
Model Driven Engineering for Science Gateways

David Manset1, Richard McClatchey2 and Hervé Verjus3
1GNUBILA France, Biomedical Applications, Argonay, France

2University of the West of England, CCCS, Bristol, U.K.
3University of Savoie, LISTIC, LS-LSE, Annecy-Le-Vieux, France

Keywords: MDE, SOA, ADL, Architecture-Centric, Grid, Cloud, Science Gateway, Biomedical Research.

Abstract: From n-Tier client/server applications, to more complex academic Grids, or even the most recent and
promising industrial Clouds, the last decade has witnessed significant developments in distributed
computing. In spite of this conceptual heterogeneity, Service-Oriented Architectures (SOA) seem to have
emerged as the common underlying abstraction paradigm. Suitable access to data and applications resident
in SOAs via so-called ‘Science Gateways’ has thus become a pressing need in various fields of science, in
order to realize the benefits of Grid and Cloud infrastructures. In this context, authors have consolidated
work from three complementary experiences in European projects, which have developed and deployed
large-scale production quality infrastructures as Science Gateways to support research in breast cancer,
paediatric diseases and neurodegenerative pathologies respectively. In analysing the requirements from
these biomedical applications the authors were able to elaborate on commonly faced Grid development
issues, while proposing an adaptable and extensible engineering framework for Science Gateways. This
paper thus proposes the application of an architecture-centric Model-Driven Engineering (MDE) approach
to service-oriented developments, making it possible to define Science Gateways that satisfy quality of
service requirements, execution platform and distribution criteria at design time. An novel investigation is
presented on the applicability of the resulting grid MDE (gMDE) to specific examples, and conclusions are
drawn on the benefits of this approach and its possible application to other areas, in particular that of
Distributed Computing Infrastructures (DCI) interoperability.

1 INTRODUCTION

Primarily developed by and for High Energy Physics
(HEP), the Grid has been realised since the late
1990s as the next generation of information and
communication technologies, after the Internet. Grid
computing (Foster et al., 2001) promises to resolve
many of the difficulties in facilitating massive data
analyses to allow communities of end-users to
collaborate without having to co-locate. Intrinsically
distributed and highly heterogeneous, the Grid is the
next logical step following the developments in high
performance, high throuput and supercomputing.

The Grid is the product of collaborative
developments worldwide. It often materializes as a
set functions arranged in a so-called “middleware”,
i.e. a stack of commodity software sitting in and
mediating between compute resources and user
applications. Grid middleware are made of various
types of services from low-level physical resources
management, to computing power and storage

capacity sharing, to more advanced information
system and application scheduling services. Thus
described, Grids are mostly implemented as Service
Oriented Architectures (SOA) (Service-Oriented
Architectures an Introduction). Given their
functional scope and nature, Grids thus result in
complex stratifications of software difficult to reuse,
evolve and maintain (Friese et al., 2006).
Consequently, not only is the development of Grid-
based applications a time-consuming, error prone
and expensive task, but also are the resulting
applications often hard-coded for specific
configurations, technological platforms and physical
infrastructures. The infrastructural functions offered
by the Grid therefore need adaptation. This is what
led research communities utilizing it to develop the
concept of “Science Gateways”.

Science Gateways represent an important
emerging paradigm for providing integrated
infrastructures. According to (Wilkins-Diehr et al.,
2008), a Science Gateway is a community-

421Manset D., McClatchey R. and Verjus H..
Model Driven Engineering for Science Gateways.
DOI: 10.5220/0004160804210431
In Proceedings of the 14th International Conference on Enterprise Information Systems (MDDIS-2012), pages 421-431
ISBN: 978-989-8565-11-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

developed set of tools, applications, and data that are
integrated via a portal or a suite of applications,
usually in a graphical user interface, that is further
customized to meet the needs of a specific
community. Gateways enable users to access
computing resources through a common and user-
friendly interface.

However, given the underlying distributed
computing infrastructures complexity, Science
Gateways reuse and evolution is increasingly
complex and the use of most classical engineering
practices reveals inappropriate as few exhibit the
necessary level of interoperability and flexibility
required to import, integrate and to pass on the
cumulated design data, information and knowledge
to next generations (Nanz, 2010). There however
exist engineering techniques such as architecture-
centric design (Medvidovic et al., 2000) which could
help managing accidental difficulties faced with
bridging conceptual gaps from abstraction to
implementation and better adapting developments to
evolving environments, such as Grids. Additionally,
Model-Driven Engineering (MDE) (Kent, 2002)
could help addressing models heterogeneity,
separation of concerns, integration and
interoperability.

The remainder of this paper thus attempts to
characterize the specificities of Grid-based Science
Gateway developments from practical examples in
biomedical sciences. Section 2 reports on
experiences carried out in three conceptually
complementary infrastructures that address a broad
spectrum of biomedical research requirements.
Section 3 identifies common design issues faced in
Science Gateways development, which section 4
then addresses by introducing a new MDE approach.
The paper finally concludes on the significance of
this research work and indicates experiments that
could elaborate on new potential areas of
application.

