
• Windows Embedded Enterprise
• Windows Embedded NavReady
• Windows Embedded Server

As can be seen from the list above; the operating
systems available support a large range of devices
and device form factors. This research focuses
primarily on the Windows Embedded Handheld 6.5
platform.

Important considerations need to be made when
testing applications targeting embedded devices,
including; connectivity, screen size, different mobile
platforms, interruptions and notifications (e.g. phone
calls, SMS, Email or system messages such as low
battery warnings), power constraints (e.g. battery)
and different input types (e.g. stylus, buttons, touch
screen, multi-touch, gestures, voice).

Embedded handheld devices are generally
resource constrained devices. Examples of these
devices include; mobile data terminals, mobile
phones, global positioning systems (GPS) and
personal digital assistants (PDA). Testing for these
devices can be difficult as there is very little test tool
support for such devices on the market today.
Furthermore testing tools are generally intrusive and
do impact the performance of the AUT and therefore
may severely impact the performance of an already
constrained device.

GUI test automation tools have been out for many
years now and in many cases have had a positive
impact on finding defects in software systems
(Alsmadi, 2008). GUI test automation has also
introduced efficiencies in the testing process, by
performing the more mundane and boring tasks,
while allowing testers to use their skills on more
challenging analysis tasks. There are only a limited
number of tools available on the market today that
allow for GUI automation testing for Windows
Embedded Handheld applications.

There are several ways in which a developer can
programmatically invoke Windows Embedded GUI
applications controls and hardware buttons. Two of
these involve the use of calling functions from within

the Win32 API and also using .NET reflection
(Abdallah, Ramakrishnan, 2009). The advantage of
using .NET reflection is that it uses metadata to
obtain the application’s properties at run time
allowing developers to observe these properties’
values. However there is an associated performance
impact when using .NET reflection. Part of this study
involved an experiment in determining the impact of
.NET reflection on .NET Compact Framework
applications. During the experiment, it was
discovered that the performance impact associated
with .NET reflection is not always present and is
only noticeable when .NET reflection is used to
invoke simple non-complex routines (Abdallah,
2010).

Fuzz testing is a testing technique that was
introduced in 1990 (Miller, Fredrikson, So, 1990)
that involved sending random data input to a program
and determining if the program can handle these
random inputs without crashing. Since then many
new fuzz testing tools and frameworks have been
developed and released on the internet as open
source. These tools are written in various
programming languages and target different areas of
an application and different platforms. Some popular
open source fuzz testing tools include; Spike, Zuff,
Protos and Web Scarab. In addition to these open
source tools, companies are also starting to release
commercial fuzz testing tools and frameworks. One
example of such a tool is Codenomicon’s
DEFENSICS testing platform (Codenomicon, 2010).

There are many different types of fuzz testing
tools available. Some tools are generic fuzzing tools
that send random input to an application, while others
are developed to test a specific feature or technology
used by the software application under test. The list
below shows the different types/categories of fuzz
testing tools available (Sutton, Green, Amini, 2007).

• Local Fuzzers
- Command line
- Environment Variable
- File Format

• Remote Fuzzers
- Network Protocol
- Web Application
- Web Browser

• In Memory Fuzzers

Fuzz testing tools are either mutation-based or
generation based tools. (Sutton, Green, Amini, 2007)
describe mutation-based fuzzers as tools that “apply
mutations on existing data samples to create test
cases” and also describe generation-based fuzzers as
tools that “create test cases from scratch that model

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

372

the target protocol or file format”. In addition to this,
previous research has been conducted that
successfully demonstrated different ways to generate
test data for random testing. These methods include
the use of adaptive random testing (Chen et. al, 2009)
AI planning (Memon, Pollack, Soffa, 2000) and
Artificial Neural Networks (Ye, et. al, 2006).

Fuzzing has been successfully used on different
types of applications, including UNIX command line
applications (Miller et. al, 1995), web applications
(Hammersland, Snekkenes, 2008), Windows GUI
applications (Forrester, Miller, 2000) and MAC OS
GUI applications (Miller, Cooksey, More, 2006).
Microsoft released a free tool called Hopper that
automatically generates simulated button presses and
stylus input for Windows Embedded Handheld
Applications (Microsoft, 2010). Motorola have also
been successfully using similar random testing
techniques to test their Windows Embedded
Handheld based mobile phones (Chong, 2006).
Google have also released a GUI based fuzz testing
tool for the Android platform named monkeyrunner
(Google, 2012). The monkeyrunner framework is an
extensible framework for the Android platform that
can be used to tests the robustness of an Application.

