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Abstract: The local and global behavior of Self-Organized Criticality (SOC) systems may be an efficient source for 
controlling the parameters of a Particle Swarm Optimization (PSO) without hand-tuning. This paper 
proposes a strategy based on the SOC Bak-Sneppen model of co-evolution for adjusting the inertia weight 
and the acceleration coefficients values of the PSO. In order to increase exploration, the model is also used 
to perturb the position of the particles. The resulting algorithm is named Bak-Sneppen PSO (BS-PSO). An 
experimental setup compares the new algorithm with versions of the PSO with varying inertia weight, 
including a state-of-the-art algorithm with dynamic variation of the weight value and perturbation of the 
particles’ positions. The parameter values generated by the model are investigated in order to understand the 
dynamic of the algorithm and explain its performance. 

1 INTRODUCTION 

The Particle Swarm Optimization (PSO) algorithm 
is a meta-heuristic for binary and real-valued 
function optimization inspired by the social behavior 
of organisms in bird flocks and fish schools 
(Kennedy and Eberhart, 1995). Since its inception, 
PSO has been applied with success to a number of 
problems and motivated several lines of research 
that investigate its working mechanisms. One of 
these research lines studies the parameters of the 
algorithm, namely, the acceleration coefficients and 
the inertia weight, which control the balance 
between global and local search. 

As in other population-based metaheuristics, the 
parameter values of PSO may be hand-tuned for 
optimal performance or adjusted during the run. 
There are different types of strategies for varying the 
parameters during the run: deterministic (the values 
change according to pre-defined rules), adaptive (the 
values depend on the state of the search) or self-
adaptive (the parameters evolve with the solutions) 
— see (Eiben et al., 1999) for a review on parameter 
control strategies. Self-Organized Criticality (SOC) 

theory, first described in (Bak et al., 1987), provides 
interesting schemes that can be easily tailored for 
deterministic and adaptive control of PSO’s working 
mechanisms. In fact, SOC has been used in the past 
in population-based metaheuristics, like 
Evolutionary Algorithms — see, for instance, 
(Fernandes et al, 2008) and (Krink et al., 2001) — 
and even PSO (Løvbjerg and Krink, 2002). In this 
paper we propose a versatile method inspired by the 
SOC theory for controlling the parameters of PSO. 

The new control strategy is not deterministic in 
the strict sense, due to its stochastic nature (although 
with a predictable global behavior) and dependence 
on the swarm’s size; in addition, depending on the 
way it is implemented and on the degree of 
hybridization between the model and the PSO, it 
may be adaptive or even self-adaptive. This paper 
investigates the potentiality of the proposed method 
as a stochastic seed for varying the parameters, 
postponing a study of a stronger hybridization of the 
SOC model and the PSO for a future work.  

The algorithm is based on a SOC system known 
as the Bak-Sneppen model of co-evolution between 
interacting species (Bak and Sneppen, 1993). The 
resulting algorithm, called Bak-Sneppen PSO (BS-
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PSO), uses the fitness values of the population of co-
evolving species, since the dynamics of these values 
provides a promising basis for controlling PSO’s 
parameters. Therefore, we investigate the efficiency 
of the fitness as control values of the inertia weight 
and acceleration coefficients. Furthermore, the exact 
same fitness values are used for perturbing the 
positions of the particles, thus introducing a kind of 
mutation in PSO. 

A simple experimental setup was designed as a 
proof-of-concept. BS-PSO is compared with 
deterministic and adaptive control methods, as well 
as with a state-of-the-art PSO that adapts the inertia 
weight values and introduces perturbations in the 
particles’ positions. Two different topologies for the 
population networks are considered. The tests are 
conducted in a way such that each new component 
of BS-PSO is examined separately in order to 
investigate its effects on the performance of the 
algorithm. The results demonstrate the validity of 
the approach and show that BS-PSO, without 
requiring the hand-tuning of the inertia weight or 
acceleration coefficients, is competitive with other 
PSOs. Furthermore, the base-model is simple and 
well-studied by the SOC theory, and may be treated 
as a black-box system that outputs batches of values 
for the parameters. 

The present work is organized as follows. The 
next section describes PSO; Section 3 introduces 
SOC and gives some examples of the application of 
this theory in bio-inspired computation; Section 4 
describes the proposed BS-PSO; Section 5 describes 
the experiments and discusses the results. Finally, 
Section 6 concludes the paper and outlines future 
lines of research. 

2 PARTICLE SWARM 
OPTIMIZATION 

The PSO algorithm is a swarm intelligence 
algorithm in which a group of solutions travels 
through the search space according to a set of rules 
that favor their movement towards optimal regions 
of the space. A simple set of equations that define 
the velocity and position of each particle. The 
position vector of the i-th particle is given by 
Ԧܺ ൌ ሺݔ,ଵ, ,,ଶݔ …  is the dimension of ܦ ଵ,), whereݔ
the search space. The velocity is given by ሬܸԦ ൌ
ሺݒ,ଵ, ,,ଶݒ …  ଵ,). The particles are evaluated with aݒ
fitness function ݂ሺ Ԧܺሻ in each time step and then 
their velocities and positions are updated by: 

ሻݐ,ௗሺݒ ൌ ݐ,ௗሺݒ െ 1ሻ
 ܿଵݎଵ൫,ௗ െ ݐ,ௗሺݔ െ 1ሻ൯
 ܿଶݎଶ൫,ௗ െ ݐ,ௗሺݔ െ 1ሻ൯ 

(1)

ሻݐ,ௗሺݔ ൌ ݐ,ௗሺݔ െ 1ሻ  ሻ (2)ݐ,ௗሺݒ

where  is the best solution found so far by particle 
  is the best solution found so far by the ,݅
neighborhood, ݎଵand ݎଶ are vectors of random 
numbers uniformly distributed in the range ሾ0,1] and 
ܿଵand ܿଶ are acceleration coefficients that tune the 
relative influence of each term of the formula. The 
first, influenced by the particles best solution, is 
known as the cognitive part, since it relies on the 
particle’s own experience. The last term is the social 
part, since it describes the influence of the 
community in the velocity of the particle.  

