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Abstract: From n-Tier client/server applications, to more complex academic Grids, or even the most recent and 
promising industrial Clouds, the last decade has witnessed significant developments in distributed 
computing. In spite of this conceptual heterogeneity, Service-Oriented Architectures (SOA) seem to have 
emerged as the common underlying abstraction paradigm. Suitable access to data and applications resident 
in SOAs via so-called ‘Science Gateways’ has thus become a pressing need in various fields of science, in 
order to realize the benefits of Grid and Cloud infrastructures. In this context, authors have consolidated 
work from three complementary experiences in European projects, which have developed and deployed 
large-scale production quality infrastructures as Science Gateways to support research in breast cancer, 
paediatric diseases and neurodegenerative pathologies respectively. In analysing the requirements from 
these biomedical applications the authors were able to elaborate on commonly faced Grid development 
issues, while proposing an adaptable and extensible engineering framework for Science Gateways. This 
paper thus proposes the application of an architecture-centric Model-Driven Engineering (MDE) approach 
to service-oriented developments, making it possible to define Science Gateways that satisfy quality of 
service requirements, execution platform and distribution criteria at design time. An novel investigation is 
presented on the applicability of the resulting grid MDE (gMDE) to specific examples, and conclusions are 
drawn on the benefits of this approach and its possible application to other areas, in particular that of 
Distributed Computing Infrastructures (DCI) interoperability. 

1 INTRODUCTION 

Primarily developed by and for High Energy Physics 
(HEP), the Grid has been realised since the late 
1990s as the next generation of information and 
communication technologies, after the Internet. Grid 
computing (Foster et al., 2001) promises to resolve 
many of the difficulties in facilitating massive data 
analyses to allow communities of end-users to 
collaborate without having to co-locate. Intrinsically 
distributed and highly heterogeneous, the Grid is the 
next logical step following the developments in high 
performance, high throuput and supercomputing.  

The Grid is the product of collaborative 
developments worldwide. It often materializes as a 
set functions arranged in a so-called “middleware”, 
i.e. a stack of commodity software sitting in and 
mediating between compute resources and user 
applications. Grid middleware are made of various 
types of services from low-level physical resources 
management, to computing power and storage 

capacity sharing, to more advanced information 
system and application scheduling services. Thus 
described, Grids are mostly implemented as Service 
Oriented Architectures (SOA) (Service-Oriented 
Architectures an Introduction). Given their 
functional scope and nature, Grids thus result in 
complex stratifications of software difficult to reuse, 
evolve and maintain (Friese et al., 2006). 
Consequently, not only is the development of Grid-
based applications a time-consuming, error prone 
and expensive task, but also are the resulting 
applications often hard-coded for specific 
configurations, technological platforms and physical 
infrastructures. The infrastructural functions offered 
by the Grid therefore need adaptation. This is what 
led research communities utilizing it to develop the 
concept of “Science Gateways”.  

Science Gateways represent an important 
emerging paradigm for providing integrated 
infrastructures. According to (Wilkins-Diehr et al., 
2008), a Science Gateway is a community-
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developed set of tools, applications, and data that are 
integrated via a portal or a suite of applications, 
usually in a graphical user interface, that is further 
customized to meet the needs of a specific 
community. Gateways enable users to access 
computing resources through a common and user-
friendly interface. 

However, given the underlying distributed 
computing infrastructures complexity, Science 
Gateways reuse and evolution is increasingly 
complex and the use of most classical engineering 
practices reveals inappropriate as few exhibit the 
necessary level of interoperability and flexibility 
required to import, integrate and to pass on the 
cumulated design data, information and knowledge 
to next generations (Nanz, 2010). There however 
exist engineering techniques such as architecture-
centric design (Medvidovic et al., 2000) which could 
help managing accidental difficulties faced with 
bridging conceptual gaps from abstraction to 
implementation and better adapting developments to 
evolving environments, such as Grids. Additionally, 
Model-Driven Engineering (MDE) (Kent, 2002) 
could help addressing models heterogeneity, 
separation of concerns, integration and 
interoperability.  

The remainder of this paper thus attempts to 
characterize the specificities of Grid-based Science 
Gateway developments from practical examples in 
biomedical sciences. Section 2 reports on 
experiences carried out in three conceptually 
complementary infrastructures that address a broad 
spectrum of biomedical research requirements. 
Section 3 identifies common design issues faced in 
Science Gateways development, which section 4 
then addresses by introducing a new MDE approach. 
The paper finally concludes on the significance of 
this research work and indicates experiments that 
could elaborate on new potential areas of 
application. 

