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Abstract: In this paper an implementation of Hodgkin-Huxley single neuron is provided. Unlike almost all of the 
existing implementations, the arithmetic logics are implemented with computation techniques (i.e. 
CORDIC) and look-up-tables (LUTs) are used only in few modules. This makes our design more robust and 
flexible to simulate the functionality of a large network of neurons. Most of the previous works are based on 
the software implementations which overshadow the parallel nature of the neural system or using LUTs for 
hardware implementation which needs more space and also limited flexibility. In this paper, an FPGA is 
selected as our hardware implementation platform to provide an appropriate reconfigurable platform for 
simulating the functionality of a network of neurons. We validated our design based on our high level 
implementation of Hodgkin-Huxley neuron in MATLAB and report our implementation results based on 
Xilinx SPARTAN 3 FPGA in Xilinx ISE Design Suite. 

1 INTRODUCTION 

There has been a recent interested in computational 
neuroscience, which tries to reveal how the brain 
processes information, based on the functionality 
and the relationship between different parts of the 
nervous system. Neurons are considered as the basic 
building blocks of the nervous system. They are 
excitatory/inhibitory cells that receive electrical 
signals from other neurons, combine them, and 
transmit them to other neurons through their short or 
long axons. To perform a specific function, up to 
thousands neurons may interconnect to each other in 
a neural network. It is of special interest to develop 
computational tools to simulate the behaviour of 
neurons, and verify the theories that were proposed 
to justify the results of experiments (Kandel et al., 
2000). 

Transient, as well as the steady state, response of 
each neuron affects the behavior of all neurons 
connected to it. This dynamic interaction among the 
neurons seems to be very important in functionality 
of the neural networks. Such an interaction cannot 
be implemented in a serial system. Therefore, 
modeling parallelism as well as dynamic interaction 
of the neurons is essential. 

A neuron can be modeled in two ways: software 
simulation and hardware implementation. Software 
simulation has a serial nature (Li et al., 2010) and, as 
a result, simulation of transient interaction of the 
neurons is very difficult in software simulation. In 
addition, it is slower in comparison to the hardware 
implementation. Moreover, due to the required large 
number of interconnected neurons in a neural 
network, hardware implementation provides the 
results in a reasonable time. There are two different 
hardware implementation approaches: analog and 
digital implementations. Digital implementation is 
widely used because of its lower noise sensitivity, 
more flexibility, easier testability and repeatability 
(Muthuramalingam et al., 2008). In addition, digital 
implementation has lower design time and cost 
(Gatet et al., 2009). Nevertheless, it is easier to 
model dynamic interaction of the neurons in 
analogue systems but the main deficiency of digital 
implementation is the limited available area which 
demands more optimal designs. 

There are different alternatives for digital 
implementation; including ASIC, DSP, and FPGA. 
The ASIC-based implementation is not suitable 
because it is not reconfigurable and it cannot be 
changed after manufacturing (Wanhammar, 1999). 
The key feature of DSP-based implementation is 
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that, it is sequential and the neurons cannot be easily 
modelled in a parallel architecture. In other words, 
DSP-based systems are special purpose 
implementation of processor-based system. FPGAs 
benefit from reconfigurable and parallel architecture 
and these properties make them the best candidate 
for neuron’s implementation (Muthuramalingam et 
al., 2008). 

Several FPGA implementations of biological 
neurons have been proposed so far (Graas et al., 
2004); (Mokhtar et al., 2008); (Rice et al., 2009); 
(Pourhaj and Teng, 2010) that most of them 
implemented Izhikevich models (Mokhtar et al., 
2008); (Rice et al., 2009). In this paper, we are 
interested to implement a more biologically 
plausible neuron model. For this purpose, the 
Hodgkin-Huxley (H-H) neuron model is chosen. In 
(Graas et al., 2004); (Pourhaj and Teng, 2010), the 
H-H neuron model has been implemented. E. L. 
Graas et al. (Graas et al., 2004) used look-up-table 
(LUT) instead of implementing equations for 
calculating the critical parts of the implementation. 
So, this type of implementation needs a large size of 
memory to pre-compute the required results (of 
course with limited number of bits) and save them in 
LUTs which reduces the final accuracy because of 
constraints on the memory size. In addition, in 
(Graas et al., 2004) a neuron was implemented using 
System Generator but it is obvious that automatic 
software tools cannot produce an optimal hardware. 
P. Pourhaj et al. (Pourhaj and Teng, 2010) used LUT 
to implement different parts, which has a side effect 
on the final accuracy of the implementation. For 
instance, the LUT-based implementation of some 
equations with the exponential terms has not (and 
also can not) enough accuracy. 