3 TORQUEO

This research involved the development of a fuzz
testing tool named Torqueo. Torqueo is specifically
designed to target Windows Embedded Handheld
applications and is capable of testing both managed
(.NET) and unmanaged (Native) GUI applications.
Torqueo is a local fuzzer that supports both mutation-
based and generation-based fuzzing methodologies
as it is capable of generating test input data randomly
at run time and execute a pre-generated set of tests.

There are two ways in which Torqueo interacts
with GUI applications on a Windows Embedded
Handheld device. The first is using the Win32 API to
simulate button presses and stylus input. The second
method involves using .NET reflection to record the
GUI properties of all controls in the AUT. Using
simulated button presses and stylus input is
advantageous because it accurately simulates the
actions the user will be performing and the
application will follow the same execution path.
However, when using the Win32 API to simulate
button presses you need to make sure you first
simulate a stylus input at the correct co-ordinates to
set focus to the required control before simulating
button presses. This requires the developer to have

knowledge of pre-set co-ordinates of all GUI controls
they wish to interact with.

The alternative method is to use .NET reflection
to interact with GUI controls. This will allow the
developer to accurately invoke the control required as
.NET reflection records all GUI properties at run
time. However the potential issue with this is that
using .NET reflection to generate GUI events does
not accurately simulate user input, because you are
directly invoking an event handler rather than the
GUI control on screen.

In addition to randomly generating co-ordinates
and selecting controls, Torqueo also has additional
features as shown in Table 1.

Table 1: Torqueo Features.

Feature Description

Playback Play back pre-created actions

Random Input Generate random stylus and key press
events using Win32 or .NET Reflection

Scripted Input Execute XML based tests and test
commands

Phone
functionality

Make phone calls and send SMS

Data connections Initiate a data connection/browse internet

Database IO Create/Read/Write to SQL Server CE
database

File IO Read/Write to a file

Performance
tests

Log CPU and Memory Usage

Torqueo is an application that can run on any
Windows Embedded Handheld device that has the
.NET Compact Framework 3.5 installed. All tests,
results and settings are selected, executed and stored
on the device itself. This allows for easy setup and a
very quick way to begin testing mobile applications.

Torqueo logs all tests and test data used during
any test session. This allows the developer or test
analyst to investigate the cause of an issue by looking
at the last set of actions that were executed.
Furthermore the log file can be used to create XML
test scripts or test commands and allow the exact
same data to be re-run in future test sessions. While
re-running tests from the log file ensures that the
same test actions and test data is executed, it does
have a limitation where a particular defect will only
be found in the same area of the application and not
other areas. For example, if interacting with a
particular GUI control causes the AUT to crash, the
crash will not be found in another area of the
application, unless that same control is randomly
selected on another form. To overcome this
limitation, an algorithm has been implemented to
allow Torqueo to record, not just the test action and

Performance�Impact�of�Fuzz�Testing�Windows�Embedded�Handheld�Applications

373

test data such as co-ordinates used to interact with
GUI controls, but also the type of GUI control that
was invoked. This algorithm then stores the GUI
control invocation sequence and attempts to invoke
this same GUI control sequence in other forms in the
application. The length of the sequence is determined
by a sequence-length variable in a configuration file.

Torqueo allows the user to select the application
under test and also allows the user to select if they
want to run random tests, scripted tests or both.
Figure 1 shows an example of this functionality.

When selecting test scripts to run as part of a test,
the user can also select the order in which these tests
are executed and also the number of times each script
is executed. In addition to selecting a set of scripts to
run, XML scripts can be modified and saved on the
device using the XML editor. Several settings can
also be adjusted for the random test functionality as
shown in Figure 2. This includes setting the area of
the screen for which simulated stylus input is
generated and the also allows the user to exclude
certain keys and key combinations from being
executed. The user can also add time constraints on
the duration of a random test and the interval at
which random input is generated.