2 SCIENCE GATEWAYS IN
BIOMEDICAL RESEARCH

With its roots grounded in HEP, the Grid required
significant adaptation to be brought into and to serve
the biomedical environment. The following sections
report on three incremental Grid-based Science
Gateways development experiences.

2.1 Breast Cancer, the EU FP5
MammoGrid Project

MammoGrid (Amendolia et al., 2004) aimed at
utilizing the Grid as a digital repository to federate
mammographic images and medical data, thereby
allowing clinical researchers to store, share
anonymously and analyze sensitive information
acquired from various hospitals across Europe, in
the context of specialized breast cancer studies. By
doing so, MammoGrid made it possible for the first
time to accumulate rare data samples into a
common, secure and distributed repository needed to
validate new breast cancer Computer Aided
Detection (CAD) algorithms using the Standard
Mammogram Format or SMF (Highman et al.,
2006), while testing the actual feasibility and overall
impact of providing automated radiographer second
opinion in the cancer screening practice.

Developed between 2002 and 2005,
MammoGrid adopted and adapted the first official
release of the gLite Grid middleware (EGEE
Middleware Architecture), being issued by the
Enabling the Grid for E-sciencE (EGEE) European
project. At that time, the Grid resembled a Unix-like
operating system managing distributed computing
resources over a network, using specific command
line interfaces. As it was the implementation of a
new paradigm in computing carried out by large and
geographically distributed communities, the form of
the Grid used in MammoGrid was a rather complex,
slow and heterogeneous software stack, difficult to
install, configure and maintain. It was also not
functional for instantaneous user interaction and was
not regarded as sufficiently user-friendly by the
biomedical research community. Biomedical
researchers were thus hesitant in using it, as reported
in (McClatchey et al., 2006). Despite this,
MammoGrid demonstrated for the first time the
relevance of using this technology to support large-
scale and automated second opinion and to allow
clinical researchers to federate meaningful data into
one shared environment.

2.2 Paediatric Diseases, the EU FP6
Health-e-Child Project

Elaborating on the MammoGrid model, the Health-
e-Child project (Skaburkas et al., 2011) then
diversified Grid usage for biomedicine, by
developing Decision Support Systems (DSS) and
Knowledge Discovery tools supporting
paediatricians in their daily work with integrated
data in cardiology, especially in cardiomyopathies

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

422

follow-ups, in rheumatology with juvenile arthritis
diagnosis and in neuro-oncology with glioma
evolution.

Health-e-Child was developed between 2006 and
2010 and it acknowledged the need for users to
abstract from ongoing Grid developments in order to
lower the barriers of adoption. Health-e-Child thus
further developed the notion of a “Gateway” to the
Grid, inserting a thin layer of abstraction services
between the lower-level middleware and users,
which would confine the unstable Grid under well-
defined APIs. This thin Web services-based stack
significantly improved the integration between new
applications being developed in the project and the
underlying Grid legacy. It also helped to convince
non-IT users to adopt the technology, although
performance remained an issue, as was reported in
(Manset et al, 2009). The Grid indeed remained too
slow in manipulating data since it had been designed
for long and non-fragmented runtimes, complex and
highly versatile in nature. Deployed in five major
hospitals across Europe and the USA, the solution
however demonstrated significant reliability and
security results.

2.3 Neuroimaging Biomarkers, the EU
FP7 neuGRID Project

As a third generation infrastructure, the neuGRID
project (Manset et al., 2009), attempted to further
improve the Grid experience by pioneering a form of
virtual laboratory for neuroscientists to develop, test
and validate innovative new imaging biomarkers for
neurodegenerative diseases. NeuGRID extended the
idea of a “Science Gateway” to facilitate access to
massive computing capacities.

NeuGRID was developed between 2008 and
2011 (and has since then has received further
funding until 2015, under project name N4U).
neuGRID based its architecture on the latest secure,
reliable and performant Grid middleware products. It
deployed a large-scale production quality
infrastructure at specialized clinical centres,
interconnected with the European Grid Initiative
(EGI (EGI Project)), where it could access
additional computing resources from. Although
major improvements took place in the Grid, its
evolving and heterogeneous nature encouraged
neuGRID to further decouple its solution by adding
new abstraction layers to form its Science Gateway.
The latter relied on the following three pillars, as is
further detailed in (Manset et al., 2009): (1) Use of a
so-called generic “gluing service” as part of the
SOA to submit jobs to underlying Grids (see

JavaGAT/SAGA (SAGA) and neuGRID’s gluing
service (Anjum et al., vol147, pp283-288) for more
information). The gluing service abstracts upper
layers of the system from the Grid specificities and
is responsible for actual job submissions. (2) Use of
a generic Web service wrapper in charge of on-the-
fly orchestration and applying scheduling
optimization techniques according to specified
pipeline contents. (3) Instantiating a unique Web
service wrapper per algorithm/pipeline to be
published in the SOA, thus allowing (both atomic
and composite) processing tasks to be discovered,
composed and subsequently published in the system.

Each of these three substrates played a different
but key role. While (1) introduced abstraction from
Grids and thus allowed interacting with a wide
variety of middleware, (2) took care of appropriately
parameterizing (1), it also characterized
commonalities of algorithms/ pipelines and opened a
broad avenue to job scheduling optimization
techniques (e.g. jobs grouping). Pillar (3), on the
other hand, extended the parameterizing of (2) and
turned these virtualized neuro-utilities into a set of
standard services.