2 SCIENCE GATEWAYS IN 
BIOMEDICAL RESEARCH 

With its roots grounded in HEP, the Grid required 
significant adaptation to be brought into and to serve 
the biomedical environment. The following sections 
report on three incremental Grid-based Science 
Gateways development experiences. 

2.1 Breast Cancer, the EU FP5 
MammoGrid Project 

MammoGrid (Amendolia et al., 2004) aimed at 
utilizing the Grid as a digital repository to federate 
mammographic images and medical data, thereby 
allowing clinical researchers to store, share 
anonymously and analyze sensitive information 
acquired from various hospitals across Europe, in 
the context of specialized breast cancer studies. By 
doing so, MammoGrid made it possible for the first 
time to accumulate rare data samples into a 
common, secure and distributed repository needed to 
validate new breast cancer Computer Aided 
Detection (CAD) algorithms using the Standard 
Mammogram Format or SMF (Highman et al., 
2006), while testing the actual feasibility and overall 
impact of providing automated radiographer second 
opinion in the cancer screening practice.  

Developed between 2002 and 2005, 
MammoGrid adopted and adapted the first official 
release of the gLite Grid middleware (EGEE 
Middleware Architecture), being issued by the 
Enabling the Grid for E-sciencE (EGEE) European 
project. At that time, the Grid resembled a Unix-like 
operating system managing distributed computing 
resources over a network, using specific command 
line interfaces. As it was the implementation of a 
new paradigm in computing carried out by large and 
geographically distributed communities, the form of 
the Grid used in MammoGrid was a rather complex, 
slow and heterogeneous software stack, difficult to 
install, configure and maintain. It was also not 
functional for instantaneous user interaction and was 
not regarded as sufficiently user-friendly by the 
biomedical research community. Biomedical 
researchers were thus hesitant in using it, as reported 
in (McClatchey et al., 2006). Despite this, 
MammoGrid demonstrated for the first time the 
relevance of using this technology to support large-
scale and automated second opinion and to allow 
clinical researchers to federate meaningful data into 
one shared environment.  

2.2 Paediatric Diseases, the EU FP6 
Health-e-Child Project 

Elaborating on the MammoGrid model, the Health-
e-Child project (Skaburkas et al., 2011) then 
diversified Grid usage for biomedicine, by 
developing Decision Support Systems (DSS) and 
Knowledge Discovery tools supporting 
paediatricians in their daily work with integrated 
data in cardiology, especially in cardiomyopathies 
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follow-ups, in rheumatology with juvenile arthritis 
diagnosis and in neuro-oncology with glioma 
evolution. 

Health-e-Child was developed between 2006 and 
2010 and it acknowledged the need for users to 
abstract from ongoing Grid developments in order to 
lower the barriers of adoption. Health-e-Child thus 
further developed the notion of a “Gateway” to the 
Grid, inserting a thin layer of abstraction services 
between the lower-level middleware and users, 
which would confine the unstable Grid under well-
defined APIs. This thin Web services-based stack 
significantly improved the integration between new 
applications being developed in the project and the 
underlying Grid legacy. It also helped to convince 
non-IT users to adopt the technology, although 
performance remained an issue, as was reported in 
(Manset et al, 2009). The Grid indeed remained too 
slow in manipulating data since it had been designed 
for long and non-fragmented runtimes, complex and 
highly versatile in nature. Deployed in five major 
hospitals across Europe and the USA, the solution 
however demonstrated significant reliability and 
security results.  

2.3 Neuroimaging Biomarkers, the EU 
FP7 neuGRID Project 

As a third generation infrastructure, the neuGRID 
project (Manset et al., 2009), attempted to further 
improve the Grid experience by pioneering a form of 
virtual laboratory for neuroscientists to develop, test 
and validate innovative new imaging biomarkers for 
neurodegenerative diseases. NeuGRID extended the 
idea of a “Science Gateway” to facilitate access to 
massive computing capacities.  