Two typical sociometric principles may define 
the population network structure, which defines 
neighborhood of each particle, although other 
structures are possible. The first connects all the 
members of the swarm to one another. It is called 
 ,where ݃ stands for global. The second ,ݐݏܾ݁݃
called ݈ܾ݁ݐݏ (݈	stands for local), creates a 
neighborhood that comprises the particle itself and 
its ݇ nearest neighbors. In order to prevent particles 
from stepping out of the limits of the search space, 
the positions ݔ,ௗሺݐሻ of the particles are limited by 
constants that, in general, correspond to the domain 
of the problem: ݔ,ௗሺݐሻ ∊ ሾെܺ݉ܽݔ,  ሿ. Velocityݔܽ݉ܺ
may also be limited within a range in order to 
prevent the explosion of the velocity vector: 
ሻݐ,ௗሺݒ ∊ ሾെܸ݉ܽݔ,  .ሿݔܸܽ݉

Although the basic PSO may be very efficient on 
numerical optimization, it requires a proper balance 
between local and global search. If we look at 
equation 1, we see that the last term on the right-
hand side of the formula provides the particle with 
global search abilities, while the first and second 
terms act as a local search mechanism. Therefore, by 
weighting these two parts of the formula it is 
possible to balance local and global search. In order 
to achieve a balancing mechanism, Shi and Eberhart, 
(1998) introduced the inertia weight 	߱, which is 
adjusted — usually within the range [0, 1.0] — 
together with the constants ܿଵ and  ܿଶ in order to 
achieve the desired balance. The modified velocity 
equation is: 

ሻݐ,ௗሺݒ ൌ ݐ,ௗሺݒ߱ െ 1ሻ  ܿଵݎଵ൫,ௗ െ ݐ,ௗሺݔ െ 1ሻ൯
 ܿଶݎଶ൫,ௗ െ ݐ,ௗሺݔ െ 1ሻ൯ 

(3)

 

The parameter may be used as a constant that is 
defined after an empirical investigation of the 
algorithm’s behaviour. Another possible strategy, 
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introduced in (Shi and Eberhart, 1999), is to use 
time-varying inertia weights (TVIW-PSO): starting 
with an initial and pre-defined value, the parameter 
value decreases linearly with time, until it reaches 
the minimum value. Later, Eberhart and Shi (2000) 
found that the TVIW-PSO is not very effective on 
dynamic environments and proposed a random 
inertia weight for tracking dynamic systems. In the 
remainder of this paper, this method is referred to as 
RANDIW-PSO. 

An adaptive approach is proposed in (Arumugam 
and Rao, 2006). The authors describe a global local 
best inertia weight PSO (GLbestIW-PSO), which 
uses an on-line variation strategy that depends on the 
  values. The strategy is defined in a way  and
that better solutions use lower inertia weight values, 
thus increasing their local search abilities. The worst 
particles are modified with higher ߱ values and 
therefore tend to explore the search space. 

Ratnaweera et al. (2004) describe new parameter 
automation strategies that act upon several working 
mechanisms of the algorithm. The authors propose 
the concept of time-varying acceleration 
coefficients. They also introduce the concept of 
mutation, by adding perturbations to randomly 
selected modulus of the velocity vector. Finally, the 
authors describe a self-organizing hierarchical 
particle swarm optimizer with time-varying 
acceleration coefficients (HPSO-TVAC), which 
restricts the velocity update policy to the influence 
of the cognitive and social part, reinitializing the 
particles whenever they are stagnated in the search 
space. Ratnaweera et al. show that the HPSO-TVAC 
outperforms other methods in a specific test set. 

Another method for controlling ߱ is given by 
Suresh et al. (2008): the inertia-Adaptive PSO (IA-
PSO). The authors use the Euclidean distance 
between the particle and ܾ݃݁ݐݏ for computing ߱ in 
each time-step for each particle. Particles closer to 
the best global solution tend to have higher ߱ 
values, while particles far from ܾ݃݁ݐݏ are modified 
with lower inertia. The algorithm introduces a 
parameter ߱ that restricts the inertia weight to 
working values. In addition, Suresh et al. also uses a 
perturbation mechanism of the particles’ positions 
that introduces a random value in the range ሾ1,  ,ሿߩ
where ߩ is a new parameter for the algorithm (see 
equation 4, which replaces equation 2). The authors 
report that the IA-PSO outperforms several other 
methods in a 12-function benchmark, including the 
above referred state-of-the-art HPSO-TVAC. The 
algorithm is simple and easy to implement and it 
was included in the test set described in Section 4 in 
order to evaluate the performance of the BS-PSO. 

ሻݐ,ௗሺݔ ൌ ሺ1  .ሻߩ ݐ,ௗሺݔ െ 1ሻ  ሻ (4)ݐ,ௗሺݒ

Like HPSO-.TVAC and IA-PSO, the method 
proposed in this paper also aims at controlling the 
balance between local and global search by 
dynamically varying the parameters, while 
introducing perturbations in the particles’ positions 
(like IA-PSO, but with ߩ controlled by the SOC 
model). The main objective is to construct a simple 
scheme that does not require complex parameter 
tuning or pre-established strategies. In addition, each 
particle’s inertia weight, acceleration coefficients 
and perturbation ߩ are controlled by the same 
species of the BakSneppen model, which simplifies 
the algorithm’s design and links the four parameters 
to a common variation strategy. Section 3 describes 
SOC, the Bak-Sneppen model and new method for 
controlling the parameters. 