3 DESIGN ISSUES IN
GRID-BASED SCIENCE
GATEWAYS

Experiences over the last decade, a subset of which
was presented in the previous section, demonstrate
that the Grid has evolved from a very complex, slow
and heterogeneous stack, difficult to install,
configure and maintain into what is now regarded as
a secure, reliable and maintained software. However,
the Grid remains complex, evolving and
heterogeneous. This is why applications being
developed on top of, or integrating the Grid may risk
becoming unsustainable, may lack interoperability,
may remain complicated and can thus induce
reluctance in users to adopt them. This motivates the
case for Grid-based biomedical Science Gateways,
which moreover deal with potentially sensitive
medical data, which places more specific design
constraints onto Grid infrastructures, in particular in
terms of:

(a) Privacy, when sharing information that
potentially identifies individuals. For example
genetic profiles carrying DNA, unstructured data
such as diagnostic reports sometimes encompassing
patient’s name and more, Magnetic Resonance (MR)

Model�Driven�Engineering�for�Science�Gateways

423

images of patient brains allowing 3D reconstruction
of patient’s face etc.,

(b) Security, when sharing and storing data that
potentially identifies individuals. Identifying data
may be voluntarily shared for the sake of running for
instance a clinical trial needing information on
patients’ living places for solving a given
epidemiological question,

(c) Reliability, when storing and accessing
medical data or clinical applications. Assisting
physicians with decision support applications at the
point of care may require highly available services
in the infrastructure,

(d) Sustainability, when storing medical data as
this can imply in some countries the ability to
retrieve and make data accessible for 15 years or
more.

In addressing the findings from (Amendolia et
al., 2004), [10], (Manset et al, 2009) and (Manset et
al., 2009), the authors assert the hypothesis that
Grid-based biomedical Science Gateways should be
designed as (1) Service Oriented Architectures
(SOA), which (2) have specific Quality of Services
(QoS) requirements, and (3) can be built on several
technological platforms and physical resources. This
is what Figure 1 illustrates. Such SOA-based, QoS-
specific and multi-platform Science Gateways, are
made of services exhibiting particular functions and
properties in order to hide the Grid complexity and
to help address community-specific issues like (a),
(b), (c) and (d), formerly introduced.

Figure 1: Science Gateway Architectural Style.

Science Gateways enable the decoupling of new
applications from evolving Grids, facilitate
integration and transition to it, promote better reuse
of software artefacts, and thereby potentially lower
the barriers of user adoption. Figure 1 summarizes
the basic architectural properties, which were
unveiled thus far. Indeed, starting from the
architecture level, i.e. (1), Science Gateways should

follow the SOA style, in promoting abstraction,
loose coupling and extensibility. Science Gateways
should encompass component services, which can be
specialized to target platforms, standards and
technologies. Inner Science Gateway atomic
services, i.e. wrapping low-level functions (2)
should exhibit simple ubiquitous interfaces, be
stateless, group coherent sets of functions and be
idempotent. Composite services (3) on the other
hand, (i.e. wrapping processes calling other
services), should be stateful, so to store persistently
important execution state information, and moreover
be orchestrated. Science Gateways should therefore
encompass mechanisms allowing the publication,
discovery and composition of integrated services.

3.1 Science Gateways Engineering

Science Gateways should be parameterized/
optimized according to non-functional requirements,
such as, for instance, the expected level of
reliability, security and privacy (i.e. QoS).
Component services as identified in the former
sections should therefore be assigned with QoS
descriptive information accordingly at design time
and the latter be mapped to architectural solutions, to
be satisfied at runtime. Science Gateway
architectures should be reusable, adaptable and
portable to different research groups, execution
platforms, technologies and physical infrastructures.
Moreover, the deployment of such architectures may
require taking into account distribution aspects,
especially when under privacy, security,
performance and/or reliability constraints. Thus,
gateway architectures, properties and associated
QoS, should be specified independently of any
execution platforms, computing paradigms and
programming languages.

3.2 Science Gateways Synthesis

From the MammoGrid, Health-e-Child and
neuGRID experiences, the unveiled characteristics
of Science Gateways indicate that a meta-model
describing their architectural commonalities and
properties could be designed, thereby allowing their
reuse, adaptation and specialization to different
fields of science. Science Gateways would thus
significantly benefit from platform independence
and their engineering should promote:

i. A high-level of abstraction, guaranteeing the
Science Gateway model independence from any
platform specificities,

ii. Models reuse, allowing the creation and use of

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

424

basic building blocs,
iii. QoS properties specification, translating various

types of non-functional requirements into design
properties,

iv. Multi-platform portability, making it possible to
port Science Gateways to different environments
and technologies and

v. Distribution strategy formulation, enabling
Science Gateways to have optimized
deployments over target infrastructures and QoS.