NeuGRID was developed between 2008 and 
2011 (and has since then has received further 
funding until 2015, under project name N4U). 
neuGRID based its architecture on the latest secure, 
reliable and performant Grid middleware products. It 
deployed a large-scale production quality 
infrastructure at specialized clinical centres, 
interconnected with the European Grid Initiative 
(EGI (EGI Project)), where it could access 
additional computing resources from. Although 
major improvements took place in the Grid, its 
evolving and heterogeneous nature encouraged 
neuGRID to further decouple its solution by adding 
new abstraction layers to form its Science Gateway. 
The latter relied on the following three pillars, as is 
further detailed in (Manset et al., 2009): (1) Use of a 
so-called generic “gluing service” as part of the 
SOA to submit jobs to underlying Grids (see 

JavaGAT/SAGA (SAGA) and neuGRID’s gluing 
service (Anjum et al., vol147, pp283-288) for more 
information). The gluing service abstracts upper 
layers of the system from the Grid specificities and 
is responsible for actual job submissions. (2) Use of 
a generic Web service wrapper in charge of on-the-
fly orchestration and applying scheduling 
optimization techniques according to specified 
pipeline contents. (3) Instantiating a unique Web 
service wrapper per algorithm/pipeline to be 
published in the SOA, thus allowing (both atomic 
and composite) processing tasks to be discovered, 
composed and subsequently published in the system. 

Each of these three substrates played a different 
but key role. While (1) introduced abstraction from 
Grids and thus allowed interacting with a wide 
variety of middleware, (2) took care of appropriately 
parameterizing (1), it also characterized 
commonalities of algorithms/ pipelines and opened a 
broad avenue to job scheduling optimization 
techniques (e.g. jobs grouping). Pillar (3), on the 
other hand, extended the parameterizing of (2) and 
turned these virtualized neuro-utilities into a set of 
standard services.  

3 DESIGN ISSUES IN  
GRID-BASED SCIENCE 
GATEWAYS 

Experiences over the last decade, a subset of which 
was presented in the previous section, demonstrate 
that the Grid has evolved from a very complex, slow 
and heterogeneous stack, difficult to install, 
configure and maintain into what is now regarded as 
a secure, reliable and maintained software. However, 
the Grid remains complex, evolving and 
heterogeneous. This is why applications being 
developed on top of, or integrating the Grid may risk 
becoming unsustainable, may lack interoperability, 
may remain complicated and can thus induce 
reluctance in users to adopt them. This motivates the 
case for Grid-based biomedical Science Gateways, 
which moreover deal with potentially sensitive 
medical data, which places more specific design 
constraints onto Grid infrastructures, in particular in 
terms of: 

(a) Privacy, when sharing information that 
potentially identifies individuals. For example 
genetic profiles carrying DNA, unstructured data 
such as diagnostic reports sometimes encompassing 
patient’s name and more, Magnetic Resonance (MR) 
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images of patient brains allowing 3D reconstruction 
of patient’s face etc.,  

(b) Security, when sharing and storing data that 
potentially identifies individuals. Identifying data 
may be voluntarily shared for the sake of running for 
instance a clinical trial needing information on 
patients’ living places for solving a given 
epidemiological question, 

(c) Reliability, when storing and accessing 
medical data or clinical applications. Assisting 
physicians with decision support applications at the 
point of care may require highly available services 
in the infrastructure,  

(d) Sustainability, when storing medical data as 
this can imply in some countries the ability to 
retrieve and make data accessible for 15 years or 
more. 

In addressing the findings from (Amendolia et 
al., 2004), [10], (Manset et al, 2009) and (Manset et 
al., 2009), the authors assert the hypothesis that 
Grid-based biomedical Science Gateways should be 
designed as (1) Service Oriented Architectures 
(SOA), which (2) have specific Quality of Services 
(QoS) requirements, and (3) can be built on several 
technological platforms and physical resources. This 
is what Figure 1 illustrates. Such SOA-based, QoS-
specific and multi-platform Science Gateways, are 
made of services exhibiting particular functions and 
properties in order to hide the Grid complexity and 
to help address community-specific issues like (a), 
(b), (c) and (d), formerly introduced. 

 

 
Figure 1: Science Gateway Architectural Style. 

Science Gateways enable the decoupling of new 
applications from evolving Grids, facilitate 
integration and transition to it, promote better reuse 
of software artefacts, and thereby potentially lower 
the barriers of user adoption. Figure 1 summarizes 
the basic architectural properties, which were 
unveiled thus far. Indeed, starting from the 
architecture level, i.e. (1), Science Gateways should 

follow the SOA style, in promoting abstraction, 
loose coupling and extensibility. Science Gateways 
should encompass component services, which can be 
specialized to target platforms, standards and 
technologies. Inner Science Gateway atomic 
services, i.e. wrapping low-level functions (2) 
should exhibit simple ubiquitous interfaces, be 
stateless, group coherent sets of functions and be 
idempotent. Composite services (3) on the other 
hand, (i.e. wrapping processes calling other 
services), should be stateful, so to store persistently 
important execution state information, and moreover 
be orchestrated. Science Gateways should therefore 
encompass mechanisms allowing the publication, 
discovery and composition of integrated services. 