3 SELF-ORGANIZED 
CRITICALITY 

SOC systems are dynamical system with a critical 
point in the transition region between order and 
chaos as an attractor. While order means that the 
system is working in a predictable regime where 
small disturbances have only local impact, chaos is 
an unpredictable state very sensitive to initial 
conditions or small disturbances. In complex 
adaptive systems, complexity and self-organization 
usually arise in that region. However, and unlike 
many physical systems, which have a parameter that 
needs to be tuned in order to reach criticality, SOC 
systems are able to self-tune to that critical state.  

Small disturbances in a SOC system that is in the 
critical state can lead to the so-called avalanches, 
i.e., chain reactions that are spatially or temporally 
spread through the system. This happens 
independently of the initial state. Moreover, the 
same perturbation may lead to small or large 
avalanches, which in the end show a power-law 
proportion between their size and abundance. This 
means that large events may hit the system 
periodically and reconfigure it.  

The first model in which SOC was identified was 
the sandpile model, introduced by Bak et al. (1987). 
Later, another SOC model was devised in order to 
describe the relationship between extinction events 
and their frequencies, and explain some features of 
the fossil record. The system is named after the 
scientists who first described it as the Bak-Sneppen 
model (Bak and Sneppen, 1993). 
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The Bak-Sneppen is a model of co-evolution 
between interacting species in an ecological 
environment. Different species in the same eco-
system are related through several features (food 
chains, for instance); they co-evolve, and the 
extinction of one species affects the other species 
that are related to it, in a chain reaction that can 
affect large segments of the population. Each species 
has a fitness value assigned to it and it is connected 
to other species (neighbors) in a ring topology (i.e., 
each species has two neighbors). Every time step, 
the species with the worst fitness and its neighbors 
are eliminated from the system and replaced by 
individuals with random fitness. Such an event is 
recorded as an avalanche of size	1; if the next 
mutation involves one of the newly created species, 
then the size is incremented. When plotting the size 
of the extinctions over their frequency in a local 
segment of the population and below a certain 
threshold close to a critical value, a power-law 
behavior is observed.  

This description may be translated to a 
mathematical model. The system is defined by ݊ௗ 
fitness numbers ݂ arranged on a ݀-dimensional 
lattice (ecosystem) with ݊ cells. At each time step, 
the smallest ݂ value and its 2 ൈ ݀ neighbours are 
replaced by uncorrelated random values drawn from 
a uniform distribution. The system is thus driven to a 
critical state where most species have reached a 
fitness value above a certain threshold. The 
coevolutionary activity gives rise to chain reactions 
or avalanches: large (non-equilibrium) fluctuations 
in the configuration of the fitness values that 
rearrange major parts of the system. 

The dynamics of the numerical values of the 
Bak-Sneppen model — power-law relationships 
between mutation events and their frequency, 
increasing average fitness of the population, periods 
of stasis in segments of the population punctuated by 
intense activity — are the motivation behind the 
investigation described in this paper. By linking a 
Bak-Sneppen model to the population of the PSO 
and then using the species’ fitness values as input for 
controlling the algorithm’s parameters, it is expected 
that the resulting strategy is able to control the 
inertia weight of the algorithm. To the extent of our 
knowledge, this is the first proposal of a scheme 
linking the Bak-Sneppen model and PSO in such a 
way. However, SOC has been applied to this field of 
research in the past.  

Proposed by Boettcher and Percus (2003), 
Extremal Optimization is a computational paradigm 
for numerical optimization based on the Bak-
Sneppen model. Extremal Optimization does not 

work with a population of individuals; instead it 
evolves a single solution to the problem by local 
search and modification. The algorithm removes the 
worst components of the solution and replaces them 
with randomly generated material. By plotting the 
fitness of the solution, it is possible to observe 
distinct stages of evolution, where improvement is 
disturbed by brief periods of dramatic decrease in 
the quality of the solution.  

In the Evolutionary Algorithms research field, 
Krink et al. (2001) proposed SOC-based mass 
extinction and mutation operator schemes — later 
extended to cellular GAs (Krink et al., 2002). The 
sandpile equations are previously computed in order 
to obtain a record of values with a power-law 
relationship. Those values are then used during the 
run to control the number of individuals that will be 
replaced by randomly generated solutions (SOC 
mass extinction model) or the mutation probability 
of the Evolutionary Algorithm (SOC mutation 
model). 

Tinós and Yang (2007) were also inspired by the 
Bak-Sneppen model to create a sophisticated 
Random Immigrants Genetic Algorithm (RIGA) 
(Grefenstette, 1992), called Self-Organized Random 
Immigrants GA (SORIGA). The authors apply the 
algorithm to time-varying fitness landscapes and 
claim that SORIGA is able to outperform other 
Genetic Algorithm in the proposed test set. By 
plotting the extent of extinction events (individuals 
replaced by random solutions), the authors argue 
that the model exhibits SOC behavior, that is, there 
is a power-law proportion between the size of the 
extinction events and their frequency. This means 
that from time to time the population is almost 
completely replaced by random immigrants. 

Fernandes et al. (2008) describe an Evolutionary 
Algorithm attached to a sandpile model. Later 
(Fernandes et al, 2011), the system was improved 
and its working mechanisms were studied. The 
model evolves along with the algorithm and its 
avalanches – system’s reaction events to 
perturbations, which show a power-law relationship 
between their size and their frequency – dynamically 
control the algorithm’s mutation operator with 
simple local rules. The authors use the proposed 
scheme for optimizing time-varying fitness functions 
and claim that the sandpile mutation Genetic 
Algorithm is able to outperform other state-of-the-art 
methods in a wide range of dynamic problems. 

Finally, Løvbjerg and Krink (2002) apply SOC 
to PSO in order to control the convergence of the 
algorithm and add diversity to the population. The 
authors introduce a critical value associated with 
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each particle and define a rule that increments that 
value when two particles are closer than a threshold 
distance. When the critical value of a particle 
exceeds a globally set criticality limit, the algorithm 
responds by dispersing the criticality of the particle 
within a certain surrounding neighborhood and also 
by mutating the particle (i.e., the particle is 
“relocated”). In addition, the algorithm uses the 
particle’s critical value to control the inertia weight. 
The authors claim that their method is faster and 
attains better solutions than the standard PSO. 
However, the algorithm introduces some parameters 
and working mechanisms that can complicate the 
design of the PSO. Overall, there are five parameters 
that must be tuned or set to constant ad hoc values. 