4 LITERATURE REVIEW

In current research infrastructures, where utilizing
the Grid implies its further adaptation, SOAs seem
to have become the common abstraction paradigm to
simplify access and developments, even though
different standards and technologies may be applied
across research projects and groups. SOA-based
Science Gateways are thus emerging in various
research fields and biomedical specialties, which
operate most of the time for fixed QoS and
execution platforms and are deployed over
predefined physical infrastructures. Some offer
customized Web-portals (Torterolo et al., 2009),
thus simplifying access to the Grid infrastructure.
Others focus more on scientific workflows (Farkas
et al., 2011), making the assumption that the
infrastructure provides a sufficiently user-friendly
access through which user applications can be
designed as workflows. For the most advanced
Science Gateways, a development framework
(Myers et al., 2008) is provided, which allows
developers to create and personalize new ones to
their own needs ranging from the security model, to
the privacy level, its reliability, the concrete Grid
infrastructure to interface with, or even to the actual
user interfaces.

The following synopsis table, Table 1, recalls the
main criteria, as were identified in the former
synthesis section, and which Science Gateway
engineering approaches shall satisfy. This table
allows comparing available approaches, while
understanding their underlying concepts. In Table 1
references to the analysed approaches are provided
in the left column, followed by a few keywords on
their foundational paradigms and the five main
comparison criteria.

Table 1: Literature Review in Science Gateways
Engineering Approaches.

* Only partially achieved.
** Only made possible thanks to the workflow orientation.

Several conclusions can be drawn from this
comparison. Firstly, the literature review
demonstrates that simple service-based approaches
do not address the identified criteria. Indeed, these
approaches mainly facilitate the development of user
interfaces by hiding the complexity of the
underlying Grid, while they remain highly specific
to the targeted technologies. On the other hand,
Workflow-oriented solutions do exhibit interesting
characteristics since they introduce abstraction and
reuse of application models. They are consequently
close to satisfying the identified requirements,
although there is no approach yet tackling models
reuse and quality of services at the same time.
Finally, it is worth noting that approaches leveraging
on abstraction, loose coupling and extensibility, i.e.
utilizing SOAs, are the ones addressing best the
Science Gateways engineering needs.

Given the lack of engineering methods available
to address the identified criteria in a single and
unified design process, the authors have been
looking for candidate engineering techniques and
their possible application. In particular, the proposed
work has been motivated by the research carried out
in SOA engineering and more specifically in
architecture-based software developments (Bass et
al., 2003). Given that Science Gateways are sets of
interconnected component services, architecture-
centric software-based development applies

Model�Driven�Engineering�for�Science�Gateways

425

particularly well since it allows the definition of
distributed systems in terms of groups of
components at a high-level of abstraction
guaranteeing platform independence, enabling
models reuse and, for some architecture-based
approaches, expressing accompanying properties.
Additionally, the authors considered the more recent
Model Driven Engineering (MDE) (Kent, 2002) as a
possible means to supplement architecture-based
software development with a compositional
technique to manage multi-platform complexity and
thus automate adaptation/evolution. In the next
section, readers will gain deeper understanding of
the proposed combination of software engineering
methods and be presented with the resulting “grid
Model Driven Engineering” (gMDE) approach.

5 THE GRID MODEL DRIVEN
ENGINEERING (gMDE)

5.1 gMDE Foundations

This paper introduces and tests a model-based
engineering technique, which the authors propose to
address the identified requirements in Science
Gateways engineering. The first ingredient used is a
formal Architecture Description Language (ADL),
the ArchWare Refinement Language (ARL)
(Oquendo, 2004) to model and check Grid-based
Science Gateways. Utilizing a formal architecture-
centric method brings the necessary abstraction logic
and mathematical foundation (Maude Reflective
Language) to describe abstract software
architectures, to model and test their architectural
properties, and to ultimately transform these into
concrete applications, i.e. the so-called process of
refinement. The used formal Architecture-centric
approach relies on languages and styles to describe
applications, as well as tools for reasoning on
architectural properties. It also introduces a
development process that exploits and specializes
iteratively abstract architecture descriptions into
concrete applications, through stepwise refinement.
This dimension of the proposed works is aimed to
bring rigor and control into the Science Gateway
engineering process. It addresses criteria (i) platform
independence, and (ii) models reuse, while giving
the foundations to express and check accompanying
architectural properties (iii), such as QoS and target
platforms. As the second ingredient, a Model-Driven
Engineering (MDE) technique is proposed to
promote models reuse and, thanks to the separation

of concerns, to model transformations, to hide
platform complexity and to refine abstractions by
operating model transformations. MDE
consequently supplements the design process with a
compositional technique to manage complexity and
to automate adaptation, utilizing a repository of “off-
the-shelf” architectural constructs. It contributes to
the proposed approach in improving flexibility and
adaptability to changing environments, while
allowing the long-term capitalization of architectural
knowledge, thereby addressing the aspects of (iv)
portability and (v) distribution in Science Gateways
engineering.

Finally, a Domain Specific Language (DSL)
(van Deursen et al., 2000) is introduced that allows
modelling more specifically Grid-based Science
Gateway architectures in terms of services and their
interconnections. The DSL is encoded in the
graphical user interface of the gMDE environment
(gMDEnv), to facilitate the overall understanding
and graphical design of Science Gateway solutions.