In this paper the H-H neuron model is used for 
implementation. We employ MATLAB for high 
level design of a single neuron’s behavior and use 
the results as a gold standard to check our 
implementation on FPGA. The rest of the paper is 
organized as follows. In Section 2 the H-H model is 
briefly explained. The FPGA implementation details 
are discussed in Section 3. In Section 4 experimental 
results are provided and finally Section 5 concludes 
the work and provides the future works. 

2 HODGKIN HUXLEY MODEL 

In a series of experiments carried out on the squid 
giant axon, Hodgkin and Huxley introduced a model 
to explain the process of action potentials generation 
in the neuron, based on ionic current through the 

membrane (Hodgkin and Huxley, 1952). Voltage-
dependent ion channels for potassium and sodium 
control flow of these ions. All other ions (mostly 
chloride ions) that flow through the neuron 
membrane constitute the leak current. Concentration 
and electrical potential gradients are two forces 
driving ions passing through the membrane 
channels. The electrical potential, in which these two 
forces become equal and the net flowing currents 
becomes zero, is called equilibrium rest state. It is 
about -65 mV and may vary in different neurons. If 
the neuron is stimulated by an external current, or 
through other up-stream neurons, the potential of 
neurons increases to a positive value and after a 
short time falls back to the equilibrium rest potential 
(Izhikevich, 2007). This abrupt change in membrane 
voltage is called action potential. The Hodgkin & 
Huxley proposed circuit for squid giant axon is 
shown in figure 1, and equation (1) gives the relation 
between input current and the membrane voltage. 

 

Figure 1: Hodgkin & Huxley proposed circuit for squid 
giant axon. gK & gNa, are voltage-dependent conductance. 

The complete set of H-H current’s equations 
according to (Izhikevich, 2007) comes in (1) to (4). 
 

CV = - - -I I I Iext K Na L  (1)

Where, the potassium current, IK is given by 

equation (2). 

4= n (V - )gI EK KK  (2)

IK is the potassium current with four activation 

gates which is shown by n4. 
INa is the sodium current that is defined in 

equation (3). It has three activation gates (m3) and 
one inactivation gate (h). 

3= m h(V - )gI ENa NaNa  (3)

IL is the ohmic leak current which is given in 

equation (4). 

FPGA�Implementation�of�Hodgkin-Huxley�Neuron�Model

523



 

= (V - )gI EL LL  (4)

According to (Hodgkin and Huxley, 1952), the 
values of activation and inactivation’s parameters 
are updated by equation (5). 

 

X (V) - X
X =

(V)τX

  (5)

Where X ∈ {m, n, h} and τ (V)X  and X (V)  are 

obtained by (6). 

1
τ (V) =X α (V) + β (V)X X

α (V)X(V) =X
α (V) + β (V)X X



 (6)

 

α and β ‘s equations are shown in (7). 
 

0.01(V + 55)
(V) =αn 1- exp[-0.1(V + 55)]

0.1(V + 40)
(V) =αm 1- exp[-0.1(V + 40)]

(V) = 0.07exp[-0.05(V + 65)]αh

(V) = 0.125exp[-0.0125(V + 65)]βn

(V) = 4.0exp[-0.0556(V + 65)]βm

1
(V) =βh 1+ exp[-0.1(V + 35)]

 (7)

 

According to (Izhikevich, 2007), typical values of 
maximal conductance and the membrane 
capacitance are shown in equation (8). 

 

2 2g g= 36mS / cm , = 120mS / cm ,K Na
2 2g = 0.3mS / cm , C = 1μF / cmL

 (8)

 

The equilibrium potentials are shown in equation 
(9). 

= -54.402mV, = -77mV, = 50mVE E EL K Na  (9)
 

For digital implementation of these calculations, we 
need to convert these floating point values and 
computations to specific fixed point values and then 
perform these computations with specific accuracy 
in fixed point arithmetic. In the following section, 
the details of our fixed point design and digital 
implementation is expressed. 

3 FPGA IMPLEMENTATION 

According to the equations (1) - (7), the proposed 
architecture which is implemented in this paper is 
shown in figure 2. Each box corresponds to one or 
more components. For implementing these 
components, the required functionalities and 
modules are addition, subtraction, multiplication, 
division and exponential function. The main 
constraint which should be considered in hardware 
implementation is the parallelism and also optimal 
hardware resource usage. In other words, the 
implemented system should respond in real-time and 
also have comparable accuracy with software 
implementation. For this reason, addition and 
multiplication are implemented by FPGA’s special 
circuits (DSP Cores). We also designed the division 
modules using shift registers and addition to save the 
area. 

