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Abstract: This paper deals with capacity planning studies in intensive care units (ICU). Our aim is to provide a 

framework in which the discharge policy from an ICU can be modelled and included in a simulation model. 

This is a very unique contribution of this research. We highlight the influence of the assumed policy in the 

ICU quality of service. A high quality of service means a low percentage of rejected patients and a length of 

stay in the ICU as long as necessary for the patient recovery. We introduce a parameterized set of rules to 

mathematically model the discharging decisions made by the physicians of an ICU. Then we present a 

sensitivity study carried out for the ICU of the Hospital of Navarra in Spain. The set of discharge policies is 

represented in the space of the performance measures to distinguish efficient from no efficient policies. 

Finally, the sensitivity analysis is extended, firstly, by considering variation in the number of beds and, then, 

by varying the patient arrival ratio. 

1 INTRODUCTION 

The Intensive Care Unit (ICU) is a key area within 

hospitals caring for critically ill patients. The beds 

and the specialized staff of an ICU are costly 

resources and then the ICU managers should balance 

the contradictory goals of providing a high quality 

health service and minimizing the operating costs. 

Simulation has been widely used to tackle 

health-care system management and operation 

problems. Recent reviews dealing with the 

application of simulation modeling in health care 

can be found in (Brailsford et al., 2009), (Eldabi et 

al., 2007), (Günal and Pidd, 2010), and (Katsaliaki 

and Mustafee, 2010). Many studies use simulation to 

analyze hospital capacity and bed allocation, but 

only a few deal specifically with ICUs. Among these 

Kim et al., in a series of papers (1999, 2000 and 

2002), developed a simulation model of an ICU in 

Hong Kong to study the unit’s capacity utilization 

and the quality of care provided to its patients. They 

also considered, (Kim et al., 2000), the conflict 

between ICU physicians and the operating surgeons 

when these last ones proposed to reserve some ICU 

beds exclusively for elective surgery. Authors used 

the simulation model to explore the implications of 

these bed-reservation strategies. In (Kim and 

Horowitz, 2002) the analysis is extended by using a 

daily quota system for the elective surgery together 

with the knowledge of a 1-week or 2-week 

scheduling window. Similarly, (Kolker, 2009) also 

developed a simulation model to determine the 

maximum number of elective surgeries per day that 

should be scheduled in order to reduce diversion of 

an ICU to an acceptable low level. 

(Litvack et al., 2008) analysed the bed capacity 

problem in the ICUs of several hospitals in a region 

on the Netherlands. They proposed a cooperative 

solution that is found by a mathematical method 

inspired by overflow models in telecommunication 

systems. Simulation is only used here to assess the 

quality of the provided solution. 

(Ridge et al., 1998) developed a simulation 

model for bed planning in an ICU. They studied the 

relationship between the number of beds and the 

percentage of patients that have to be transferred 

because of lack of bed space. The authors performed 

a sensitivity analysis by varying the number of ICU 

beds but also by considering different admission 

rules by varying the planned patients deferral 

periods and by changing the number of beds 

reserved for emergency admissions.  

They also pointed out that the “early discharge” 

of the more able patients to alternative wards is a 
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solution commonly adopted to cope with insufficient 

number of ICU beds. Nevertheless, they did not 

included an “early discharge” operating rule within 

the model. Costa et al. (2003) extended these models 

and discuss detailed mathematical models for the 

number of beds required by an ICU to meet its own 

individual workload. 

In the medical specialized literature we also find 

studies reporting that admissions and discharges are 

triaged when enough beds are not available (e. g., 

(Snuff et al. 2004) and (Costa et al. 2003)). As a 

consequence, the number of patients who are 

rejected from admission increases and the length of 

stay gets shortened. 