4 PERFORMANCE IMPACT

As can be seen from the previous section Torqueo
has several features, some of which require
significant processing and memory when executed
on a device. An experiment was conducted to
determine the performance impact of Torqueo on a
mobile device when being used to test a GUI based
application. To ensure that the application under test
performs several functions common to mobile
applications a custom based GUI application was
created for this experiment that consists of multiple
GUI forms, SQL Server Compact I/O, XML File I/O
and File I/O

This custom application also records statistics to
determine how often a particular control was
invoked. The application under test was conducted
on a single Windows Mobile device. The chosen
device was the Motorola MC35.

The experiment involved launching the
application under test and randomly invoking the
GUI controls and simulating keyboard buttons for 15
minutes. This was repeated 10 times for each GUI
form within the custom application. Once a single
test was completed three logs were retrieved from
the device and the device was then rebooted to

Figure 1: Torqueo mobile client main screen.

Figure 2: Random test setting.

ensure that memory was cleared so that the device is
in a similar state for all tests executed. The logs files
retrieved included; the .STAT file, device client log
file and the log created by the custom application
under test. The .STAT file is a file that is generated
by the .NET Compact framework after executing a
.NET application on a mobile device. This file is
only generated if the following registry value is set
to 1.
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETCo
mpactFramework\PerfMonitor

The .STAT file contains many performance
indicators that were used to assess the performance
of the test tool running on the device, the primary
indicator used during this experiment was the Peak
Bytes Allocated value. This value is the peak bytes
used by the .NET runtime during the execution of a
.NET application. The device client log file includes
the type of action executed and the data used during

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

374

each action performed. The log file of the
application under test lists the name and type of each
control that was invoked and also includes the input
type that was invoked by the device client.

Table 2: Average Peak Bytes Allocated.

Standalone Client - Average Peak Bytes Allocated

Form Win32 - Bytes Used Reflection - Bytes Used

FrmLogin 3062056 2643630.4

FrmMain 2748208 2566116.8

FrmCustomers 2295646.4 3056333.6

FrmProducts 2339048 2509143.2
FrmOrders 2293992 2163578.4
FrmAbout 2293992 2143530.4

The results of the experiment shown in Table 2
and Figure 3, demonstrate that using Win32 API to
automatically invoke GUI controls takes up more
memory except when executing forms that perform a
significant task such as writing to a file or writing to
a database, which is exactly what the forms
FrmCustomers and FrmProduct do. The other forms
(FrmLogin, FrmMain, FrmOrders and FrmAbout) do
not perform any computationally expensive
processing. The reason that the memory usage of the
device client increases when using .NET reflection
is because when instantiating a windows form using
.NET reflection, the AUT is bound as part of the
application that loaded the form. When using Win32
functions to invoke GUI controls, the AUT under
test is loaded as an external process, and therefore
has no direct performance impact on the device
client. This was observed in the Controls Created
fields in the .STAT files for the Win32 tests and
.NET reflection tests.

Figure 3: Average Peak Bytes Allocated Graphical
Representations.

5 DISCUSSION & FUTURE
WORK

Torqueo is an automated fuzzing framework that can
generate tests for Windows embedded handheld GUI
applications; it can be executed on multiple device
configurations and can be used in conjunction with
existing testing tools. The research conducted
demonstrates that there is a performance impact
when automating the invocation of GUI controls
using both the Win32 API and .NET reflection.
However the results demonstrated that the technique
better suited to perform this task depends on the
complexity of the operations the GUI is attempting
to perform. While there are benefits to having a
stand-alone version of Torqueo on a test device,
there are also some disadvantages especially when
testing using multiple devices as the effort to
retrieve logs and configure test scenarios is
increased. A client / server version of Torqueo is
currently being developed that requires a lightweight
agent to be installed on the device and all settings
are controlled using a desktop computer as opposed
to having all features of the testing installed on the
device under test. The initial results have shown a
performance improvement on the device.

The stand-alone version of Torqueo has been
used to successfully find defects in commercial
enterprise mobility applications. The types of defects
found were mainly crashes in the application under
test. Torqueo was also useful in assisting with
reproducing defects that involved running test
scenarios over a long period of time mixed with
sudden user actions such as powering off the device.
This success in finding such defects led to the
further development of the tool.

6 CONCLUSIONS

Torqueo was developed to fill a gap in the current
mobile development and testing field. An earlier
version of Torqueo was used to test several
commercial projects and was successful in finding
defects in Windows Embedded Handheld
applications. The advantage of using Torqueo was
that it was highly configurable and allowed for
reproduction of defects using the exact same data.
The main objective of the tool is to give developers
and testers several fuzz testing options to generate
random test data from the one framework. However
what was unknown was the performance impact on
the device while testing applications. This

Performance�Impact�of�Fuzz�Testing�Windows�Embedded�Handheld�Applications

375

experiment allows testers and developers determine
which GUI invocation techniques to apply when
conducting tests on Windows Embedded Handheld
applications.