BS-PSO does not add parameters to the basic 
PSO, excepting an upper limit for the size of the 
avalanches, a practical limitation due to the nature of 
the Bak-Sneppen model and the requirements of a 
numerical optimization algorithm. Section 4 
describes this and other features of BS-PSO. 

4 THE BAK-SNEPPEN PARTICLE 
SWARM 

BS-PSO uses a Bak-Sneppen model without 
modifying any of its rules and underlying structure, 
or introducing complex control mechanisms and 
rules. The only exception is an upper limit for the 
size of the mutation events that are allowed during a 
time-step of the main PSO algorithm. This limit is 
used in order to avoid long cycles of mutations in 
the end of the runs that could compromise the speed 
of convergence of the algorithm. Besides that, the 
model is executed in its original form, during the run 
of the PSO, feeding the later with values between 0 
and 1.0 (the species’ fitness values) that are then 
used by the algorithm to control the parameters.  

Please note that if PSO does not interact directly 
with the model — which is the case studied in this 
paper —, the Bak-Sneppen model can be executed 
prior to the optimization process and its fitness 
values stored in order for them to be used later in 
any kind of problem. However, in order to 
generalize the system and describe a framework that 
can easily be adapted to another level of 
hybridization of the SOC model and the PSO, the 
description of the BS-PSO in this section assumes 
that the model evolves on-line with the swarm. 

(Furthermore, an offline approach could require 
too much memory when applied to problems that 
demand large populations and long running times.) 

Algorithm 1: Bak-sneppen model. 

1. Set ݉ݏ݊݅ݐܽݐݑ ൌ 0; set ݉ܽ݊݅ݐܽݐݑ݉_ݔ	 ൌ 	2 ൈ
 ݁ݖ݅ݏ_݉ݎܽݓݏ

2. Find the index ݆ of the species with lowest bak‐
sneppen fitness  

3. Set ݉݅݊ݐ݅ܨ	 ൌ ሺݏݏ݁݊ݐ݂݅_ݏܾ ఫܺሬሬሬԦሻ	
4. Replace the fitness of individuals with indices ݆, 
݆ െ 1, and ݆	  	1 by random values in the range 
[0,1.0] 

5. Increment mutations: ݉ݏ݊݅ݐܽݐݑ 
6. Find the index ݆ of the species with lowest fitness 
7. If ܾݏݏ݁݊ݐ݂݅_ݏሺ ఫܺሬሬሬԦሻ ൏ 	ݏ݊݅ݐܽݐݑ݉ or 	ݐ݅ܨ݊݅݉ ൌ
  return to 4; else, end ,݊݅ݐܽݐݑ݉_ݔܽ݉

Algorithm 2: BS-PSO. 

1. Initialize velocity and position of each particle. 
2. Evaluate each particle: ݂݅ݏݏ݁݊ݐ	൫ పܺሬሬሬԦ൯ ൌ ݂ሺ పܺሬሬሬԦሻ 
3. Initialize  bak‐sneppen  fitness  values: 

ሺݏݏ݁݊ݐ݂݅_ݏܾ పܺሬሬሬԦሻ ൌ ,ሾ0݉݀݊ܽݎ 1.0ሿ 
4. Update Bak‐Sneppen Model (Algorithm 1). 
5. For each particle ݅: 

6. Set ߱ ൌ ߩ ൌ 1 െ ሺݏݏ݁݊ݐ݂݅_ݏܾ పܺሬሬሬԦሻ 
7. Set ܿଵ ൌ ܿଶ ൌ 1  ሺݏݏ݁݊ݐ݂݅_ݏܾ పܺሬሬሬԦሻ 
8. Update  velocity  (equation  3)  and  position 
(equation 7) 

9.  If (stop criteria not met) return to 4; else, end. 
 

In the Bak-Sneppen model a population of 
individuals (species) is placed in a ring topology and 
a random real number (between 0 and 1.0) is 
assigned to each individual. In the BS-PSO, the size 
of this ecosystem (number of species) is equal to the 
size of the swarm. Therefore, the algorithm may be 
implemented just by assigning a second (random) 
fitness value, called bak-sneppen fitness value 
(bs_fitness) to each individual in the swarm. This 
way, each individual is both the particle of the PSO 
and the species of the co-evolutionary model, with 
two independent fitness values: the quality measure 
fitness value ݂௦൫ Ԧܺ൯, computed as usual by the 
objective function, and the bak-sneppen fitness value 

݂௦൫ Ԧܺ൯, which is modified according to Algorithm 1. 
The main body of the BS-PSO is very similar to 

the basic algorithm. The differences are: the 
algorithm 1 is called in each time-step, modifying 
three or more bak-sneppen fitness values; the inertia 
weight of each particle is defined in each time-step 
(and for each particle ݅) using equation 5, where పܺሬሬሬԦ 
is the vector (position) of particle ݅; the acceleration 
coefficients ܿଵ and ܿଶ are defined in each time-step 
by equation 6; the particles’ positions are updated 
with equation 7, where ߩሺݐሻ is a random value in 
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the range [0, 1 െ ሺݏݏ݁݊ݐ݂݅_ݏܾ పܺሬሬሬԦሻሿ. 