One of the most important and critical parts of 
our hardware implementation is exponential 
function. The accuracy, speed and also logic 
resource usage of this module has a direct impact on 
the final result. For this reason we used the 
hyperbolic CORDIC algorithm to estimate the 
exponential function more accurately. According to 
(Ercegovac and Lang, 2003), we used the following 
equations in our design and implementation 
(equation 10). 

 

-j
x[j +1] = x[j] - 2 y[j]σ j

-j
y[j +1] = y[j] + 2 x[j]σ j

-j-1z[j +1] = z[j] - tan (2 )σ j

 (10)

 

As shown in equation (10), shifter and adder are 
needed for hardware implementation. The number of 
bits used for intermediate value representation 
should be selected carefully to provide the required 
accuracy of the neuron. On the other hand we should 
find the minimum number of bits to minimize the 
FPGA resources. In other words, there is a trade-off 
between accuracy and FPGA resources. We 
determined the optimal representing bits for 
implementation via high level simulation in 
MATLAB and comparing the final results with low 
level HDL simulations. 

The other important part of equation (10) is 
-j-1tan (2 )  function. It is implemented by static 

ROMs or LUTs with limited rows. There exist more 
accurate implementations of this function using 
more hardware resources comparing the LUT 

IJCCI�2012�-�International�Joint�Conference�on�Computational�Intelligence

524



 

 

Figure 2: The proposed architecture for H-H neuron model implementation. 

implementation. As we need limited accuracy, we 
used LUT-based implementation to minimize the 
required FPGA resources. The initial value of z[j] is 
used as an argument to calculate the exponential 
function. Simulation results show that 32 bit words 
are enough to represent all intermediate values. As 
CORDIC algorithm is defined for the limited inputs, 
we separate the inputs into two parts. The most 12 
significant bits are used as integer part, and the 
remaining 20 bits show the fractional part of the 
number. The higher 12 bits that presents the integer 
part are used as LUT’s input, in which the 
exponential value of this integer part is saved. In 
other words, for integer numbers, the results of the 
computation with adequate accuracy is computed 
before, and saved in a LUT. In run-time a simple 
search is performed instead of calculating its value. 
As a result, the time complexity to compute this 
function is O(1) and the fractional parts is given to 
CORDIC algorithm. According to equation (11) the 
output of the LUT and the output of the CORDIC 
algorithm should be multiplied to produce the 
exponential function results for 32-bit input. 

 

θ = X + Y

exp(θ) = exp(X).exp(Y)
 (11)

 

Based on equation (7) we use the same architecture 
with different constant values to calculate αn and αm 
(see figure 3). The selected constant’s values used in 
figure 3 are shown in Table 1. 

According to equation (7), αh, βn and βm have 
similar architecture which is shown in figure 4. 
Table 2 shows the selective constant’s values used in 
figure 4. 

Table 1: Constant value for figure 3. 

 C1 C2 C3 
αn 55 -0.1 0.01 
αm 40 -0.1 0.1 

 

 

Figure 3: αn and αm architecture. 

 

Figure 4: αh, βn and βm architecture. 

αn βnαmαh βmβh 

n∞ m∞h∞ τnτmτh  

n  mhIKINaIL  

V

Integrator IntegratorIntegratorIntegrator
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Table 2: Constant values for figure 4. 

 C4  C5 C6 
αh 65 -0.05 0.07 
βn 65 -0.0125 0.125 
βm 65 -0.0556 4 

 

We used a similar architecture to calculate βh 
(See figure 5). 
 

 

Figure 5: Proposed architecture to compute βh. 

First of all, the results of the equation (7) have to 
be computed, and the outputs should be produced. 
So αX and βX are ready to be used as inputs in 
equation (6). The high level implementation of 
equation (6) that produces τX is shown in figure 6. 
Inputs and output of this module are given in Table 
3. 

 

 

Figure 6: A typical implementation of X . 

Table 3: The output and input`s values used in figure 6. 

Out In1 In2 

n  
αn βn 

m  
αm βm 

h  
αh βh 

 

A similar architecture is used to implement X∞, 
but the constant value 1 in division’s input is 
replaced by the first input (In1). The outputs of these 
modules which are the outputs of equation (6) 
applied as inputs to equation (5). Implementation of 
equation (5) is same as the architecture in figure 6, 

but the first input (In1) is connected to X, and the 
second input (In2) is connected to X∞ to make the 
subtraction’s result and τ X is connected to the 
division’s input which is 1 in figure 6. 

The high level circuit of IK  implementation is 

shown in figure 7. 

 

Figure 7: The architecture of IK . 

Another required component which is used to 

calculate IK  is n4. This function is implemented 

using three multipliers (shown as nPOW4 in figure 
7). 