5.2 gMDE Design Process and Models

The grid Model Driven Engineering approach
(gMDE) consists of a combination of existing and
well-tested engineering techniques. In particular,
gMDE builds on the work carried out by authors in
the European FP5-funded ArchWare project
(ArchWare Project), which developed a formal
architecture-centric engineering toolkit of ADL
(Oquendo et al., 2001) languages and accompanying
toolkit. gMDE leverages on architecture-centric
design to place the focus on coarse-grained system
architecture specification, rather than coping up-
front with implementation details. In doing so,
software architects can design Science Gateways in
terms of reusable and platform independent
components (i.e. basic building blocs) and their
interrelations. In paper (Manset et al., 2006), the
authors introduced the foundational architecture-
centric approach and toolset, which the novel gMDE
engineering technique extends. Authors then
presented the overall gMDE design process, with its
eight models from the platform independent
architecture specification (GEIM), to its
specialization according to QoS (GECM) and
platform (GETM) constraints, and finally to the
(semi)-automatically generated source code (GESA)
of the Science Gateway and its proposed distribution
(GEDM) over the physical Grid infrastructure.

gMDE leverages on the model driven
compositional dimension which it combines with
architecture-centric refinement to translate non-

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

426

functional concerns into architectural constructs, and
then integrate them into the application model. A
refinement step typically leads to a more detailed
architectural model that increases the determinism of
and preserves the properties associated with the
abstract model. The ArchWare ARL language is the
formal expression of these refinement operations
(Oquendo, 2004). ARL operates refinement
operations by formally rewriting ARL architectural
specifications using the Maude (Maude Reflective
Language) formal rewriting logic.

6 APPLYING GMDE

The formerly introduced application areas are here
explored successively in order to exemplify the
application of the gMDE design process to solve
identified engineering issues starting from a
platform independent specification, and evolving to
the concrete Science Gateway application. In order
to simplify understanding, the given demonstration
focuses on one stage of the design process per
application area. Thus, a running example is taken
from one end to the other.

6.1 Breast Cancer-Second Opinion

The MammoGrid Science Gateway encompasses a
key set of commodity services. Firstly,
authentication (Auth) and authorization (Authz)
services, to login and access distributed resources
uniformly, according to a security model derived
from the requirements and that rules access rights
and protects sensitive medical data. Secondly, a
Portal service is offered to simplify access to
complex workflows of underlying system functions,
such as automated second opinion in the present
case. Finally, a data staging service is included,
which conforms to medical data standards (DICOM
(DICOM) and HL7 (Health Level 7)), to enable
users to upload data to the system for subsequent
analyses. In MammoGrid, these legacy assets are
kept independent of target back-ends (i.e. databases,
Grid platform and execution environments) and
surrounding security thanks to abstraction services,
hereinafter referred to as “Proxies” in the Science
Gateway architecture.

In this context, the first use-case scenario
focuses on the biomedical research Science Gateway
model and its specialization to the quality of service
needs of MammoGrid, in the light of offering a
reliable automated second opinion service to
physicians at the point of care. Figure 2 describes

gatewayArchitectureRef is style SOAScienceGateway where {
 structure is {
 Portal is style serviceTypeRef where {
 structure is {… service internal structure
description … }
 connection is { … service connections
descriptions … }
 constraint is { … QoS and / or platform
constraints mappings … }
 } …
 Auth is style serviceTypeRef where {
 structure is {… service internal structure
description … }
 connection is { … service connections
descriptions … }
 constraint is { … QoS and / or platform
constraints mappings … }
 } …
 Authz is style serviceTypeRef where {
 structure is {… service internal structure
description … }
 connection is { … service connections
descriptions … }
 constraint is { … QoS and / or platform
constraints mappings … }
 } …
 GridProxy is style serviceTypeRef where {
 structure is {… service internal structure
description … }
 connection is { … service connections
descriptions … }
 constraint is { … QoS and / or platform
constraints mappings … }
 } …
 DataProxy is style serviceTypeRef where {
 structure is {… service internal structure
description … }
 connection is { … service connections
descriptions … }
 constraint is { … QoS and / or platform constraints
mappings … }
 } …
 DataStaging is style serviceTypeRef where {
 structure is {… service internal structure description …
}
 connection is { … service connections descriptions … }
 constraint is { … QoS and / or platform constraints
mappings … }
 } …
 }
 link is {
 attach Portal to GridProxy .
 attach Portal to DataProxy .
 attach Portal to DataStaging .
 attach Auth to Authz .
 attach Auth to Portal
 }}

Figure 2: MammoGrid Science Gateway Model.

the MammoGrid platform independent Science
Gateway model in the gMDE DSL formalism. The

Model�Driven�Engineering�for�Science�Gateways

427

latter is automatically produced by the gMDENv
interface (note that these descriptions are only partial
extracts in order to simplify understanding). As can
be noted, the gMDE DSL allows users to simply and
quickly define a Science Gateway in terms of
coarse-grained services. The gMDE DSL is the
language used by the gMDEnv environment to assist
and simplify the graphical creation of Science
Gateway architectures and their specialization, until
the concrete application source code can be
produced. The gMDE DSL allows users to describe
Science Gateway architectural styles, for reuse “off-
the-shelf”, with predefined sets of components and
accompanying requirements, and then to instantiate
them as a new GEIM model. The GEIM is then
translated into regular ARL for applying model
transformations. Like the GEIM, the GECM and
GETM constraint models reflecting QoS and target
platforms are expressed in the gMDE DSL.

constraintName is constraintTypeRef {
 on a:architecture actions {
 actionRef elemRef is typeRef
 {… element description … }
 on b:architecturalElement actions {
 actionRef c .
 actionRef d
 …}}…

Figure 3: Constraint Meta-model.

