
Simple Fuzzy Logic Models to Estimate the Global Temperature 
Change Due to GHG Emissions 

Carlos Gay García1, Oscar Sánchez Meneses1, Benjamín Martínez-López1, Àngela Nebot2 
and Francisco Estrada1 

1Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, D.F., Mexico 
2Grupo de Investigación Soft Computing, Universitat Politècnica de Catalunya, Barcelona, Spain 

Keywords: Fuzzy Inference Models, Greenhouse Gases Future Scenarios, Global Climate Change. 

Abstract: Future scenarios (through 2100) developed by the Intergovernmental Panel on Climate Change (IPCC) 
indicate a wide range of concentrations of greenhouse gases (GHG) and aerosols, and the corresponding 
range of temperatures. These data, allow inferring that higher temperature increases are directly related to 
higher emission levels of GHG and to the increase in their atmospheric concentrations. It is evident that 
lower temperature increases are related to smaller amounts of emissions and, to lower GHG concentrations. 
In this work, simple linguistic rules are extracted from results obtained through the use of simple linear 
scenarios of emissions of GHG in the Magicc model. These rules describe the relations between the GHG, 
their concentrations, the radiative forcing associated with these concentrations, and the corresponding 
temperature changes. These rules are used to build a fuzzy model, which uses concentration values of GHG 
as input variables and gives, as output, the temperature increase projected for year 2100. A second fuzzy 
model is presented on the temperature increases obtained from the same model but including a second 
source of uncertainty: climate sensitivity. Both models are very attractive because their simplicity and 
capability to integrate the uncertainties to the input (emissions, sensitivity) and the output (temperature). 

1 INTRODUCTION 

There is a growing scientific consensus that 
increasing emissions of greenhouse gases (GHG) are 
changing the Earth's climate. The IPCCs Fourth 
Assessment Report (IPCC, 2007) states that 
warming of the climate system is unequivocal and 
notes that eleven of the last twelve years (1995-
2006) rank among the twelve warmest years of 
recorded temperatures (since 1850). The projections 
of the IPCCs Third Assessment Report (TAR) 
(IPCC, 2001) regarding future global temperature 
change ranged from 1.4 to 5.8 °C. More recently, the 
projections indicate that temperatures would be in a 
range spanning from 1.1 to 4 °C, but that 
temperatures increases of more than 6 °C could not 
be ruled out (IPCC; 2007). This wide range of 
values reflects the uncertainty in the production of 
accurate projections of future climate change due to 
different potential pathways of GHG emissions. 
There are other sources of the uncertainty preventing 
us from obtaining better precision. One of them is 
related to the computer models used to project future 

climate change. The global climate is a highly 
complex system due to many physical, chemical, 
and biological processes that take place among its 
subsystems within a wide range of space and time 
scales. 

Global circulation models (GCM) based on the 
fundamental laws of physics try to incorporate those 
known processes considered to constitute the climate 
system and are used for predicting its response to 
increases in GHG (IPCC, 2001). However, they are 
not perfect representations of reality because they do 
not include some important physical processes (e.g. 
ocean eddies, gravity waves, atmospheric 
convection, clouds and small-scale turbulence) 
which are too small or fast to be explicitly modeled. 
The net impact of these small scale physical 
processes is included in the model by means of 
parameterizations (Schmidt, 2007). In addition, 
more complex models imply a large number of 
parameterized processes and different models use 
different parameterizations. Thus, different models, 
using the same forcing produce different results. 