A similar circuit is designed and implemented to 

compute INa . The mPOW3 (shown in figure 8) 

computes m3. 
 

 

Figure 8: The architecture of INa. 

The last required component is IL. The 
architecture of this component is shown in figure 9. 

Membrane voltage in equation (1) is calculated 
by the last module that is an adder with four inputs, 
called IK, INa, IL and Iext. Input Iext is an external 
current that stimulates the neuron.  

The new values of the n, m, h and V are 

calculated using integrators with n, m, h  and V as 
inputs, respectively. To implement the integrator, 
equation (12) is used by step time of 0.01 ms. This 
step time is selected based on our design and also 

EK 

IK 

g

ENa 

g Na

INa

K
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our evaluation board which is used for prototyping. 
 

 
 

Figure 9: The architecture of IL. 

X(t + Δt) = X(t) + Δt * X(t)  (12)
 

Equation (12) is implemented using a simple MAC 
(multiply and accumulate) and rounded to 32 bits. In 
the following section, the experimental setup, 
validation and evaluation of the proposed 
architecture is described. 

4 RESULTS 

To validate the FPGA implementation results, the 
implemented bit level simulation is compared with 
MATLAB simulation system. For high level 
simulation we use Simulink, and all hardware 
components are designed and implemented using 
VHDL modelling language. The main design 
objective of the low level implementation is the 
output accuracy. Due to the implementation 
constraints, we should use the minimum number of 
bits in all module implementations. The details of 
implementation are given in Tables 4 and 5. We 
tested the behavior of both systems for different 
values of parameters, initial values, and external 
currents. Here, the results for two important cases 
are shown; i) no stimulation is applied (Iext = 0), and 
the neuron goes to the rest state after a transition 
time (Figure 10), ii) a strong stimulation (Iext = 
30mA) is applied, and thus the neuron exhibits 
periodic (tonic) spiking (Figure 11). In figure 10, 
and 11, the membrane voltage (V) of the neuron 
from MATLAB simulation (solid blue line), and 
from FPGA implementation (dashed red line) is 
shown. There are only very little differences 
between the two waveforms, which are due to the 
rounding error, due to the limitation of the number 
of bits to 32 in FPGA implementation. This error is 
in an acceptable range, and can be reduced, by 
extending this number representation system. 
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Figure 10: Membrane voltage of neuron for Iext =0mA. 
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Figure 11: Membrane voltage of neuron for Iext=30mA. 

We implemented the neuron on a Xilinx FPGA 
(Spartan3). The resource usages and critical path 
delay are reported in Table 4 and Table 5. According 
to the reported experimental results we are able to 
implement one neuron in a Spartan FPGA working 
with frequency of 37.563MHz. Also we can use 
larger devices to implement more neurons in one 
device. 

Table 4: Device utilization summary. 

Number of Slices 13273 out of 23872 
Number of Slice FFs 7231 out of 47744 

Number of 4 input LUTs 23514 out of 47744 
Number of IOs 292 

Number of bonded IOBs 292 out of 469 
Number of GCLKs 24 out of 24 
Number of DSP48s 99 out of 126 

Table 5: Timing summary. 

Minimum period 26.622ns 
Minimum input arrival time 

before clock 
10.982ns 

Maximum output required 
time after clock 

6.068ns 

EL 
gL 

IL 

MATLAB simulation 
FPGA implementation 

MATLAB simulation 
FPGA implementation
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5 CONCLUSIONS AND FUTURE 
WORKS 

In this paper the Hodgkin-Huxley model of a single 
biological neuron has been designed and 
implemented on an FPGA. Unlike previous 
approaches, we used the CORDIC algorithm for 
implementing the exponential functions and other 
arithmetic parts. So our used logic is more compact 
than previous ones. The accuracy and performance 
of our proposed approach is validated by MATALB 
high level implementation. Because of establishing 
trade-off between used area and frequency, the 
number (and also format) of representing bits of our 
arithmetic parts were selected carefully and 
validated and verified by high level simulation. For 
instance, it was shown that the neuron spiking 
frequencies in MATLAB simulation and in FPGA 
implementation almost are the same. It is a very 
important parameter because it codes the 
information that a neuron transmits. The hierarchal 
proposed design and implementation allows simple 
modification of it to an equivalent small pipeline 
system, which is useful in implementing a large 
neural network. We plan to optimize our hardware to 
make it smaller and finding the optimal bit length of 
each parameter separately. Moreover, the behaviour 
of the implemented neuron will be benchmarked 
against the behaviour of a natural one. Furthermore, 
implementing a neural network of competing 
minicolumns (Bakhtiari. et al., 2012) in FPGA is the 
next target of this research. 
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