FT_reliability is qualityOfServiceProperty {
 on mammogridGateway:architecture actions {
 include FTConnector is connector {
 … connector architectural description …}
 on mammogridDataProxy
:architecturalElement actions{
 replicate mammogridDataProxy to
mammogridDataProxyClone0;
 unify
mammogridDataProxy::ComsP0::Coms
OutC0 with
FTConnector::
mammogridGridProxyComsP0::mammogridGridProxyIncC0
 unify
mammogridDataProxyClone0::ComsP0:
:ComsOutC0 with
 FTConnector::
mammogridGridProxyComsP0::
mammogridGridProxyIncC0
}}…

Figure 4: QoS Architectural Pattern – GECM.

Figure 3 illustrates the meta-model of a non-
functional constraint architectural construct. The

latter describes how to redefine the concerned
component(s) and its surroundings in order to solve
the indicated requirement. This specification is in
fact a simplified formalism for grouping relevant
ARL refinement operations to be applied onto a
given Science Gateway architecture to integrate the
architectural construct. Once the GEIM model has
been translated into ARL by gMDEnv, the first
conceptual difference, which can be noted, is that
the model no longer refers to services, but now
manipulates components and connectors (i.e. the
“C&C” style) onto which refinement operations can
be applied.

behaviour is {
archetype mammogridPortal is component {…} .
archetype mammogridGridProxy is component{…}.
archetype mammogridDataProxy is component {…}.
archetype mammogridDataProxyClone0 is component
{…}.
archetype FTConnector is connector {
 behaviour is {
 recursive value availabilityChecking is
abstraction();
 {
 if (serviceDown) value
serviceRedirectionURL :=
 mammogridDataProxyClone0;
 availabilityChecking();
 };
 compose { availabilityChecking() }
 } .
 recursive value readGridDBEntries is
abstraction(); {…};
 recursive value clientDataRequest is
abstraction(); {…}; ...
 compose {readGridDB() and
clientDataRequest()}... }}} …

Figure 5: Refined Gateway Architecture - GEIM’.

From the quality of service constraint indicated in
the GEIM model, here “--<reliability::level::3>--“,
the corresponding architectural construct is selected
from the framework library. In the present case, the
framework selects the “FT_Reliability” connector,
as illustrated in Figure 4. This construct is then read
by the framework and turned into lower-level ARL
refinement operations, which are applied by
rewriting logic onto the original GEIM model. The
“FT_Reliability” construct is thus “weaved” in the
Science Gateway architecture, resulting in the
GEIM’ description, reported in Figure 5, where the
“mammogridDataProxy” service is replicated and
made reliable with a load-balancing and fault-
tolerant connector, acting as a switchtender to user

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

428

requests. The construct thus applied, turns the
automated second opinion application into a reliable
service, supporting physicians in the screening
process. In this first use-case scenario, a
demonstration is given of how platform independent
models (i) can be reused (ii), as well as how QoS
constraints can be expressed and then solved by
transformation (iii), thanks to the gMDE engineering
technique, and using the gMDEnv framework.

gLite3Proxy is executionPlatformProperty {
 on health-e-childGateway:architecture actions {
 on health-e-childGridProxy
 :architecturalElement actions{
 include gLiteGlueing is component {
 … component architectural description
 }
 unify
health-e-childGridProxy::ComsP0::ComsOutC0 with
 gLiteGlueing::ProxyComsP0::ProxyComsIncC0 .
 unify
health-e-childGridProxy::ComsP0::ComsInC0 with
 gLiteGlueing::ProxyComsP0::ProxyComsOutC0 }}…

Figure 6: Execution Platform Construct – GETM.

6.2 Paediatric Cardiology – Similarity
Search and Decision Support

In Health-e-Child, the Patient Browser interface
allows physicians to run a similarity search over the
entire database, along with customized clinical
criteria to identify patients with similar conditions
and access their treatments outcome. To do so, the
Grid analyses all patient records throughout the
connected databases and builds a similarity distance
matrix based on the clinical weight attributed to
discriminating medical variables. The result is sent
back to the physician and displayed in specialized
user interfaces, highlighting the patient population
statistical distribution and potential clusters of
identified similarities. In this second use-case, the
objective is to adapt the Science Gateway
architecture to a specific Grid middleware, making it
possible to migrate existing Health-e-Child
applications to the latest version of the Grid, without
reengineering. Thus, starting from the Health-e-
Child GEIM model, the execution platform
constraint specified by the architect is extracted, i.e.
“archetype health-e-childGridProxy is component {-
-<gridBackend::gLite::3.0>--" and the corresponding
construct picked from the library, see Figure 6.
Again, the construct is weaved into the GEIM
Science Gateway architecture by transformation,
resulting in a more specific GESM model. Thus, the
“health-e-childGridProxy” architectural element is

refined into a gLite v3.0 proxy, by integrating the
“gLite3Proxy” component and connecting it to other
existing elements’ ports and connections as is
dictated by the construct. Here, criteria (iv) multi-
platform portability is partly demonstrated with
adaptation of the Science Gateway to multiple Grids,
thanks to the integration of platform specific
constructs by successive refinement operations.