The aim of the research presented in this paper is 

to provide a framework in which the discharge 

policy from an ICU can be modeled and used in a 

capacity planning study by using simulation. We 

will highlight the influence of the assumed policy in 

the ICU quality of service. We identify two 

dimensions for this quality of service: the first one    

-of a social character- is the percentage of 

population that can benefit from it when needed. The 

second one -of an individual character- is the degree 

of recovery reached by a patient when is discharged 

from the ICU. A high quality of service means a low 

percentage of rejected patients and a length of stay 

(LoS) in the ICU as long as necessary. 

The paper is organized as follows. Section 2 

describes the mathematical modelling of the 

discharging decisions made by the physicians of the 

ICU. In section 3 we present a sensitivity study 

carried out for the ICU of the Hospital of Navarra in 

Spain. We introduce the performance measures to be 

considered and represent the set of discharge 

policies in the space of the performance measures to 

distinguish efficient policies from no efficient ones. 

Then the sensitivity analysis is extended, firstly, by 

considering variation in the number of beds and, 

secondly, by varying the patient arrival ratio. 

Finally, we end the paper with a section of 

conclusions and final remarks about the usefulness 

of our approach. 

2 MATHEMATICAL 

MODELLING OF 

DISCHARGING DECISIONS 

Decisions made by the ICU doctors concerning the 

discharge of patients have the ultimate purpose of 

controlling the level of bed occupancy in the ICU, 

by balancing the full recovery of the current patients 

and the bed availability for future ones. Then any 

ICU mathematical model, in general, and simulation 

model, in particular, developed to be used in the 

study of the bed capacity problem should include 

this doctor’s ability to control the number of 

occupied beds.  

In (Mallor and Azcárate, 2012) it is showed that 

it is crucial to incorporate the management decisions 

made by the clinical staff to obtain valid ICU 

simulation models. Discharge decisions are made in 

order to keep the number of occupied beds in levels 

neither too high (to compromise the incoming of 

new patients) nor too low (to “waste” expensive 

resources). Depending on the clinical situation of the 

patient and on the bed occupation rate at that 

moment, the discharge of a patient may be slightly 

advanced or delayed if considered safe to do it. 

Furthermore, there is no written protocol to 

automatically determine the patient discharge time; 

these decisions are subject to the judgment of the 

intensive care consultant. From a mathematical point 

of view, this means that the state of “enough 

recovery” of a patient to safely leave the ICU is not 

a discrete event that can be easily identified on the 

time axis but an ambiguous time interval subject to 

the intensive care physician assessment. 

We took into account these considerations to 

model the discharge decision of a patient depending 

on the bed occupancy level. Specifically, we 

consider two kinds of discharge rules. These rules 

are based on the idea that the recovery of a patient is 

a continuous process that leads to its ICU discharge 

in a time that take values in an interval of admissible 

values (see Figure 1). The main idea is to compare 

the time already spent in the ICU, TS, with regard to 

the length of stay, LoS, which was simulated for 

each one of the patients occupying an ICU bed. We 

define the LoSR (LoS ratio) as TS/LoS. Then, 

 if bed occupancy level i is high and the time 

already spent in the ICU is sufficiently high 

(specifically, if (1- LoSR) is less than a value 

PRi% and (LoS-TS) less than DRi days), a 

patient leaves the ICU in advance (the one in 

the best health condition, which means the one 

with the greatest LoSR).  

 

Figure 1: Patient recovery and ICU discharge. 
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 if bed occupancy level i is low then the LoS of 

a patient is increased in one day with certain 

probability, PIi. There is a maximum of days 

DEi that the LoS of a patient can be extended. 

These rules can be identically defined for all type 

of patients or they can be different for different 

groups of patients. For example, we could 

distinguish the group of programmed-surgery 

patients -usually whit a short LoS- and consider that 

it can only be shortened in one day with certain 

probability PCi when bed occupancy level is i. 

These set of rules defines infinite management 

policies for the ICU: one for each set of parameter 

values. To choose the rule that better fit the decision 

making process in the ICU, in (Mallor and Azcárate 

2012), we formulated an optimization problem with 

the aim of matching as much as possible the output 

of the simulation with the ICU historical data (see 

Figure 2).  