3.1 Science Gateways Engineering 

Science Gateways should be parameterized/ 
optimized according to non-functional requirements, 
such as, for instance, the expected level of 
reliability, security and privacy (i.e. QoS). 
Component services as identified in the former 
sections should therefore be assigned with QoS 
descriptive information accordingly at design time 
and the latter be mapped to architectural solutions, to 
be satisfied at runtime. Science Gateway 
architectures should be reusable, adaptable and 
portable to different research groups, execution 
platforms, technologies and physical infrastructures. 
Moreover, the deployment of such architectures may 
require taking into account distribution aspects, 
especially when under privacy, security, 
performance and/or reliability constraints. Thus, 
gateway architectures, properties and associated 
QoS, should be specified independently of any 
execution platforms, computing paradigms and 
programming languages.  

3.2 Science Gateways Synthesis 

From the MammoGrid, Health-e-Child and 
neuGRID experiences, the unveiled characteristics 
of Science Gateways indicate that a meta-model 
describing their architectural commonalities and 
properties could be designed, thereby allowing their 
reuse, adaptation and specialization to different 
fields of science. Science Gateways would thus 
significantly benefit from platform independence 
and their engineering should promote: 

i. A high-level of abstraction, guaranteeing the 
Science Gateway model independence from any 
platform specificities, 

ii. Models reuse, allowing the creation and  use  of 
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basic building blocs,  
iii. QoS properties specification, translating various 

types of non-functional requirements into design 
properties, 

iv. Multi-platform portability, making it possible to 
port Science Gateways to different environments 
and technologies and 

v. Distribution strategy formulation, enabling 
Science Gateways to have optimized 
deployments over target infrastructures and QoS.  

4 LITERATURE REVIEW 

In current research infrastructures, where utilizing 
the Grid implies its further adaptation, SOAs seem 
to have become the common abstraction paradigm to 
simplify access and developments, even though 
different standards and technologies may be applied 
across research projects and groups. SOA-based 
Science Gateways are thus emerging in various 
research fields and biomedical specialties, which 
operate most of the time for fixed QoS and 
execution platforms and are deployed over 
predefined physical infrastructures. Some offer 
customized Web-portals (Torterolo et al., 2009), 
thus simplifying access to the Grid infrastructure. 
Others focus more on scientific workflows (Farkas 
et al., 2011), making the assumption that the 
infrastructure provides a sufficiently user-friendly 
access through which user applications can be 
designed as workflows. For the most advanced 
Science Gateways, a development framework 
(Myers et al., 2008) is provided, which allows 
developers to create and personalize new ones to 
their own needs ranging from the security model, to 
the privacy level, its reliability, the concrete Grid 
infrastructure to interface with, or even to the actual 
user interfaces. 

The following synopsis table, Table 1, recalls the 
main criteria, as were identified in the former 
synthesis section, and which Science Gateway 
engineering approaches shall satisfy. This table 
allows comparing available approaches, while 
understanding their underlying concepts. In Table 1 
references to the analysed approaches are provided 
in the left column, followed by a few keywords on 
their foundational paradigms and the five main 
comparison criteria.  

Table 1: Literature Review in Science Gateways 
Engineering Approaches. 

 
* Only partially achieved.  
** Only made possible thanks to the workflow orientation. 

 
Several conclusions can be drawn from this 
comparison. Firstly, the literature review 
demonstrates that simple service-based approaches 
do not address the identified criteria. Indeed, these 
approaches mainly facilitate the development of user 
interfaces by hiding the complexity of the 
underlying Grid, while they remain highly specific 
to the targeted technologies. On the other hand, 
Workflow-oriented solutions do exhibit interesting 
characteristics since they introduce abstraction and 
reuse of application models. They are consequently 
close to satisfying the identified requirements, 
although there is no approach yet tackling models 
reuse and quality of services at the same time. 
Finally, it is worth noting that approaches leveraging 
on abstraction, loose coupling and extensibility, i.e. 
utilizing SOAs, are the ones addressing best the 
Science Gateways engineering needs.   