6.3 Neurodegenerative Disease
- Disease Markers Validation

In neuGRID, neuroscientists can select datasets and
specify new research hypotheses under the form of
scientific workflows. Workflows are translated into
a series of finer-grained tasks, which are sent for
processing in the Grid. The latter orchestrates the
workflow until its completion. The resulting outputs
are stored in the Grid and pointers are sent back to
the users. In this last scenario, authors assume that
the neuGRID platform specific Science Gateway
GESM model is finalised.

Thus entering the last stage of the gMDE design
process, the GESM specification is turned into
concrete source code by a mapping translation. This
is achieved by specific parsers, which were
developed to map the ARL concepts to different
execution environments and programming
languages. The translation is operated by a dedicated
service in the gMDEnv framework. In the present
case, the parsing granularity level is set to “Complex
Objects”, which indicates that first order
components of the architecture are to be translated
into software services, whereas subsequent order
components correspond to simpler programming
objects. In neuGRID, the targeted environment is the
Globus 4.0 software. Thus, the GEMM parser
produces corresponding service classes and
accompanying Web services descriptors for
deployment. The Science Gateway GESA source
code is thus generated according to the target
execution environment, to be further compiled and
deployed. Compilation and deployment finally takes
place thanks to the Grabber service, of the gMDEnv
framework. The latter utilizes an ARL representation
of the physical infrastructure (i.e. the GERM model)
to understand its distribution and to deploy the
Science Gateway according to what the architect has
specified in the GEDM deployment model.

In this concluding use-case scenario, criteria (iv)
multi-platform portability is demonstrated with
Science Gateway code generation according to
target execution environment, and (v) distribution is
addressed (but not demonstrated) utilizing the
GERM infrastructure representation.

Model�Driven�Engineering�for�Science�Gateways

429

7 CONCLUSIONS

The research work reported in this paper
demonstrates the formulated approach to
engineering Science Gateways. It showed from
experimentation the feasibility of combining two
existing and complementary engineering techniques
towards the creation of gMDE (Manset et al., 2006).
Since this approach is based on the concepts of re-
use and execution platform independence, the
engineering framework is not limited to the Grid-
based biomedical research domain. Indeed, the same
approach can tackle other SOA-based developments.
Thus, the benefits of using the gMDE are
substantial. Formal application models designed
under the presented framework are persistent and re-
usable. One can use libraries of previously stored
models (as templates) to design new applications.
Furthermore the approach is scalable; one can
extend the scope of the framework by providing new
constraint and mapping models. Application of the
presented technique is being foreseen in the area of
self-adaptive systems, in particular on how
computational applications can benefit from
autonomic computing concepts and where (g)MDE
can be used to impact on running architectures to
reconfigure by themselves. In (Collet et al., 2010),
self-adaptive capabilities were introduced in the
Grid middleware itself, regardless of executed
applications, in order to make it self-reconfigurable
to QoS failure scenarios.

An interesting area of future research is the
development of Cloud deployment strategies, based
on step (4) of the gMDE process, in particular
utilizing the GEDM deployment model. Indeed,
similar to what was done with GridProxy services to
abstract from Grid middleware specificities, Cloud
Proxies could be defined as architectural design
constructs and the QoS attributes turned into
concrete deployment strategies brokering towards
different Cloud (IaaS and PaaS) providers.

REFERENCES

Foster, I. et al.: The Anatomy of the Grid – Enabling
Scalable Virtual Organisations. International Journal
of Supercomputer Applications, 15(3), 2001.

Service-Oriented Architectures an Introduction. See http://
www.developer.com/design/article.php/101045, http://
www.developer.com/services/article.php/1014371,
Accessed April 2nd 2012.

Friese, T. et al.: GDT: A Toolkit for Grid Service
Development. Proc of the 3rd Int. Conf. on Grid
Service Engineering and Management (2006) Lecture

Notes in Informatics Vol 88, Pages: 131–148
Wilkins-Diehr, N. et al.: TeraGrid Science Gateways and

Their Impact on Science. In Computer (Nov. 2008).
Volume: 41 Issue: 11 pp 32-41

Nanz, S The Future of Software Engineering. Springer, 21
Oct. 2010

Medvidovic, N. et al.: A Classification and Comparison
Framework for Software Architecture Description
Languages. In IEEE Transactions on Software
Engineering, Vol. 26, No. 1, pp. 70-93, 2000.

Kent, S.: Model Driven Engineering. In IFM 2002, volume
2335 of LNCS. Springer-Verlag.

Amendolia, S. R. et al.: MammoGrid: A Service Oriented
Architecture based Medical Grid Application. Lecture
Notes in Computer Science Vol 3251 pp 939-942
Springer-Verlag, 2004.