One of the main sources of uncertainty is, 
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however, the different potential pathways for 
anthropogenic GHG emissions, which are used to 
drive the climate models. Future emissions depend 
on numerous driving forces, including population 
growth, economic development, energy supply and 
use, land-use patterns, and a variety of other human 
activities (Special Report on Emissions Scenarios, 
SRES). Future temperature scenarios have been 
obtained with the emission profiles corresponding to 
the four principal SRES families (A1, A2, B1, and 
B2) (Nakicenovic et al., 2000). From the point of 
view of a policy-maker, the results of the 3rd and 4th 
IPCC’s assessments regarding the projection of 
global or regional temperature increases are difficult 
to interpret due to the wide range of the estimated 
warming. Nevertheless this is an aspect of 
uncertainty that scientists and ultimately policy-
makers have to deal with. Furthermore, most of the 
available methodologies that have been proposed for 
supporting decision-making under uncertainty do not 
take into account the nature of climate change’s 
uncertainty and are based on classic statistical theory 
that might not be adequate. Climate change’s 
uncertainty is predominately epistemic and, 
therefore, it is critical to produce or adapt 
methodologies that are suitable to deal with it and 
that can produce policy-useful information. The lack 
of such methodologies is noticeable in the IPCC’s 
AR4 Contribution of the Working Group I, where 
the proposed best estimates, likely ranges and 
probabilistic scenarios are produced using 
statistically questionable devices (Gay and Estrada, 
2009). 

Two main strategies have been proposed for 
dealing with uncertainty: trying to reduce it by 
improving the science of climate change a feat tried 
in the AR4 of the IPCC, and integrating it into the 
decision-making processes (Schneider, 2003). There 
are clear limitations regarding how much of the 
uncertainty can be reduced by improving the state of 
knowledge of the climate system, since there 
remains the uncertainty about the emissions which is 
more a result of political and economic decisions 
that do not necessarily obey natural laws. 

Therefore, we propose that the modern view of 
climate modelling and decision-making should 
become more tolerant to uncertainty because it is a 
feature of the real world (Klir and Elias, 2002). 
Choosing a modelling approach that includes 
uncertainty from the start tends to reduce its 
complexity and promotes a better understanding of 
the model itself and of its results. Science and 
decision-making have always had to deal with 
uncertainty and various methods and even branches 

of science, such as Probability, have been developed 
for this matter (Jaynes, 1957). Important efforts have 
been made for developing approaches that can 
integrate subjective and partial information, being 
the most successful ones Bayesian and maximum 
entropy methods and more recently, fuzzy set theory 
where the concept of objects that have not precise 
boundaries was introduced (Zadeh, 1965). Fuzzy 
logic provides a meaningful and powerful 
representation of uncertainties and is able to express 
efficiently the vague concepts of natural language 
(Zadeh, 1965). These characteristics could make it a 
very powerful and efficient tool for policy makers 
due to the fact that the models are based on 
linguistic rules that could be easily understood. 

In this paper two fuzzy logic models are 
proposed for the global temperature changes (in the 
year 2100) that are expected to occur in this century. 
The first model incorporates the uncertainties related 
to the wide range of emission scenarios and 
illustrates in a simple manner the importance of the 
emissions in determining future temperatures. The 
second incorporates the uncertainty due to climate 
sensitivity that pretends to emulate the diversity in 
modelling approaches. Both models are built using 
the Magicc (Wigley, 2008) model and Zadeh´s 
extension principle for functions where the 
independent variable belongs to a fuzzy set. Magicc 
is capable of emulating the behaviour of complex 
GCMs using a relative simple one dimensional 
model that incorporates different processes e.g. 
carbon cycle, earth-ocean diffusivity, multiple gases 
and climate sensitivity. In our second case we intend 
to illustrate the combined effects of two sources of 
uncertainty: emissions and model sensitivity. It is 
clear that we are leaving out of this paper other 
important sources of uncertainty whose contribution 
would be interesting to explore. The GCMs are, 
from our point of view, useful and very valuable 
tools when it is intended to study specific aspects or 
details of the global temperature change. 
Nevertheless, when the goal is to study and to test 
global warming policies, simpler models much 
easier to understand become very attractive. Fuzzy 
models can perform this task very efficiently. 