The decision variables are the parameters PR, 

DR, PI, DE and PC above defined. Constraints 

represent realistic monotonous relationships into 

each set of parameters and upper bounds for their 

values (uPR, uDR, uPI, uDE and uPC). The number 

of ICU beds is denoted by n and by k1 and k2 the 

boundaries for low and high occupancy levels, 

respectively. We set as objective function to 

minimize the squared differences of both occupancy 

bed frequency distributions: the one observed in the 

real ICU, real_freq(i), and the one obtained from the 

simulation output, simul_freq(i). The proposed 

optimization problem can be solved by combining 

simulation and optimization techniques. The 

optimizer produces a sequence of solutions whose 

performance is tested in the simulator. 

 

Figure 2: Optimization problem to determine the 

parameter values of the medical management rules. 

3 SENSITIVITY ANALYSIS 

The discharge policy is influenced by the occupancy 

level which also depends on the bed availability and 

the input rate of patients. Then a bed capacity study 

should take into account variability in management 

policies. We show in this section that main 

performance measures greatly depend on the 

adopted policy. 

3.1 Case Study. Parameterization of 
The Rules 

In a first step of our research we developed a 

simulation model that included the representation of 

the medical decisions made at the ICU of the 

Hospital of Navarre, in Spain, following the 

methodology presented in Section 2.  

The Hospital of Navarra is a general public 

hospital with reference specialties in the Community 

of Navarra (Neurosurgery, cardiac surgery, vascular 

surgery, oncology, infectious diseases, etc.). It has 

483 beds, 2015 members of staff and 10 surgery 

rooms. The ICU of this hospital has 20 beds and 86 

physicians and nurses. It receives patients from 3 

sources (emergency, operating theatre and ward). 

A thorough data analysis was conducted to 

obtain good statistical models for the arrival pattern 

and LoS of each of the 8 groups of patients 

considered. The necessary data for the statistical 

estimation were recorded and provided by the 

Hospital administration. We used two files: a patient 

file and a bed occupancy file, containing 9 years of 

data. The patient file includes all records of patients 

attended in the ICU.  For each patient the following 

variables are known: age, arrival date, illness group 

(8 groups were considered), output date, APACHE 

(illness severity), infections in the ICU, and exitus 

(recovered or died). The bed occupancy file records 

the number of occupied beds at 4 p.m., each day. It 

was used to validate the simulation model. 

Cardiac surgery patients are special patients in 

the performance of this ICU and represent 1/3 of the 

total amount of patient arrivals.  

We simulate the ICU model under different rules 

to analyse their influence in a set of performance 

measures. In order to make an easier comparison of 

the results we simplify the structure of values that 

can take the decision rule’s parameters. We 

distinguish two levels for the state of high bed 

occupancy:  

 moderate high occupancy (75%-85%): when 

there are a number of occupied beds from 15 

to 17. It is denoted by level h1, and 

 very high occupancy (+85%): when there are a 

number of occupied beds from 18 to 20. It is 

denoted by level h2. 

Low occupation levels are also reduced: level l1 

from 1 to 8 beds, and level l2, from 9 to 13 beds.  
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In the presentation of the results we focus on the 

decisions concerning the situation of high 

occupancy, because they are more difficult to 

manage and more important for the patient health. 

We consider the following parameters related with 

early discharges: 

 PChj: the probability of reduction in 1 day the 

LoS of cardiac surgery patients, with normal 

post-surgery evolution, when bed occupancy 

level is hj, for j=1,2.   

 PRhj: the percentage of reduction in LoS when 

bed occupancy level is hj, for j=1,2.  

 DRhj: upper limit for the reduction in the 

number of LoS days when bed occupancy 

level is hj, for j=1,2. 

Observe that the last four parameters do not 

affect to cardiac surgery patients, with normal post-

surgery evolution.  

Consequently, an early discharge policy is 

described by a vector of 6 values: two for the cardiac 

surgery patients and four for the other patient 

groups. 