Given the lack of engineering methods available 
to address the identified criteria in a single and 
unified design process, the authors have been 
looking for candidate engineering techniques and 
their possible application. In particular, the proposed 
work has been motivated by the research carried out 
in SOA engineering and more specifically in 
architecture-based software developments (Bass et 
al., 2003). Given that Science Gateways are sets of 
interconnected component services, architecture-
centric software-based development applies 
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particularly well since it allows the definition of 
distributed systems in terms of groups of 
components at a high-level of abstraction 
guaranteeing platform independence, enabling 
models reuse and, for some architecture-based 
approaches, expressing accompanying properties. 
Additionally, the authors considered the more recent 
Model Driven Engineering (MDE) (Kent, 2002) as a 
possible means to supplement architecture-based 
software development with a compositional 
technique to manage multi-platform complexity and 
thus automate adaptation/evolution. In the next 
section, readers will gain deeper understanding of 
the proposed combination of software engineering 
methods and be presented with the resulting “grid 
Model Driven Engineering” (gMDE) approach. 

5 THE GRID MODEL DRIVEN 
ENGINEERING (gMDE)  

5.1 gMDE Foundations 

This paper introduces and tests a model-based 
engineering technique, which the authors propose to 
address the identified requirements in Science 
Gateways engineering. The first ingredient used is a 
formal Architecture Description Language (ADL), 
the ArchWare Refinement Language (ARL) 
(Oquendo, 2004) to model and check Grid-based 
Science Gateways. Utilizing a formal architecture-
centric method brings the necessary abstraction logic 
and mathematical foundation (Maude Reflective 
Language) to describe abstract software 
architectures, to model and test their architectural 
properties, and to ultimately transform these into 
concrete applications, i.e. the so-called process of 
refinement. The used formal Architecture-centric 
approach relies on languages and styles to describe 
applications, as well as tools for reasoning on 
architectural properties. It also introduces a 
development process that exploits and specializes 
iteratively abstract architecture descriptions into 
concrete applications, through stepwise refinement. 
This dimension of the proposed works is aimed to 
bring rigor and control into the Science Gateway 
engineering process. It addresses criteria (i) platform 
independence, and (ii) models reuse, while giving 
the foundations to express and check accompanying 
architectural properties (iii), such as QoS and target 
platforms. As the second ingredient, a Model-Driven 
Engineering (MDE) technique is proposed to 
promote models reuse and, thanks to the separation 

of concerns, to model transformations, to hide 
platform complexity and to refine abstractions by 
operating model transformations. MDE 
consequently supplements the design process with a 
compositional technique to manage complexity and 
to automate adaptation, utilizing a repository of “off-
the-shelf” architectural constructs. It contributes to 
the proposed approach in improving flexibility and 
adaptability to changing environments, while 
allowing the long-term capitalization of architectural 
knowledge, thereby addressing the aspects of (iv) 
portability and (v) distribution in Science Gateways 
engineering. 

Finally, a Domain Specific Language (DSL) 
(van Deursen et al., 2000) is introduced that allows 
modelling more specifically Grid-based Science 
Gateway architectures in terms of services and their 
interconnections. The DSL is encoded in the 
graphical user interface of the gMDE environment 
(gMDEnv), to facilitate the overall understanding 
and graphical design of Science Gateway solutions.  

5.2 gMDE Design Process and Models 

The grid Model Driven Engineering approach 
(gMDE) consists of a combination of existing and 
well-tested engineering techniques. In particular, 
gMDE builds on the work carried out by authors in 
the European FP5-funded ArchWare project 
(ArchWare Project), which developed a formal 
architecture-centric engineering toolkit of ADL 
(Oquendo et al., 2001) languages and accompanying 
toolkit. gMDE leverages on architecture-centric 
design to place the focus on coarse-grained system 
architecture specification, rather than coping up-
front with implementation details. In doing so, 
software architects can design Science Gateways in 
terms of reusable and platform independent 
components (i.e. basic building blocs) and their 
interrelations. In paper (Manset et al., 2006), the 
authors introduced the foundational architecture-
centric approach and toolset, which the novel gMDE 
engineering technique extends. Authors then 
presented the overall gMDE design process, with its 
eight models from the platform independent 
architecture specification (GEIM), to its 
specialization according to QoS (GECM) and 
platform (GETM) constraints, and finally to the 
(semi)-automatically generated source code (GESA) 
of the Science Gateway and its proposed distribution 
(GEDM) over the physical Grid infrastructure.  

gMDE leverages on the model driven 
compositional dimension which it combines with 
architecture-centric refinement to translate non-

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

426



 

functional concerns into architectural constructs, and 
then integrate them into the application model. A 
refinement step typically leads to a more detailed 
architectural model that increases the determinism of 
and preserves the properties associated with the 
abstract model. The ArchWare ARL language is the 
formal expression of these refinement operations 
(Oquendo, 2004). ARL operates refinement 
operations by formally rewriting ARL architectural 
specifications using the Maude (Maude Reflective 
Language) formal rewriting logic.  