2 FUZZY LOGIC MODEL 
OBTAINED FROM IPCC DATA 

The Fourth Assessment Report of the IPCC shows 
estimates of emissions, concentrations, forcing and 
temperatures through 2100 (IPCC, 2007). Although 
there are relationships among these variables, as 
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those reflected in the figure 1 (upper panel), it would 
be useful to find a way to relate emissions directly 
with increases of temperature. A more physical 
relation is established between concentrations and 
temperature because the latter depends almost 
directly upon the former through the forcing terms. 
Concentrations are obtained integrating over time 
the emissions minus the sinks of the GHGs. One 
way of relating directly emissions and temperature, 
could be achieved if the emission trajectories were 
linear and non-intersecting as illustrated in figure 1 
(upper panel). Here, we perform this task by means 
of a fuzzy model, which is based on the Magicc 
model (Wigley, 2008) and Zadeh´s extension 
principle (see Appendix). 

 

 
Figure 1: Upper panel: Emissions scenarios CO2, 
Illustrative SRES and Linear Pathways. (-2) CO2 means -
2 times the emission (fossil + deforestation) of CO2 of 
1990 by 2100 and so for -1, 0, 1, to 5 CO2. All the linear 
pathways contain the emission of non CO2 GHG as those 
of the A1FI. 4scen20-30 scenario follows the pathway of 
4xCO2 but at 2030 all gases drop to 0 emissions or 
minimum value in CH4, N2O and SO2 cases. Lower 
panel: CO2 Concentrations for linear emission pathways, 
4scen20-30 SO2 and A1FI are shown for reference. Data 
calculated using Magicc V. 5.3. 

Using as input for the Magicc model the 

emissions shown in the previous figure we calculate 
the resulting concentrations (figure 1 lower panel); 
forcings (figure 2 upper panel) and global mean 
temperature increments (figure 2 lower panel). 

 

 
Figure 2: Upper panel: Radiative forcings (all GHG 
included) for linear emission pathways and A1FI SRES 
illustrative, the 4scen20-30 SO2 only include SO2. Lower 
panel: Global temperature increments for linear emission 
pathways, 4scen20-30 SO2 and A1FI as calculated using 
Magicc V. 5.3. 

The set of emissions shown in figure 1 (upper 
panel) has been simplified to linear functions of time 
that reach by the year 2100 values from minus two 
times to 5 times the emissions of 1990. The 
trajectories labelled 5CO2 and (-2) CO2 contain the 
trajectories of the SRES. We observe that the 
concentrations corresponding to the 5CO2 and the 
A1FI trajectories, by year 2100 are very close. The 
choice of linear pathways allows us to associate 
emissions to concentrations to forcings and 
temperatures in a very simple manner. We can say 
than any trajectory of emissions contained within 
two of the linear ones will correspond, at any time 
with a temperature that falls within the interval 
delimited by the temperatures corresponding to the 
linear trajectories. This is illustrated for the A1FI 

SIMULTECH�2012�-�2nd�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

520



 

trajectory, in figure 2 (lower panel) that falls within 
the temperatures of the 5CO2 and 4CO2 trajectories. 
We decided to find emission paths that would lead to 
temperatures of two degrees or less by the year 
2100, this led us to the -2CO2, -1CO2 and 0CO2. 
The latter is a trajectory of constant emissions equal 
to the emissions in 1990 that gives us a temperature 
of two degrees by year 2100. 

From the linear representation, it is easily 
deduced that very high emissions correspond to very 
large concentrations, forcings and large increases of 
temperature. It is also possible to say that large 
concentrations correspond to large temperature 
increases etc. This last statement is very important 
because in determining the temperature the climate 
models directly use the concentrations which are the 
time integral of sources and sinks of the green house 
gases (GHG). Therefore the detailed history of the 
emissions is lost. Nevertheless the statement, to 
large concentrations correspond large temperature 
increases still holds. These simple observations 
allows us to formulate a fuzzy model, based on 
linguistic rules of the IF-THEN form, which can be 
used to estimate increases of temperature within 
particular uncertainty intervals. Fuzzy logic provides 
a meaningful and powerful representation of 
measurement of uncertainties, and it is able to 
represent efficiently the vague concepts of natural 
language, of which the climate science is plagued. 
Therefore, it could be a very useful tool for decision 
makers. The basic concepts of fuzzy logic are 
presented in Appendix. 