߱ሺݐሻ ൌ 1 െ ሺݏݏ݁݊ݐ݂݅_ݏܾ	 పܺሬሬሬԦሻ (5)

ܿଵሺݐሻ ൌ ܿଶሺݐሻ ൌ 1  ሺݏݏ݁݊ݐ݂݅_ݏܾ పܺሬሬሬԦሻ (6)

ሻݐ,ௗሺݔ ൌ ሺ1  .ሻሻݐሺߩ ݐ,ௗሺݔ െ 1ሻ  ሻ (7)ݐ,ௗሺݒ
 

Algorithm 1 is executed in each time-step of the BS-
PSO. At ݐ	 ൌ 	0, the bak-sneppen fitness values are 
randomly drawn from a uniform distribution in the 
range ሾ0, 0.1ሿ. Then, the algorithm searches for the 
worst individual in the population (lowest 
bs_fitness), stores its fitness value (minFit) and 
mutates that individual by replacing the bs_fitness 
by a random uniformly distributed value in the range 
ሾ0, 0.1ሿ. In addition, the neighbors of the worst 
species are also mutated (please remember that a 
ring topology connects the population and each 
species with index ݆	to its two neighbors with 
indexes ݆  1 and ݆ െ 1). Then, the algorithm 
searches again for the current worst individual. If the 
fitness of that individual is lower than minFit, the 
process repeats: the individual and its neighbors are 
mutated. This cycle proceeds while the worst fitness 
in the population is bellow the minFit value. When 
the worst fitness is found to be above minFit, the 
algorithm proceeds to the standard procedures of the 
basic PSO (see Algorithms 1 and 2). 

As stated above, a stop criterion was introduced 
in Algorithm 1, in order to avoid long mutation 
cycles that would slow down the BS-PSO after a 
certain number of iterations. If the number of 
mutation events reaches a maximum pre-defined 
value, Algorithm 1 ends (until the next time-step, 
when it proceeds from the point where it stopped). 
In this paper, the critical value was set to twice the 
swarm’s size. This value was intuitively fixed, not 
tuned for optimization of the performance. It is 
treated as a constant and a study of its effects on the 
performance is beyond the scope of this study. It is 
even possible that other strategies for avoiding long 
intra-time-steps mutation cycles can be devised that 
not require a constant. However, such an 
investigation is left for a future work. This paper’s 
main objective is to demonstrate that a control of the 
inertia weight, acceleration coefficients and 
particles’ positions with values given by a SOC 
model is viable and effective. For that purpose, a 
classical experimental setup was prepared in order to 
test the algorithm and compare it to other strategies. 
The results are given in the following section, as 
well a brief inspection of BS-PSO’s dynamics. 

5 EXPERIMENTS 

In order to test BS-PSO and compare it to other 
PSOs, an experimental setup was constructed with 
four unimodal and multimodal benchmark functions 
that are commonly used for investigating the 
performance of this class of algorithms. The 
functions are described in Table 1. The optimum 
(minimum) of all functions is located in the origin 
with fitness 0. The dimension of the search space is 
set to ܦ ൌ 30. TVIW-PSO, RANDIW- PSO, 
GLbestIW-PSO and IA-PSO were included in the 
tests in order to evaluate the performance of the BS-
PSO. This experiment is mainly a proof-of-concept, 
and the peer-algorithms were chosen so that the 
different mechanism of BS-PSO can be properly 
evaluated. 

The population size ݊ is set to 20 for all 
algorithms two topologies for the population 
network are tested: ݈ܾ݁ݐݏ and ܾ݃݁ݐݏ. The 
acceleration coefficients were set to 1.494, as 
suggested in (Eberhart and Shi, 2000) for RANDIW-
PSO. However, since the value proposed in (Suresh 
et al., 2008) and (Arumugam and Rao, 2006) for IA-
PSO and GLbestIW-PSO is 2.0, coefficients ܿ were 
also set to this value. ܺ݉ܽݔ is defined as usual by 
the domain’s upper limit and ܸ݉ܽݔ	 ൌ  .ݔܽ݉ܺ	
TVIW-PSO uses linearly decreasing inertia weight, 
from 0.9 to 0.4. The maximum number of 
generations is 3000 and a total of 50 runs for each 
experiment are conducted. Asymmetrical 
initialization was used (the initialization range for 
each function is given in Table 1). 

Table 1: Benchmarks for experiments. Dynamic and 
initialization range. 

mathematical	representation	
Range	of	search

Range	of	
initialization	

ଵ݂൫ Ԧܺ൯ ൌ ݔଶ


ୀଵ

 
ሺെ100, 100ሻ 

(50, 100ሻ 

ଶ݂ሺݔԦሻ ൌ ሺ100ሺݔାଵ െ ଶሻଶݔ  ሺݔ െ 1ሻଶ
ିଵ

ୀଵ

 
ሺെ100, 100ሻ 
ሺ15, 30ሻ 

ଷ݂ሺݔԦሻ ൌሺݔଶ െ 10 cosሺ2ݔߨሻ  10ሻ


ୀଵ

 
ሺെ10, 10ሻ 
ሺ2.56, 5.12ሻ 

ସ݂ሺݔԦሻ ൌ 1 
1

4000
ݔଶ െෑcos ൬

ݔ
√݅
൰



ୀଵ



ୀଵ

 ሺ300, 600ሻ 

The first test compares versions of BS-PSO with 
different degrees of parameter control (i.e., the 
acceleration coefficients control and the particles’ 

Using�Self-organized�Criticality�for�Adjusting�the�Parameters�of�a�Particle�Swarm

67



 

position perturbation were disabled in order to 
evaluate the effects of introducing the schemes). 
Table 2 summarizes the results, by showing the best 
solution on each problem averaged over 50 runs and 
the standard deviation values. In the table’s header, 
 are controlled by the ߩ means that ߱, ܿ or ݏܾ
bs_fitness values; otherwise, the control is disabled 
and the parameter is set to the corresponding value. 
For instance, ሺܾݏ, 1.49, 0ሻ, in the leftmost column, 
means that the inertia weights are controlled by the 
Bak-Sneppen fitness values, while the acceleration 
coefficients are set to ܿଵ ൌ ܿଶ ൌ ܿ ൌ 1.49, and the 
perturbation ߩሺݐሻ is set to 0 (that is, no perturbation 
of the particles’ positions), while ሺܾݏ, ,ݏܾ  ሻ, in theݏܾ
rightmost column, means that the algorithm uses full 
control of the parameter by the Bak-Sneppen model. 