We also consider the following four parameters 

related with extended discharges: 

 PIlj: the probability of one-day increase in LoS 

when bed occupancy level is lj, for j=1,2. 

 ERlj: upper limit number of LoS days 

increased when bed occupancy level is lj, for 

j=1,2. 

3.2 Efficient Discharge Policies 

Two are the main objectives of an ICU: it should 

provide service to all patients that can benefit from it 

and it should provide a full service to all admitted 

patients. The first objective means that no patient 

should be rejected because the ICU is full and the 

second one means that no LoS should be reduced, 

risking a full recovery, because the occupied bed is 

needed. Based in these two objectives, two 

performance measures can be defined: 

 percentage of rejected patients.  Emergency 

patients arrive at random and they are 

transferred to other hospitals -which is no 

desirable- if they cannot be immediately 

admitted. In the past, the lack of beds caused 

to postpone surgeries. Nowadays, no surgery 

is canceled due to the lack of operating rooms, 

and the patients are also transferred to other 

health facilities in the region, if necessary.  

 percentage of shortened days. To calculate 

this measure the truncated LoS and the “ideal” 

LoS for each patient should be known. This 

information is not included in ICU databases. 

At least this is not reported in the literature 

neither the ICU of the Hospital of Navarra 

records it. Nevertheless, this information is 

collected from the simulation model, because 

a LoS -which is considered as the “ideal” LoS 

- is simulated from the estimated statistical 

model, when a patient is created. The 

performance measure is obtained as the ratio 

of the sum of the shortened days for all 

patients to the sum of the LoSs of all patients. 

To conduct the sensitivity analysis, we vary the 

value of some parameters into different ranges while 

other parameters have a fixed value. Varying and 

fixed parameters are included in tables 1 and 2, 

respectively.  

Table 1: Set of variation for parameters PRhj and PChj. 

Parameters Set of values 

PRhj for j=1,2 0, 5, 10, 15, 20 

PChj  for j=1,2 0, 10, 20, ... , 90, 100   

Table 2: Parameters with fixed values. 

Parameters Fixed values 

DRh1 2   

DRh2 3 

PIl1 0 

PIl2 15 

ERlj for j=1,2 2 

Observe that monotonicity conditions imply that 

PCh2 >= PCh1 and PRh2 >= PRh1. This leads to 

15x66=990 different combinations of values for 

parameters PRh1, PRh2, PCh1 and PCh2. Each 

combination denoted by (PRh1, PRh2, PCh1, PCh2) 

defines a different discharge policy. For example, (5, 

10, 30, 60) means that in case of occupancy level 

from 15 to 17, with probability 0.3, the LoS of a 

cardiac surgery patient is shortened in one day 

while, for the rest of patients, in a maximum of 5%. 

In case of bed occupancy level from 18 to 20, the 

probability of one-day reduction increases to 0.6 and 

the maximum of LoS reduction increases to 10%.  

For each scenario, 100 replications of 50-year 

simulation experiments were run, with a 3-year 

warm-up period. 

Figure 3 shows the representation of the 990 

different discharge policies in the objective space. 

Policies are grouped by the values of the PRhj 

parameters defining the discharge for a general 

patient (that is, a patient of any other group different 

of   cardiac    surgery).   We   see   that  the  set of all 
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Figure 3: Discharge policies for the present situation: 20 beds. 

policies approximately fills a triangle and also the 

policies within each group. We can analyse the 

trade-off between both objectives. The policy (0, 20, 

0, 100) located in one of the corners provides a 

percentage of 1.5% of rejected patients and a 

percentage of shortened stay of 1.8%. Any 

movement from this policy to other policy to get a 

reduction of the rejected patients implies a sharp 

increase in the shortened stay: from the point (1.8, 

1.5) (associated to policy (0, 20, 0, 100)) to the point 

(4.9, 1.4) (associated to policy (20, 20, 100, 100) in 

the right corner) there is a line of slope -0.03, over 

which is located a piece of the Pareto frontier. Then 

for each unit added to the percentage of shortened 

stay the percentage of rejected patients is reduced 

only by 0.03 units. Reasoning in the same way, by 

using the policy (0, 0, 0, 0), located in the upper 

corner and with associated point (3.3, 0), we get that 

reducing by one unit the percentage of shortened 

stay implies to increase, approximately (and in the 

best of the cases) by one unit the percentage of 

rejected patients. Figure 4 shows the same graphical 

representation of Figure 3 but now distinguishing 

among efficient and no efficient policies. There are 

98 efficient policies, which are included in table 3 

(see appendix). 