6 APPLYING GMDE  

The formerly introduced application areas are here 
explored successively in order to exemplify the 
application of the gMDE design process to solve 
identified engineering issues starting from a 
platform independent specification, and evolving to 
the concrete Science Gateway application. In order 
to simplify understanding, the given demonstration 
focuses on one stage of the design process per 
application area. Thus, a running example is taken 
from one end to the other.  

6.1 Breast Cancer-Second Opinion 

The MammoGrid Science Gateway encompasses a 
key set of commodity services. Firstly, 
authentication (Auth) and authorization (Authz) 
services, to login and access distributed resources 
uniformly, according to a security model derived 
from the requirements and that rules access rights 
and protects sensitive medical data. Secondly, a 
Portal service is offered to simplify access to 
complex workflows of underlying system functions, 
such as automated second opinion in the present 
case. Finally, a data staging service is included, 
which conforms to medical data standards (DICOM 
(DICOM) and HL7 (Health Level 7)), to enable 
users to upload data to the system for subsequent 
analyses. In MammoGrid, these legacy assets are 
kept independent of target back-ends (i.e. databases, 
Grid platform and execution environments) and 
surrounding security thanks to abstraction services, 
hereinafter referred to as “Proxies” in the Science 
Gateway architecture. 

In this context, the first use-case scenario 
focuses on the biomedical research Science Gateway 
model and its specialization to the quality of service 
needs of MammoGrid, in the light of offering a 
reliable automated second opinion service to 
physicians at the point of care. Figure 2 describes  

 

gatewayArchitectureRef is style SOAScienceGateway where { 
   structure is { 
      Portal is style serviceTypeRef where { 
            structure is {… service internal structure  
description … } 
            connection is { … service connections  
descriptions … } 
            constraint is { … QoS and / or platform  
constraints mappings … } 
      } … 
      Auth is style serviceTypeRef where { 
            structure is {… service internal structure  
description … } 
            connection is { … service connections  
descriptions … } 
            constraint is { … QoS and / or platform  
constraints mappings … } 
      } … 
      Authz is style serviceTypeRef where { 
            structure is {… service internal structure  
description … } 
            connection is { … service connections  
descriptions … } 
            constraint is { … QoS and / or platform  
constraints mappings … } 
      } … 
      GridProxy is style serviceTypeRef where { 
            structure is {… service internal structure  
description … } 
            connection is { … service connections  
descriptions … } 
            constraint is { … QoS and / or platform  
constraints mappings … } 
      } … 
      DataProxy is style serviceTypeRef where { 
            structure is {… service internal structure  
description … } 
            connection is { … service connections  
descriptions … } 
            constraint is { … QoS and / or platform constraints 
mappings … } 
      } … 
      DataStaging is style serviceTypeRef where { 
            structure is {… service internal structure description … 
} 
            connection is { … service connections descriptions … } 
            constraint is { … QoS and / or platform constraints 
mappings … } 
      } … 
   } 
   link is { 
            attach Portal to GridProxy . 
            attach Portal to DataProxy . 
            attach Portal to DataStaging . 
            attach Auth to Authz . 
            attach Auth to Portal  
  }}   

Figure 2: MammoGrid Science Gateway Model. 

the MammoGrid platform independent Science 
Gateway model in the gMDE DSL formalism. The 
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latter is automatically produced by the gMDENv 
interface (note that these descriptions are only partial 
extracts in order to simplify understanding). As can 
be noted, the gMDE DSL allows users to simply and 
quickly define a Science Gateway in terms of 
coarse-grained services. The gMDE DSL is the 
language used by the gMDEnv environment to assist 
and simplify the graphical creation of Science 
Gateway architectures and their specialization, until 
the concrete application source code can be 
produced. The gMDE DSL allows users to describe 
Science Gateway architectural styles, for reuse “off-
the-shelf”, with predefined sets of components and 
accompanying requirements, and then to instantiate 
them as a new GEIM model. The GEIM is then 
translated into regular ARL for applying model 
transformations. Like the GEIM, the GECM and 
GETM constraint models reflecting QoS and target 
platforms are expressed in the gMDE DSL.  

 
constraintName is constraintTypeRef { 
     on a:architecture actions {                        
         actionRef elemRef is typeRef  
                  {…  element description … }         
     on b:architecturalElement actions { 
         actionRef c . 
         actionRef d  
          …}}… 

Figure 3: Constraint Meta-model. 