Table 2: Average and standard deviation of the optimal 
value for 50 trials. BS-PSO with and without acceleration 
coefficients control and perturbation of the particles 
positions. ݈ܾ݁ݐݏ topology. 

,࢙࢈  . ૢ,  ࢙࢈, . ,  ࢙࢈, ,࢙࢈  ࢙࢈, ,࢙࢈ .  ,࢙࢈ ,࢙࢈ ࢙࢈

f1 
3.35e+01 
(1.90e+02) 

1.38e‐15 
(3.21e‐15) 

8.30e‐32 
(3.47e‐31) 

0.00e+00 
(0.00e+00) 

0.00e+00
(0.00e+00)

f2 
1.67e+05 
(1.17e+06) 

1.88e+02 
(2.53e+02) 

8.56e+01 
(7.98e+01) 

2.61e+01 
(2.66e‐01) 

2.60e+01
(1.58e‐01)

f3 
2.82e+02 
(4.44e+01) 

1.11e+02 
(2.75e+01) 

2.02e+02 
(4.16e+01) 

4.88e+00 
(7.73e+00) 

3.32e+00
(7.09e+00)

f4 
1.63e+00 
(5.93e+00) 

1.25e‐02 
(1.26e‐02) 

1.65e‐02 
(2.24e‐02) 

3.79e‐03 
(2.29e‐03) 

4.51e‐03
(4.00e‐03)

 

In the configuration ሺܾݏ, ܿ, 0ሻ, i.e., with only the 
inertia control enabled , higher ܿ values, in general, 
lead to a better performance. When the dynamic 
control of ܿ is enabled (ܾݏ, ,ݏܾ 0) the performance on 
ଵ݂ and ଶ݂ is improved, while for the other functions 

the fitness value decreases when compared to the 
best configuration with fixed ܿ. However, the results 
are better than those attained by the suboptimal 
configurations, which means that it may be an 
alternative to fine-tuning the parameter. Introducing 
a perturbation of the particles’ positions with the 
 parameter clearly improves the results, especially	ߩ
when the ߩ is controlled by the model.  

Table 3 summarizes the results attained by the 
algorithms. TVIW-PSO and RANDIW-PSO attain 
the best performance with ߱ ൌ 1.494, while 
GLbestIW-PSO is better with the value given in 
(Arumugam and Rao, 2006): ߱ ൌ 2.0. Comparing 
suboptimal configurations of the peer-algorithms 
must be avoided. 

Looking at Tables 2 and 3 and comparing the 
values, we conclude that BS-PSO outperforms the 
other algorithms in most of the scenarios. However, 

PSOs in Table 3 do not include perturbation of the 
particle’s position and therefore they should be also 
compared to a BS-PSO with that scheme disabled 
(ሺܾݏ, ,ݏܾ 0) Table 2). Table 4 compares BS-PSO 
(with and without perturbation of the particles) to 
the other PSOs using Kolmogorov-Smirnov 
statistical tests with 0.05 level of significance (best 
configurations in Table 3 were chosen). The null 
hypothesis states that the datasets from which the 
offline performance and standard deviation are 
calculated are drawn from the same distribution. A 
‘+’ sign means that PSO 1 is statistically better than 
PSO 2, ‘~’ means that the PSOs are equivalent, and 
‘–’ means that PSO 1 is worse than PSO 2. 

Table 3: TVIW-PSO, RANDIW-PSO and GLbestIW-
PSO. Average and standard deviation of the optimal value 
for 50 trials.	݈ܾ݁ݐݏ topology. 

 TVIW 
ࢉ ൌ . ૢ 

TVIW 
ࢉ ൌ .  

RANDIW 
ࢉ ൌ . ૢ 

RANDIW 
ࢉ ൌ .  

GLbestIW
ࢉ ൌ .  

f1 
8.64e‐29 

(1.75e‐28) 

2.81e‐06 

(2.77e‐06) 

1.22e‐18 

(1.26E‐18) 

6.68e+02 

(2.60e+02) 

2.83e+03 

(1.92e+03) 

f2 
1.03e+02 

(9.31e+01) 

5.96e+02 

(1.72e+03)

7.28e+01 

(6.69e+01) 

2.07e+07 

(1.26e+07) 

3.46e+08 

(9.03e+07) 

f3 
7.85e+01 

(2.01e+01) 

5.84e+01 

(1.39e+01)

1.11e+02 

(2.51e+01) 

1.94e+02 

(2.77e+01) 

1.68e+02 

(2.79e+01) 

f4 
8.66e‐03 

(1.14e‐02) 

1.22e‐02 

(1.26e‐02) 

1.04e‐02 

(1.50e‐02) 

5.96e+00 

(1.62e+00) 

2.34e+01 

(1.53e+01) 

 

The statistical tests demonstrate that the fully 
enabled BS-PSO ሺܾݏ, ,ݏܾ  outperforms the other (ݏܾ
algorithms in every scenario, while the configuration 
without a perturbation factor ሺܾݏ, ,ݏܾ 0) is in general 
better than GLbestIW-PSO, while being competitive 
with the other methods. 

In the following experiment, IA-PSO was tested 
with different acceleration coefficients and three 
different perturbation strategies. The perturbation 
factor ߩ was disabled (ߩ ൌ 0ሻ, set to 0.25, as in  

Table 4: Kolmogorov-Smirnov tests with 0.05 level of 
significance comparing the algorithms. ݈ܾ݁ݐݏ topology. 