 

Figure 4: Discharge policies: efficient vs. no efficient. 

3.3 Bed Capacity Analysis: Increase in 
the Number of Beds 

Simulation models in health care are frequently used 

to assist decision makers in capacity analysis, that is, 

the optimal number of resource units to achieve a 

determined objective. We have seen in the previous 

subsection that the management policy is critical to 

reach the desired levels for each objective when 

there are conflicting objectives. 
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We know that the answer of a what if question of 

type, “what is the performance of the ICU when one 

bed is added?”, will depend on the discharge policy 

applied by the medical staff. To answer this question 

we have adapted the decision rules to the case of 21 

beds. The moderate high occupancy level h1 is now 

defined when there are a number of occupied beds 

from 16 to 18 and the very high occupancy level, h2, 

when there are a number of occupied beds from 19 

to 21. The set of parameters for the rules does not 

change but we reduce the number of possible values 

for the percentage of shortened stay to 3: {0, 10, 

15}. The number of policies tested is 396.  

We obtain a structure for the representation of 

the policies in the objective space similar to the case 

of 20 beds. Figure 5 compares both sets of efficient 

solutions. We observe that the efficient frontier for 

the 21- bed case is almost a translation of the 

efficient frontier for the 20-bed case. Each policy 

with 21 beds dominates the equivalent with 20 beds. 

That is, when the resource is increased and the same 

policy is applied then both objectives are improved 

at the same time. In both cases, in the corner, is the 

policy (0, 20, 0, 100). Its associated point in the 21-

bed case, is (1.24, 0.95) and the objective values 

reached by the policies (0,0,0,0) and (20, 20, 100, 

100) are (0, 2.23) and (3.73, 0.83), respectively. 

Then when we moved out of (0, 20, 0, 100), per each 

unit of improvement in the shortened stay, we need 

to increase approximately by one unit the percentage 

of rejected patients. And conversely, if we wish to 

improve the 0.95% rejected patients we would 

worsen the shortened stay in one unit to get a 

decrease of 0.05 in the rejected percentage. 

3.4 Bed Capacity Analysis: Increase in 
the Arrivals Rate and the Number 
of Beds 

When the capacity analysis is done to determine the 

resources needed to provide a service in the future it 

is necessary to include in the model a prediction of 

the future demand.  

In this subsection we study the performance of 

the ICU under the hypothesis that the patient’s 

arrival ratio is increased due to the increase and the 

aging process of the population. We consider three 

different scenarios: increments of 5%, 10% and 15% 

in the arrivals rate. These three scenarios are studied 

with both the current capacity and the increased 

capacity to 21 beds. Figure 6 shows the 6 Pareto 

frontiers. We observe a shape for these frontiers 

similar to the one we found in the analysis of the 

present arrival rate case. Again in the corner is the 

policy (0, 20, 0, 100) and the trade-offs between 

objectives keep similar proportions to those found in 

section 3.2 and 3.3. The efficient frontier 

corresponding to a stress of 1.05 and 21 beds is 

similar to the results found for 20 beds in the present 

arrival rate. This is because both the service capacity 

and the service demand are increased by a 5%. This  

 

Figure 5: Efficient policies for the ICU with 20 and 21 beds. 
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Figure 6: Efficient policies for the ICU with different levels of stress in the arrival rates (20 and 21 beds). 

argument also justifies the closeness of frontiers 

corresponding to scenario 20 beds and stress 1.05 

and scenario 21 beds and stress 1.10.  