FT_reliability is qualityOfServiceProperty { 
    on mammogridGateway:architecture actions { 
        include FTConnector is connector { 
             … connector architectural description …} 
        on mammogridDataProxy  
:architecturalElement actions{ 
             replicate mammogridDataProxy to  
mammogridDataProxyClone0; 
             unify  
mammogridDataProxy::ComsP0::Coms 
OutC0 with  
FTConnector:: 
mammogridGridProxyComsP0::mammogridGridProxyIncC0    
             unify  
mammogridDataProxyClone0::ComsP0: 
:ComsOutC0 with  
                FTConnector::  
mammogridGridProxyComsP0:: 
mammogridGridProxyIncC0  
}}…              

Figure 4: QoS Architectural Pattern – GECM. 

Figure 3 illustrates the meta-model of a non-
functional constraint architectural construct. The 

latter describes how to redefine the concerned 
component(s) and its surroundings in order to solve 
the indicated requirement. This specification is in 
fact a simplified formalism for grouping relevant 
ARL refinement operations to be applied onto a 
given Science Gateway architecture to integrate the 
architectural construct. Once the GEIM model has 
been translated into ARL by gMDEnv, the first 
conceptual difference, which can be noted, is that 
the model no longer refers to services, but now 
manipulates components and connectors (i.e. the 
“C&C” style) onto which refinement operations can 
be applied.  
 

behaviour is { 
archetype mammogridPortal is component {…} . 
archetype mammogridGridProxy is component{…}. 
archetype mammogridDataProxy is component {…}. 
archetype mammogridDataProxyClone0 is component  
{…}.  
archetype FTConnector is connector { 
            behaviour is { 
               recursive value availabilityChecking is  
abstraction(); 
                     { 
                         if (serviceDown) value  
serviceRedirectionURL :=                  
                         mammogridDataProxyClone0; 
                         availabilityChecking(); 
               }; 
               compose { availabilityChecking() } 
            } . 
        recursive value readGridDBEntries is  
abstraction();    {…}; 
        recursive value clientDataRequest is  
abstraction();    {…}; ... 
        compose {readGridDB() and  
clientDataRequest()}... }}} … 

Figure 5: Refined Gateway Architecture - GEIM’. 

From the quality of service constraint indicated in 
the GEIM model, here “--<reliability::level::3>--“, 
the corresponding architectural construct is selected 
from the framework library. In the present case, the 
framework selects the “FT_Reliability” connector, 
as illustrated in Figure 4. This construct is then read 
by the framework and turned into lower-level ARL 
refinement operations, which are applied by 
rewriting logic onto the original GEIM model. The 
“FT_Reliability” construct is thus “weaved” in the 
Science Gateway architecture, resulting in the 
GEIM’ description, reported in Figure 5, where the 
“mammogridDataProxy” service is replicated and 
made reliable with a load-balancing and fault-
tolerant connector, acting as a switchtender to user 

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

428



 

requests. The construct thus applied, turns the 
automated second opinion application into a reliable 
service, supporting physicians in the screening 
process. In this first use-case scenario, a 
demonstration is given of how platform independent 
models (i) can be reused (ii), as well as how QoS 
constraints can be expressed and then solved by 
transformation (iii), thanks to the gMDE engineering 
technique, and using the gMDEnv framework. 

gLite3Proxy is executionPlatformProperty { 
    on health-e-childGateway:architecture actions { 
            on health-e-childGridProxy  
       :architecturalElement actions{ 
              include gLiteGlueing is component { 
                 … component architectural description 
             } 
             unify  
health-e-childGridProxy::ComsP0::ComsOutC0 with  
       gLiteGlueing::ProxyComsP0::ProxyComsIncC0 .  
             unify  
health-e-childGridProxy::ComsP0::ComsInC0 with  
        gLiteGlueing::ProxyComsP0::ProxyComsOutC0  }}…      

Figure 6: Execution Platform Construct – GETM. 