PSO 1 vs. PSO 2 f1 f2 f3 f4

BS-PSO ሺܛ܊, ,ܛ܊  + + + + ሻ vs TVIW-PSOܛ܊

BS-PSO ሺܛ܊, ,ܛ܊  + + + + ሻ vs RANDIW-PSOܛ܊

BS-PSO ሺܛ܊, ,ܛ܊  + + + + ሻvs GLbestIW-PSOܛ܊

BS-PSO ሺܛ܊, ,ܛ܊ )  vs TVIW-PSO + +  – –

BS-PSO ሺܛ܊, ,ܛ܊ ) vs RANDIW-PSO + ~  – ~

BS-PSO ሺܛ܊, ,ܛ܊ ) vs GLbestIW-PSO + +  ~ +
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Table 5: IA-PSO. Results with different ܿ values and 
perturbation strategies: no perturbation (࣋ ൌ ); controlled 
by Bak-Sneppen model (࣋ ൌ  .topology ݐݏܾ݈݁ .(࢙࢈

 
ࢉ ൌ . ૢ 
࣋ ൌ  

ࢉ ൌ . ૢ 
࣋ ൌ .25 

ࢉ ൌ . ૢ
࣋ ൌ  ࢙࢈

ࢉ ൌ .  
࣋ ൌ  

ࢉ ൌ .  
࣋ ൌ .25

ࢉ ൌ .  
࣋ ൌ  ࢙࢈

f1 
2.42e+02 
(1.43e+03) 

0.00e+00 
(0.00e+00) 

0.00e+00
(0.00e+00) 

5.19e‐02 
(2.61e‐02) 

6.56e‐03
(5.34e‐03)

2.60e‐02 
(1.70e‐02)

f2 
7.45e+04 
(5.26e+05) 

2.62e+01 
(3.71e‐01) 

2.60e+01
(1.84e‐01)

4.26e+02 
(8.30e+02) 

3.97e+01
(2.14e+01)

7.21e+01
(8.25e+01)

f3 
2.82e+02 
(3.47e+01) 

5.26e+01 
(3.08e+01) 

3.96e+01
(2.02e+01)

8.87e+01 
(2.66e+01) 

1.81e+00
(3.12e+00)

1.12e+01
(1.42e+01)

f4 
2,62e+00 
(1.30e+01) 

3.72e‐03 
(2.23e‐03) 

4.71e‐03 
(3.12e‐03)

1.84e+00 
(1.27e+01) 

1.11e‐02
(7.74e‐03)

1.30e‐02 
(7.08e‐03)

 

(Suresh et al., 2008), and controlled by the Bak-
Sneppen model (incorporating a Bak-Sneppen 
control in IA-PSO permits to compare only the 
parameter control mechanism of both algorithms). 
Results are in Table 5. The introduction of a ߩ 
controlled by the Bak-Sneppen model seems to 
improve the performance of IA-PSO. The statistical 
tests in Table 6 compare BS-PSO and IA-PSO. BS-
PSO is better or at least equivalent to IA-PSO, 
whether the control schemes are enabled or not. 

The algorithms were also tested with topology. 
The results are summarized in Table 7. BS-PSO is 
better than the other algorithms in every scenario. 
Moreover, statistical tests indicate that it is 
significantly better than all the other algorithms in 
every function, except when compared to IA-PSO 
on (see Table 8). The control strategy proposed in 
this paper is very efficient in this test set. When the 
control schemes are fully enabled, there is a balance 
between the parameter values that seems to create a 
good balance between exploration and exploitation. 
BS-PSO is able to outperform several algorithms, 
each using a different strategy to control or set the 
parameters values. 

These results are not definitive but they 
demonstrate the validity of the algorithm. The 
following step is to understand why SOC works for 
PSO. This is not a trivial task and further research is 
required in order to recognize all the effects of SOC-
generated values in the behaviour of the algorithm. 

Table 6: Kolmogorov-Smirnov statistical tests comparing 
IA-PSO and BS-PS. 

PSO 1 vs. PSO 2 f1 f2 f3 f4 

BS-PSO	ሺܛ܊, . , ሻ vs IA-
PSO ሺ࣋ ൌ ሻ 

+ + ~ + 

BS-PSO	ሺܛ܊, ,ܛ܊ -ሻvs IAܛ܊
PSO (bs controled ࣋	) 

~ ~ + ~ 

 

However, a simple experiment may shed some 
light on the dynamics of the SOC-generated 

parameters. 

Table 7: Results with gbest topology. 

 
TVIW 
ࢉ ൌ . ૢ 

RANDIW 
ࢉ ൌ . ૢ 

GLbestIW 
ࢉ ൌ .  

IA-PSO 
ࢉ ൌ .  
࣋ ൌ .25 

BS-PSO 

f1 
5.00e+03 
(6.78e+03) 

6.80e+03 
(7.41e+03) 

1.14e+05 
(1.74e+04) 

1.08e‐01 
(1.17e‐01) 

0.00e+00 
(0.00e+00) 

f2 
1.64e+02 
(2.32e+02) 

2.45e+02 
(1.43e+03) 

2.36e+08 
(7.80e+07) 

8.03e+02 
(2.06e+03) 

2.58e+01 
(3.32e‐01) 

f3 
6.16e+01 
(1.65e+01) 

1.19e+02 
(2.95e+01) 

4.51e+02 
(7.25e+01) 

5.02e+01 
(4.10e+01) 

4.69e+01 
3.27e+01 

f4 
3.62e+01 
(5.77e+01) 

7.05e+01 
(7.80e+01) 

4.21e+02 
(1.40e+02) 

1.36e‐01 
(1.71e‐01) 

1.32e‐02 
(1.47e‐02) 

 

In a single run of the BS-PSO, the inertia weights 
computed for one particle (particle with index ݅ ൌ 0) 
in each iteration were stored and plotted in the time-
domain graphic of Figure 1. Please note that the 
inertia weight is computed using the particle’s 
ሻݐwith the simple formula ߱ሺ ,ݏݏ݁݊ݐ݂݅_ݏܾ ൌ 1 െ
 ሺܺሬሬሬሬԦሻ. Therefore, what is seen in Figure 1ݏݏ݁݊ݐ݂݅_ݏܾ	
is also the dynamics of the ܾݏݏ݁݊ݐ݂݅_ݏ of particle 0. 
The acceleration coefficients are plotted in Figure 2.  