Highnam, R. et al.: Breast Composition Measurements
Using Retrospective Standard Mammogram Form
(SMF). Lecture Notes in Computer Science, 2006,
Volume 4046/2006, 243-250

EGEE Middleware Architecture, Document identifier:
EGEE-DJRA1/1-476451-v1.0, Available from http://
public.eu-egee.org/

McClatchey, R. et al.: Lessons Learned from MammoGrid
for Integrated Biomedical Solutions. Proc of the 19th
IEEE Symposium on Computer-Based Medical
Systems (CBMS 2006) pp 745-750 IEEE Press. Salt
Lake City, USA. June 2006

Skaburkas, K. et al.: Health-e-Child : A Grid-enabled
Platform for European Paediatrics. Journal of Physics
Conference Series Vol 119 Paper 082011

Manset, D. et al.: Gridifying Biomedical Applications in
the Health-e-Child Project. Chapter XXIV of the
Handbook of Research on Computational Grid
Technologies for Life Sciences, Biomedicine and
Healthcare. IGI Global Publishers, May 2009.

EGI Project, http://web.eu-egi.eu/
Manset, D. et al.: Gridifying Neuroscientific Pipelines, a

SOA Recipe and Experience from the neuGRID
Project. Chapter VII of Grid Technologies for E-
Health: Applications for Telemedicine Services and
Delivery. IGI Global Publishers, May 2009.

SAGA, The Simple Grid API http://saga.cct.lsu.edu/
Anjum, A. et al.: Reusable Services from the neuGRID

Project for Grid-Based Health Applications. Studies in
Health Technology & Informatics Vol 147, pp 283-
288 IOS Press.

Torterolo, L. et al.: Building Science Gateways with
EnginFrame: a Life Science example. Int Workshop on
Portals for Life Sciences, Sept. 2009

Farkas, Z. et al.: P-GRADE Portal: A generic workflow
system to support user communities. Future
Generation Computer Systems journal, Volume: 27,
Issue: 5, 2011, pp. 454-465

Myers, J. et al.: MAEviz: Bridging the Time-from-
discovery Gap between Seismic Research and
Decision Making. U.K. e-Science AHM. Edinburgh,
U.K. Sept 8-11, 2008.

Bass, L. et al.: Software architecture in practice, Second
Edition, Addison-Wesley, 2003

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

430

Oquendo, F.: π-ARL: An Architecture Refinement
Language for Formally Modelling the Stepwise
Refinement of Software Architecture. In ACM
SIGSOFT Software Engineering Notes archive
Volume 29, Issue 5, ACM Press 2004.

Maude Reflective Language, http://maude.cs.uiuc.edu/
van Deursen, A. et al.: Domain-specific languages: an

annotated bibliography. SIGPLAN Not. 35, 6 (June
2000), 26-36.

ArchWare Project. http://www-valoria.univ-ubs.fr/
ARCHLOG/ArchWare-IST/

Oquendo, F. et al.: The ArchWare ADL: Definition of the
Abstract Syntax and Formal Semantics”.
ARCHWARE EU RTD Project IST-2001-32360.

Manset, D. et al.: A Formal Architecture-Centric Model-
Driven Approach for the Automatic Generation of
Grid Applications. Proc of the 8th ICEIS06 Intl.
Conference, pp 322-330. Paphos, Cyprus. May 2006.

DICOM Digital Imaging and Communications in
Medicine. http://medical.nema.org

Health Level 7 (HL7), Standard http://www.hl7.org/
Collet, P. et al.: Issues and Scenarios for Self-Managing

Grid Middleware. Proc of the 2nd workshop on Grids
Meets Autonomic Computing (GMAC’10).ACM
Publishers, Washington USA 2010.

Creating the CIPRES Science Gateway for inference of
large phylogenetic trees Miller, M. A. Pfeiffer, W. ;
Schwartz, T. Gateway Computing Environments
Workshop (GCE), 2010 Date of Conference

Wenjun Wu, Thomas Uram, Michael Wilde, Mark Hereld,
and Michael E. Papka. 2010. Accelerating science
gateway development with Web 2.0 and Swift. In
Proceedings of the 2010. TeraGrid Conference (TG
'10). ACM, New York, NY, USA, Article 23, 7 pages.
DOI=10.1145/1838574.1838597, http://doi.acm.org/
10.1145/1838574.1838597

The QuakeSim Portal and Services: New Approaches to
Science Gateway Development Techniques Marlon E.
Pierce , Xiaoming Gao , Sangmi L. Pallickara ,
Zhenhua Guo , Geoffrey C. Fox

SimpleGrid Toolkit: Enabling Efficient Learning and
Development of TeraGrid Science Gateway Shaowen
Wang, Yan Liu, Nancy Wilkins-Diehr, Stuart Martin
International Workshop on Grid Computing
Environments

AstroPortal: A Science Gateway for Large-scale
Astronomy Data Analysis”, TeraGrid Conference Ioan
Raicu, Ian Foster, Alex Szalay, Gabriela Turcu
TeraGrid Conference 2006. 23, 2008 NASA GSRP
Final Report Page 5 of 5 Ioan Raicu

Model�Driven�Engineering�for�Science�Gateways

431