The first fuzzy model one input one output 
defined for the global temperature change is 
(quantities between parenthesis were used with 
Zadeh’s principle to generate the fuzzy model, the 
number 1 means the membership value (μ) of the 
input variables used in formulating the fuzzy 
model): 

 
1. If (concentration is very low 

(about -2CO2)) then (deltaT is very low 
(1) 

2. If (concentration is low (about -
1CO2)) then (deltaT is low (1) 

3. If (concentration is medium-low 
(about 0CO2) then (deltaT is medium-low 
(1) 

4. If (concentration is medium 
(about 1CO2)) then (deltaT is medium 
(1) 

5. If (concentration is medium-high 
(about 2CO2)) then (deltaT is medium-
high (1) 

6. If (concentration is high (about 
3CO2)) then (deltaT is high (1) 

7. If (concentration is very high 
(about 4CO2)) then (deltaT is very high 
(1) 

8. If (concentration is extremely 
high (about 5CO2)) then (deltaT is 
extremely high (1) 

 
The 8 rules for concentration are based on 8 adjacent 
triangular membership functions (the simplest form) 
corresponding to linear emission trajectories (-2CO2 
to 5CO2). The concentrations were obtained from 
Magicc model and cover the entire range (210 to 
1045 ppmv). The apex of each membership function 
(μ=1) corresponds with the base (μ=0) of the 
adjacent one, as we show below: 

 
    (μ=0, μ=1, μ=0) 
1. -2CO2  (210, 213, 300) 
2. -1CO2  (213, 300, 401) 
3.  0CO2  (300, 401, 513) 
4.  1CO2  (401, 513, 633) 
5.  2CO2  (513, 633, 762) 
6.  3CO2  (633, 762, 899) 
7.  4CO2  (762, 899, 1038) 
8.  5CO2  (899, 1038, 1045) 
 

The global temperature changes were obtained 
through Zadeh’s extension principle applied to data 
from Magicc model. 

From the point of view of a policy maker, a 
fuzzy model as the one represented by the previous 
rules is a very useful tool to study the effect of 
different policies on the increases of temperature. 

The fuzzy rules model can be evaluated by 
means of the fuzzy inference process in such a way 
that each possible concentration value is mapped 
into an increase of temperature value by means of 
the Mamdani’s defuzzification process (see 
Appendix). The resulting increases of temperature at 
year 2100 for each possible concentration (emission 
in the case of our linear model) value (solid line) are 
shown in the upper panel of figure 3. 

The lower panel illustrates the formulation of the 
rules by showing the fuzzy set associated with the 
different classes of concentrations, the antecedent of 
the fuzzy rule, the IF part and the consequent fuzzy 
set temperature, the THEN part. The figure 3 lower 
panel also illustrates the uncertainties of one 
estimation: If the concentration is of 401 ppmv (it 
fires rule number 3) within an uncertainty interval of 
(300 to 513 ppmv) 4 then the temperature increment 
is 1.95 degrees within an uncertainty interval of 
(1.23 to 2.63 deg C) in this case the temperatures 
will have uncertainties of one or two times the 
intervals defined by the expert or the researcher. 
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Figure 3: Fuzzy model based on linguistic rules and 
Zadeh´s principle. Upper panel: increases of temperature 
at year 2100 for each possible concentration (emission in 
the case of our linear model) value (solid line). Lower 
panel: Fuzzy rules associated with the different classes of 
concentrations. (Calculated with MATLAB). 

The fuzzy model is simpler and obviously less 
computationally expensive than the set of GCM’s 
reported by the IPCC. The most important benefit, 
however, is its usefulness for policy-makers. For 
example, if the required increase of temperature 
should be very low or low (-2CO2, -1CO2), then the 
policy-maker knows, on the basis of this model, that 
concentrations should not exceed the class small. 

3 A SIMPLE CLIMATE MODEL 
AND ITS CORRESPONDING 
FUZZY MODEL 

Here, we again use the Magicc model but this time 
we introduce a second source of uncertainty, the 
climate sensitivity. The purpose is to illustrate the 
effects of the combination of two sources of 
uncertainty on the resulting temperatures. The 
climate model is driven by our linear emission paths. 
The relationship between concentrations and 
sensitivity and increases of temperature at year 2100 

is then used to construct a fuzzy model following the 
extension principle of the fuzzy logic approach (see 
Appendix). 