The inertia weight value is usually under 0.5, 
with occasional peaks that go above that value. We 
also see paths of stability, which demonstrate that 
the ܾݏ	ݏݏ݁݊ݐ݂݅ of each species is not random or 
chaotic. Instead, it has a hidden order that is revealed 
by a different representation of the values. There are 
periods of stasis, in which the parameter does not 
change. The inertia weigh value during these periods 
is usually between 0.2 and 0.4, which is actually the 
value suggested for later stages of the search (Shi 
and Eberhart, 1999). The acceleration coefficients 
remain in the range ሾ1.5, 2.0ሿ (with occasional 
“bursts” that go below 1.5). The values often 
suggested for these parameters are also within this 
range. Such an advantageous range is of course 
guaranteed by the equations 5 and 6. But the specific 
dynamics of the parameter values, with periods of 
stasis punctuated by strong activity, is a result of the 
Bak-Sneppen model. 

Table 8: Kolmogorov-Smirnov tests with 0.05 level of 
significance comparing the algorithms. ܾ݃݁ݐݏ topology.  

PSO 1 vs. PSO 2 f1 f2 f3 f4 

BS-PSO ሺܛ܊, ,ܛ܊  + + + + ሻ vs TVIW-PSOܛ܊

BS-PSO ሺܛ܊, ,ܛ܊  + + + + ሻ vs RANDIW-PSOܛ܊

BS-PSO ሺܛ܊, ,ܛ܊  + + + + ሻvs GLbestIW-PSOܛ܊

BS-PSO ሺܛ܊, ,ܛ܊  + + vs IA-PSO  (ܛ܊ ~  + 

 

When plotting the distribution of all the ߱ 
values computed by the model (which are also the ߩ 
values) during a run an interesting pattern arises. 
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The graphic in Figure 3 divides the ߱ ൌ   valuesߩ
of every ݊ particles of the swarm into the classes 
defined by the intervals (ሾ0,0.01ሿ, … ሾ0.99, 1.0ሿሻ and 
plots the number of samples in each class in a log-
log format. Such representation of the values permits 
to determine the range of values with more activity 
during a run. As seen in Figure 3, the parameter 
values are uniformly spread through the range 
ሾ0.01,0.3ሿ, and then the frequency decreases until it 
reaches quantities two order of magnitude below the 
low- and medium-range frequency. 

 

 

Figure 1: Inertia weight of a particle during a typical run. 

The graphic shows the typical behaviour of a 
SOC system: the dynamics cover a wide range of 
values, but not in a random way. Instead, some 
behavioural patterns are observed. The values 
oscillate usually in the low-range of the scale, with 
long periods of stasis punctuated by high values. 

Although they are not a definitive answer, these 
results help to clarify the performance of BS-PSO. 
The values are kept within a range that is not only 
suited for ߱ and ܿ, but also appropriate to model a 
perturbation scheme. If the system evolved higher 
values with more frequency, the effect would be 
destructive, since it would increase exploration 
beyond a reasonable point. Please remember that 
TVIW-PSO, for instance, starts with a high value 
but then decreases it during the run. Furthermore, 
there are periodical bursts of ߱ and ߩ that may be 
helping the swarm to escape local optima traps. 

 

Figure 2: Acceleration coefficients (ܿଵ ൌ ܿଶሻ of a particle 
during a typical run. 

One possible limitation of the current BS-PSO is 

also shown by these results, namely by the graphic 
in Figure 1. The values do not depend on the state of 
the search. Since the TVIW-PSO relies on a scheme 
that decreases the inertia weight linearly with time, 
which has been proven to be an efficient strategy, it 
is possible that the proposed algorithm would gain 
from modelling a similar behaviour. For that, other 
levels of hybridization between the Bak-Sneppen 
model and the PSO must be devised. These schemes 
would incorporate information from the search into 
the ܾݏݏ݁݊ݐ݂݅_ݏ update, so that time and the fitness 
distribution of the swarm could influence the 
parameters’ growth. Although this can be achieved 
with a deterministic strategy, letting the model and 
the PSO interact and self-adjust the averaged growth 
rate of the parameters keeps the method simple and 
avoid the hand-tuning of extra parameters. Such 
hybridization is the main target for a future research. 

 

Figure 3: Distribution of ࣓ values of all particles in a 
typical run. 

6 CONCLUSIONS 

This paper describes the Bak-Sneppen Particle 
Swarm Optimization (BS-PSO). The algorithm uses 
the Self-Organized Criticality (SOC) Bak-Sneppen 
model for computing the inertia weights and the 
acceleration coefficients of each particle, as well as a 
perturbation factor of the particles’ positions. A 
single scheme for controlling the four parameters is 
used by the algorithm, which does not require hand-
tuning. Being a SOC system, The Bak-Sneppen 
model is able to self-tune to a critical state and it 
may be treated as a black-box that that outputs 
batches of values for the parameters. 

An experimental setup with four functions 
demonstrates the validity of the algorithm. BS-PSO 
is compared with other methods with promising 
results. In particular, the algorithm is better than a 
recently proposed inertia weigh PSO (IA-PSO) in 
most of the experimental scenarios. The dynamics of 
the parameter values, induced by the attached model, 
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are investigated and hypotheses that try to explain 
the performance of the algorithm are put forward.  

In a future work, more functions will be included 
in the test set. A scalability analysis is intended as 
well as a study on the effects of the limit imposed to 
mutation events, and possible alternatives to the 
current solution. In order to introduce information 
from the search into the variation scheme of the 
parameter values, different levels of hybridization 
between the Bak-Sneppen model and PSO will also 
be tested,. Finally, it is our intention to apply this 
algorithm to time-varying fitness functions. 
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