REFERENCES

Abdallah, N., 2010. Performance Impact of Using .NET
Reflection in .NET Compact Framework Applications.
Retrieved 12 22, 2010, from Monash University -
Clayton School of Information Technology
Publications: http://www.csse.monash.edu.au/
publications/2010/tr-2010-260-full.pdf

Abdallah, N., & Ramakrishnan, S., 2009. Automated
Stress Testing of Windows Mobile GUI Applications.
International Symposium on Software Reliability
Engineering (ISSRE). Mysore, India: IEEE, ISSRE.

Alsmadi, I., 2008. Building a GUI Test Automation
Framework Using the Data Model. Saarbrucken,
Germany: VDM Verlag Dr. Muller Aktiengsellschaft
& Co.

Chen, T. Y., Kuo, F.-C., Merkel, R. G., & Tse, T., 2009.
Adaptive Random Testing: the ART of Test Case
Diversity. The University of Hong Kong, Department
of Computer Science, Pokfulam, Hong Kong..

Chong, W. H, 2006. iDEN Phones Automated Stress
Testing. World Academy of Science, Engineering and
Technology.

Codenomicon. (n.d.). Codenomicon Defensics 3.0.
Retrieved 11 16, 2010, from Codenomicon:
http://www.codenomicon.com/defensics/

Forrester, J. E., & Miller, B. P., 2000. An Empirical Study
of the Robustness of Windows NT Applications Using
Random Testing. Retrieved 05 16, 2010, from The
University of Wisconsin Madison: http://
pages.cs.wisc.edu/~bart/fuzz/fuzz-nt.html

Google. (n.d.). Monkey Runner. Retrieved 01 13, 2012,
from Android Developers Documentation: http://
developer.android.com/guide/developing/tools/monke
yrunner_concepts.html

Hammersland, R., & Snekkenes, E., 2008. Fuzz testing of
web applications. Retrieved 07 16, 2010, from
AquaLab Research in Distributed Computing: http://
www.aqualab.cs.northwestern.edu/HotWeb08/papers/
Hammersland-FTW.pdf

Memon, A. M., Pollack, M. E., & Soffa, M. L., 2000. A
Planning-Based Approach to GUI Testing.
Proceedings of The 13th International
Software/Internet Quality Week. San Francisco,
California.

Microsoft. (2010, 04 08). Hopper Test Tool. Retrieved 07
18, 2010, from MSDN (Microsoft Developer
Network): http://msdn.microsoft.com/en-us/library/
bb158517.aspx

Microsoft. (n.d.). Windows Embedded OS. Retrieved 11
18, 2010, from Microsoft Windows Embedded: http://
www.microsoft.com/windowsembedded/en-us/about/
what.mspx

Miller, B. P., Cooksey, G., & Moore, F., 2006. An
Empirical Study of the Robustness of MacOS
Applications Using Random Testing. Retrieved 05 16,
2010, from The University of Wisconsin Madison:
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/Fuzz-
MacOS.pdf

Miller, B. P., Fredrikson, L., & So, B., 1990. An Empirical
Study of the Reliability of UNIX Utilities. Retrieved 05
16, 2010, from The University of Wisconsin Madison:
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf

Miller, B. P., Koski, D., Lee, C. P., Maganty, V., Murthy,
R., Natarajan, A., et al., 1995. Fuzz Revisited: A Re-
examination of the Reliability of UNIX Utilities and
Services. Retrieved 05 16, 2010, from The University
of Wisconsin Madison: ftp://ftp.cs.wisc.edu/paradyn/
technical_papers/fuzz-revisited.pdf

Sutton, M., Greene, A., & Amini, P., 2007. Fuzzing Brute
Force Vulnerability Discovery. New Jersey, United
States: Pearson Education.

Ye, M., Fneg, B., Lin, Y., & Zhu, L., 2006. Neural
Networks Based Test Case Selection Strategy for GUI
Testing. Proceeding of the 6th World Congress on
Intelligent Control and Automation. Dalian, China:
IEEE.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

376