The set of fuzzy rules obtained in this case is the 
following. 

 
1. If (concentration is very very 

low) and (sensitivity is low) then 
(deltaT is low) (1)  

2. If (concentration is very low) 
and (sensitivity is low) then (deltaT 
is low) (1)  

3. If (concentration is very low) 
and (sensitivity is high) then (deltaT 
is med) (1)  

4. If (concentration is medium-low) 
and (sensitivity is low) then (deltaT 
is low) (1)  

5. If (concentration is medium-low) 
and (sensitivity is high) then (deltaT 
is high) (1)  

6. If (concentration is medium) and 
(sensitivity is low) then (deltaT is 
med) (1)  

7. If (concentration is medium) and 
(sensitivity is high) then (deltaT is 
high) (1)  

8. If (concentration is medium-high) 
and (sensitivity is low) then (deltaT 
is med) (1)  

9. If (concentration is medium-high) 
and (sensitivity is high) then (deltaT 
is high) (1)  

10. If (concentration is high) and 
(sensitivity is low) then (deltaT is 
med) (1)  

11. If (concentration is high) and 
(sensitivity is high) then (deltaT is 
high) (1)  

12. If (concentration is medium-low) 
and (sensitivity is med) then (deltaT 
is med) (1) 

 
Note that we have used the same nomenclature as 
before and the very high and extremely high 
concentrations are not considered. 

And the fuzzy sets for the temperature and 
sensitivity are shown in figure 4. We used this figure 
to build the rule above in combination with 6 fuzzy 
sets for concentration similar to those from our first 
model described in section 2:  

 
    (μ=0, μ=1, μ=0) 
1. -2CO2  (100, 213, 300) 
2. -1CO2  (213, 300, 401) 
3.  0CO2  (300, 401, 513) 
4.  1CO2  (401, 513, 633) 
5.  2CO2  (513, 633, 762) 
6.  3CO2  (633, 762, 899) 
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For sensitivity we built 3 triangular fuzzy sets 
corresponding to sensitivity values of 1.5, 3 and 6 
deg C/W/m2, showed below: 

 
    (μ=0, μ=1, μ=0) 
1. 1.5 (low)  (1.5, 1.5, 3.0) 
2. 3.0 (medium) (1.5, 3.0, 6.0) 
3. 4.5 (high) (3.0, 6.0, 6.0) 
 

Similarly, for global temperature change we have 3 
triangular fuzzy sets built with data obtained from 
Magicc model and Zadeh’s extension principle for 
each sensitivity value; the apex of each fuzzy set is 
the value of global temperature change for the 0CO2 
linear emission path according to the value of 
sensitivity, the base of the fuzzy sets range from -
2CO2 to 3CO2 (assuming global temperature 
changes below 6 deg C) for each sensitivity value 
(see figure 4): 

 
   ( μ=0,  μ=1,  μ=0) 
1. Low  (0.07, 1.07, 2.13) 
2. Medium (0.36, 1.98, 3.70) 
3. High  (0.92, 3.27, 5.75) 
 

 
Figure 4: ΔT Global and sensitivity fuzzy sets for six 
linear emission pathways at 2100. The dashed lines show 
the membership functions. 

The Mamdani’s fuzzy inference method is used 
also here as the defuzzification method to compute 
the increase of temperature values. The results are 
shown in figure 5. The upper panel of figure 5 shows 
the surface resulting from the defuzzification 
process. The lower panel illustrates again that for the 
case of a concentration of 401 ppmv and a 
sensitivity of 3 (medium sensitivity) the temperature 
is about 2 degrees within an uncertainty interval of 
(0.36 to 3.70 deg C) where the membership value is 
different from 0. When we compare our previous 
result with this one we find that the answers are very 
close in fact the fall within the uncertainty intervals 
of both. The uncertainty of concentrations and 

sensitivity are respectively (300 to 513 ppmv) and 
(1.5 to 6 deg C/W/m2). The result is to be expected 
since in our first experiment we used the Magicc 
model with default value for the sensitivity and this 
turns to be of 3. 