6.2 Paediatric Cardiology – Similarity 
Search and Decision Support 

In Health-e-Child, the Patient Browser interface 
allows physicians to run a similarity search over the 
entire database, along with customized clinical 
criteria to identify patients with similar conditions 
and access their treatments outcome. To do so, the 
Grid analyses all patient records throughout the 
connected databases and builds a similarity distance 
matrix based on the clinical weight attributed to 
discriminating medical variables. The result is sent 
back to the physician and displayed in specialized 
user interfaces, highlighting the patient population 
statistical distribution and potential clusters of 
identified similarities. In this second use-case, the 
objective is to adapt the Science Gateway 
architecture to a specific Grid middleware, making it 
possible to migrate existing Health-e-Child 
applications to the latest version of the Grid, without 
reengineering. Thus, starting from the Health-e-
Child GEIM model, the execution platform 
constraint specified by the architect is extracted, i.e.  
“archetype health-e-childGridProxy is component {-
-<gridBackend::gLite::3.0>--" and the corresponding 
construct picked from the library, see Figure 6. 
Again, the construct is weaved into the GEIM 
Science Gateway architecture by transformation, 
resulting in a more specific GESM model. Thus, the 
“health-e-childGridProxy” architectural element is 

refined into a gLite v3.0 proxy, by integrating the 
“gLite3Proxy” component and connecting it to other 
existing elements’ ports and connections as is 
dictated by the construct. Here, criteria (iv) multi-
platform portability is partly demonstrated with 
adaptation of the Science Gateway to multiple Grids, 
thanks to the integration of platform specific 
constructs by successive refinement operations.  

6.3 Neurodegenerative Disease 
- Disease Markers Validation 

In neuGRID, neuroscientists can select datasets and 
specify new research hypotheses under the form of 
scientific workflows. Workflows are translated into 
a series of finer-grained tasks, which are sent for 
processing in the Grid. The latter orchestrates the 
workflow until its completion. The resulting outputs 
are stored in the Grid and pointers are sent back to 
the users. In this last scenario, authors assume that 
the neuGRID platform specific Science Gateway 
GESM model is finalised.  

Thus entering the last stage of the gMDE design 
process, the GESM specification is turned into 
concrete source code by a mapping translation. This 
is achieved by specific parsers, which were 
developed to map the ARL concepts to different 
execution environments and programming 
languages. The translation is operated by a dedicated 
service in the gMDEnv framework. In the present 
case, the parsing granularity level is set to “Complex 
Objects”, which indicates that first order 
components of the architecture are to be translated 
into software services, whereas subsequent order 
components correspond to simpler programming 
objects. In neuGRID, the targeted environment is the 
Globus 4.0 software. Thus, the GEMM parser 
produces corresponding service classes and 
accompanying Web services descriptors for 
deployment. The Science Gateway GESA source 
code is thus generated according to the target 
execution environment, to be further compiled and 
deployed. Compilation and deployment finally takes 
place thanks to the Grabber service, of the gMDEnv 
framework. The latter utilizes an ARL representation 
of the physical infrastructure (i.e. the GERM model) 
to understand its distribution and to deploy the 
Science Gateway according to what the architect has 
specified in the GEDM deployment model. 

In this concluding use-case scenario, criteria (iv) 
multi-platform portability is demonstrated with 
Science Gateway code generation according to 
target execution environment, and (v) distribution is 
addressed (but not demonstrated) utilizing the 
GERM infrastructure representation. 
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7 CONCLUSIONS 

The research work reported in this paper 
demonstrates the formulated approach to 
engineering Science Gateways. It showed from 
experimentation the feasibility of combining two 
existing and complementary engineering techniques 
towards the creation of gMDE (Manset et al., 2006). 
Since this approach is based on the concepts of re-
use and execution platform independence, the 
engineering framework is not limited to the Grid-
based biomedical research domain. Indeed, the same 
approach can tackle other SOA-based developments. 
Thus, the benefits of using the gMDE are 
substantial. Formal application models designed 
under the presented framework are persistent and re-
usable. One can use libraries of previously stored 
models (as templates) to design new applications. 
Furthermore the approach is scalable; one can 
extend the scope of the framework by providing new 
constraint and mapping models.  Application of the 
presented technique is being foreseen in the area of 
self-adaptive systems, in particular on how 
computational applications can benefit from 
autonomic computing concepts and where (g)MDE 
can be used to impact on running architectures to 
reconfigure by themselves. In (Collet et al., 2010), 
self-adaptive capabilities were introduced in the 
Grid middleware itself, regardless of executed 
applications, in order to make it self-reconfigurable 
to QoS failure scenarios.  

An interesting area of future research is the 
development of Cloud deployment strategies, based 
on step (4) of the gMDE process, in particular 
utilizing the GEDM deployment model. Indeed, 
similar to what was done with GridProxy services to 
abstract from Grid middleware specificities, Cloud 
Proxies could be defined as architectural design 
constructs and the QoS attributes turned into 
concrete deployment strategies brokering towards 
different Cloud (IaaS and PaaS) providers.  
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