4 CONCLUSIONS AND FINAL 

REMARKS 

In this paper we have shown that a bed capacity 

analysis in an ICU requires the consideration of the 

discharge policy that is applied by the medical staff. 

The main effect of this management policy is a 

reduction in the LoS of some patients. Then the 

percentage of total shortened stay is considered as a 

performance measure to catch the degree of 

intervention of the medical staff when there is a high 

pressure due to lack of beds. This new measure is 

studied together with the traditional performance 

measure of percentage of rejected patients. 

The doctors can find useful the representation of 

the discharging policies in the space of goals to learn 

about the trade-off between objectives that can be 

achieved by modifying the parameters of the rules. 

These rules can be interpreted and used by the 

doctors as bench marks for their own decision 

processes. This constitutes a normative approach to 

the discharging policies in the sense that it indicates 

how  to  proceed  to   get certain  levels  of quality of 

service. 

We have also simulated the ICU under the rules 

estimated according to the methodology exposed in 

section 2, that is, under the rules that better describe 

the decision process in the real ICU. The 

representation of the results in the space of goals 

showed that the point is very close to the Pareto 

frontier; specifically, it is located close to the corner 

point, in the upper part. Thus, we can conclude that 

the medical staff makes decisions almost efficiently 

according to both objectives.  
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APPENDIX 

In table 3, we include the 98 efficient discharge 
policies obtained when considering the 20-bed ICU 
with the present patient arrival ratio. Each policy is 
represented by a vector with four components: 
(PRh1, PRh2, PCh1, PCh2). 

Table 3: Efficient discharge policies. The policies are 

ordered from the top left to the bottom right of the 

objective space. 

0 0 0 0 

0 0 0 10 

0 0 0 20 

0 0 0 30 

0 0 0 40 

0 0 0 50 

0 0 0 60 

0 0 0 70 

0 0 0 80 

0 0 0 90 

0 0 0 100 

0 0 0 80 

0 5 0 0 

0 5 0 50 

0 5 0 60 

0 5 0 70 

0 5 0 80 

0 5 0 90 

0 5 0 100 

Table 3: Efficient discharge policies. The policies are 

ordered from the top left to the bottom right of the 

objective space (cont.). 

0 5 10 100 

0 5 0 80 

0 10 0 0 

0 10 0 10 

0 10 0 20 

0 10 0 30 

0 10 0 40 

0 10 0 50 

0 10 0 60 

0 10 0 70 

0 10 0 80 

0 10 0 90 

0 10 0 100 

0 10 10 100 

0 10 0 80 

0 15 0 0 

0 15 0 10 

0 15 0 20 

0 15 0 30 

0 15 0 40 

0 15 0 50 

0 15 0 60 

0 15 0 70 

0 15 0 80 

0 15 0 90 

0 15 0 100 

0 15 0 80 

0 20 0 30 

0 20 0 40 

0 20 0 50 

0 20 0 60 

0 20 0 70 

0 20 0 80 

0 20 0 90 

0 20 0 100 

0 20 10 100 

0 20 20 100 

0 20 30 100 

0 20 40 100 

0 20 50 100 

0 20 60 100 

0 20 70 100 

0 20 0 80 

0 20 80 100 

0 20 90 100 

0 20 100 100 

5 20 10 100 

5 20 30 100 

5 20 60 100 

5 20 70 100 

5 20 80 100 

5 20 90 100 

5 20 100 100 

10 20 40 100 

10 20 50 100 

10 20 60 100 

10 20 70 100 

10 20 80 100 

10 20 90 100 

10 20 100 100 

15 20 0 100 

15 20 10 100 

15 20 20 100 

15 20 30 100 

15 20 40 100 

15 20 50 100 

15 20 60 100 

15 20 70 100 

15 20 80 100 

15 20 90 100 

15 20 100 100 

20 20 0 100 

20 20 20 100 

20 20 30 100 

20 20 40 100 

20 20 50 100 

20 20 60 100 

20 20 80 100 

20 20 90 100 
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