 

 
Figure 5: Fuzzy model for concentrations and sensitivities. 
Upper panel: ΔT surface. Lower panel: Fuzzy rules. 
(Calculated with MATLAB). 

4 DISCUSSION AND 
CONCLUSIONS 

In this work, simple linguistic fuzzy rules relating 
concentrations and increases of temperatures are 
extracted from the application of the Magicc model. 
The fuzzy model uses concentration values of GHG 
as input variable and gives, as output, the increase of 
temperature projected at year 2100. A second fuzzy 
model based on linguistic rules is developed based 
on the same Magicc climate model introducing a 
second source of uncertainty coming from the 
different sensitivities used by the Magicc to emulate 
more complicated GCMs used in the IPCC reports. 
These kind of fuzzy models are very useful due to 
their simplicity and to the fact that include the 
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uncertainties associated to the input and output 
variables. Simple models that, however, could 
contain all the information that is necessary for 
policy makers, these characteristics of the fuzzy 
models allow not only the understanding of the 
problem but also the discussion of the possible 
options available to them. For example going back 
to the question of stabilizing global temperatures at 
about 2 degrees or less, we can see the fuzziness of 
the proposition; we could estate that we should stay 
well below 400 ppmv by year 2100. The observed 
emission pictured in figure 6 where the IPCC 
scenarios are also shown are contained within A1F1 
and the A1B therefore we could say that they point 
to a temperature increase that will surpass the two 
degrees. In fact to keep temperatures under 2 
degrees we have already stated we should remain 
under 400 ppmv and we are very very close (fuzzy 
concept) to this concentration. 

 
Figure 6: Observed CO2 emissions against IPCC AR4 
scenarios (taken form http://www.treehugger.com/clean-
technology/iea-co2-emissions-update-2010-bad-news-
very-bad-news.html). 
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APPENDIX 

A.1  Fuzzy Logic Basic Concepts 

As Klir stated in his book (Klir and Elias, 2002), the 
view of the concept of uncertainty has been changed 
in science over the years. The traditional view looks 
to uncertainty as undesirable in science and should 
be avoided by all possible means. The modern view 
is tolerant of uncertainty and considers that science 
should deal with it because it is part of the real 
world. This is especially relevant when the goal is to 
construct models. In this case, allowing more 
uncertainty tends to reduce complexity and increase 
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credibility of the resulting model. The recognition 
by the researchers of the important role of 
uncertainty mainly occurs with the first publication 
of the fuzzy set theory, where the concept of objects 
that have not precise boundaries (fuzzy sets) is 
introduced (Zadeh, 1965).  

Fuzzy logic, based on fuzzy sets, is a superset of 
conventional two-valued logic that has been 
extended to handle the concept of partial truth, i.e. 
truth values between completely true and completely 
false.  

In classical set theory, when A is a set and x is an 
object, the proposition “x is a member of A” is 
necessarily true or false, as stated on equation 1, 
 

⎩
⎨
⎧

∉
∈

=
Axfor
Axfor

xA
0
1

)(  (1)
 

whereas, in fuzzy set theory, the same proposition is 
not necessarily either true or false, it may be true 
only to some degree. In this case, the restriction of 
classical set theory is relaxed allowing different 
degrees of membership for the above proposition, 
represented by real numbers in the closed interval 
[0,1], i.e. [ ]1,0: →XA  . Figure A.1 presents this 
concept graphically. 

 
Figure A.1: Gaussian membership functions of a 
quantitative variable representing ambient temperature. 

Figure A.1 illustrates the membership functions 
of the classes: cold, fresh, normal, warm, and hot, of 
the ambient temperature variable. A temperature of 
23°C is a member of the class normal with a grade 
of 0.89 and a member of the class warm with a grade 
of 0.05. The definition of the membership functions 
may change with regard to who define them. For 
example, the class normal for ambient temperature 
variable in Mexico City can be defined as it is 
shown in figure A.1. The same class in Anchorage, 
however, will be defined more likely in the range 
from -8°C to -2°C. It is important to understand that 
the membership functions are not probability 
functions but subjective measures. The opportunity 
that brings fuzzy logic to represent sets as degrees of 
membership has a broad utility. On the one hand, it 

provides a meaningful and powerful representation 
of measurement uncertainties, and, on the other 
hand, it is able to represent efficiently the vague 
concepts of natural language. Going back to the 
example of figure A.1, it is more common and useful 
for people to know that tomorrow will be hot than to 
know the exact temperature grade. 

At this point, the question is, once we have the 
variables of the system that we want to study 
described in terms of fuzzy sets, what can we do 
with them? The membership functions are the basis 
of the fuzzy inference concept. The compositional 
rule of inference is the tool used in fuzzy logic to 
perform approximate reasoning. Approximate 
reasoning is a process by which an imprecise 
conclusion is deduced from a collection of imprecise 
premises using fuzzy sets theory as the main tool. 

The compositional rule of inference translates the 
modus ponens of the classical logic to fuzzy logic. 
The generalized modus ponens is expressed by: 
 

Rule:   If  X  is  A  then  Y  is  B 
Fact:    X  is  A' 
Conclusion:  Y  is  B' 

 

where, X and Y are variables that take values from 
the sets X and Y, respectively, and A, A' and B, B' 
are fuzzy sets on X and Y, respectively. Notice that 
the Rule expresses a fuzzy relation, R, on X x Y. 

Then, if the fuzzy relation, R, and the fuzzy set 
A' are given, it is possible to obtain B' by the 
compositional rule of inference, given in equation 2, 
 

[ ]),(),('minsup)(' yxRxAyB
Xx∈

=  (2)
 

where sup stands for supremum (least upper bound) 
and min stands for minimum. When sets X and Y 
are finite, sup is replaced by the maximum operator, 
max. Figure A.2 illustrates in a simplified way the 
compositional rule of inference graphically. 

 
Figure A.2: Simplified graphical representation of the 
compositional rule of inference. 
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The compositional rule of inference is also useful 
in the general case where a set of rules, instead of 
only one, define the fuzzy relation, R. 

A.2 Extension Principle 

Zadeh says that rather than regarding fuzzy theory as 
a single theory, we should regard the conversion 
process from binary to membership functions as a 
methodology to generalize any specific theory from 
a crisp (discrete) to a continuous (fuzzy) form. The 
extension principle enables us to extend the domain 
of a function on fuzzy sets, i.e., it allows us to 
determine the fuzziness in the output given that the 
input variables are already fuzzy. Therefore, it is a 
particular case of the compositional rule of 
inference. Figure A.3 gives a first idea of the 
extension principle showing an example of two input 
variables with 3 fuzzy sets each. 

 
Figure A.3: Extension principle example for two input 
fuzzy variables A and B with 3 fuzzy sets each. 

The extension principle is applied to transform 
each fuzzy pair (Ai, Bj), in a fuzzy set of the C 
output variable. Notice that in the example of figure 
A.3 we have 9 pairs of fuzzy input sets and, 
therefore, 9 fuzzy sets are obtained representing the 
conclusion as shown in the right hand side of figure 
A.3. The extension principle when two input 
variables are available is presented in equation 3. Ck 
is the kth output fuzzy set extended from the two 
input fuzzy sets Ai and Bj. In the example at hand, as 
illustrated in figure A.3, the extension principle is 
applied 9 times, to obtain each of the output fuzzy 
sets associated to each fuzzy input pair. 
 

( , )
max min ,

k i j
k i jC f A B

C A B
=

⎡ ⎤= ⎣ ⎦  (3)
 

For instance, the output fuzzy set C9, is obtained 
when using the extension principle of equation 3 
with the input fuzzy sets A1 and B3 (Klir and Elias, 
2002); (Dubois and Prade, 1980); (Ross, 2004). 
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