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Abstract: The research presented in this paper is focused on the study and development of fuzzy inductive reasoning 
models that allow the forecasting of daily particulate matter with diameter of 2.5 micrometres or less 
(PM2.5). FIR offers a model-based approach to modelling and predicting either univariate or multivariate 
time series. In this research, predictions of PM2.5 concentration at hour 12 of the next day, in the downtown 
of Mexico City Metropolitan Area, are performed. The data were registered every hour and include missing 
values. In this work the hourly modelling perspective is analyzed. The results are compared with the ones 
obtained using persistence models showing that the FIR models are able to predict PM2.5 concentrations 
more accurately than persistence models. 

1 INTRODUCTION 

The high levels of particulate matter in the air are of 
high concern since they may produce severe public 
health effects and are the main cause of the 
attenuation of visible light. There are very high 
levels of particles in North Africa, much of the 
Middle East, Asia, Latin America as well as in the 
large urban areas. Comparing it with population 
density maps, the WHO concluded that more than 
80% of the world population is exposed to high 
levels of fine particles (PM2.5) (WHO, 2006). 
Likewise, identifies PM2.5 as an important indicator 
of risk to health and might also be a better indicator 
than PM10 for anthropogenic suspended particles in 
many areas (van Donkelaar et al., 2010). According 
to the WHO Guidelines, concentrations at this level 
and higher are associated with an approximately 
15% increased risk of mortality, relative to the Air 
Quality Guideline (AQG) of 10 μg m-3 (WHO, 
2006).  

Regarding the PM2.5, it has not yet been 
identified a threshold below which damage to health 
does not occur, this has motivated that the limits for 
the protection of public health are getting lower 
every year. The geographical characteristics of the 
Mexico city metropolitan area, i.e. its height, 
average temperature and terrain, added to the 
pressure exerted by the growth and intensification of 
urban activities cause high air pollution episodes that 

constitute a permanent challenge to the health of its 
inhabitants. Although the measures taken over the 
past 15 years to reduce the impact of air pollution 
have managed to significantly decrease pollutants 
such as SO2, CO or the Pb, the concentrations of 
ozone and fine particles exceed quite often air 
quality standards. 

The monitoring of PM2.5 from 2004 to date 
shows that around 20 million people in Mexico city 
are exposed to annual average concentrations of this 
contaminant in between 19 and 25 μg m-3, exceeding 
by more than double the WHO standard of 10 μg m-3 
and substantially exceeding the Mexican norm of 15 
μg m-3. 

The increase of the concentration of particles in 
Mexico city is strongly associated with the 
meteorology of the Valley. During the days of 
intense wind, resuspension of dust from the ground 
produces significant increases in the concentrations 
of total suspended particles (PST) and particles 
lower than 10 μm (PM10). The presence of surface 
thermal inversions can contribute to the increase in 
the concentration of particles smaller than 10 μm 
and fine particles, due to the lack of dispersion and 
the accumulation in the atmosphere of the particles 
emitted by vehicles and industry. Higher 
concentrations usually occur when the layer trapped 
under the inversion is not very high and the duration 
of the thermal inversion is maintained throughout 
the morning. 
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The national weather service reported a total of 
107 days with surface thermal inversions during 
2010, the highest in the past 13 years. The largest 
part was recorded during the winter months, when 
the long and cold nights favor its formation. In the 
dry season months it has been reported a 40% of 
days with thermal inversion. The months of April 
and December had the largest number of events with 
16 and 17 days, respectively. The influence of high 
pressure systems during the months of March to 
May was responsible for the formation of surface 
thermal inversions (NWM, 2012). 

In this research we propose predictions models 
of hourly concentrations of PM2.5, based on data 
obtained at downtown Mexico city. We show results 
obtained with two different methods, all of which 
use past values of PM2.5 as input. The simplest 
method is persistence, which assigns hourly values 
on the next day equal to the values at the present 
day. Then we used the fuzzy inductive reasoning 
approach that is a non-linear methodology based on 
fuzzy logic and pattern recognition. We used 
registered data of 4 year periods, each lasting six 
months starting on December 1st. As explained 
before, the months from December to May are the 
ones that have higher levels of PM2.5 concentrations 
in Mexico city metropolitan area.  

In section 2 some basic concepts of the fuzzy 
inductive reasoning approach are introduced. In 
section 3 the methodology used is described, i.e. the 
data, the fuzzy models development and the models 
evaluation. Section 4 describes the results obtained. 
Finally the conclusions of this research are given. 

2 FUZZY INDUCTIVE 
REASONING (FIR) 

The conceptualization of the FIR methodology 
arises of the General System Problem Solving 
(GSPS) approach proposed by Klir (Klir and Elias, 
2002). This methodology of modeling and 
simulation is able to obtain good qualitative 
relations between the variables that compose the 
system and to infer future behavior of that system. 
It has the ability to describe systems that cannot 
easily be described by classical mathematics or 
statistics, i.e. systems for which the underlying 
physical laws are not well understood.  

The Fuzzy Inductive Reasoning (FIR) 
methodology, offers a model-based approach to 
predicting either univariate or multi-variate time 
series (Nebot et al., 2003); (Carvajal and Nebot, 

1998). A FIR model is a qualitative, non-
parametric, shallow model based on fuzzy logic. 
Fuzzy logic-based methods have not been applied 
extensively in environmental science, however, 
some interesting research can be found in the area 
of modeling of pollutants (Mintz et al., 2005); 
(Ghiaus, 2005); (Morabito and Versaci, 2003); 
(Heo and Kim, 2004); (Yildirim and Bayramoglu, 
2006); (Peton et al., 2000); (Onkal-Engin et al., 
2004), where different hybrid methods that make 
use of fuzzy logic are presented for this task. 

Visual-FIR is a tool based on the Fuzzy 
Inductive Reasoning (FIR) methodology (runs under 
Matlab environment), that offers a new perspective 
to the modeling and simulation of complex systems. 
Visual-FIR designs process blocks that allow the 
treatment of the model identification and prediction 
phases of FIR methodology in a compact, efficient 
and user friendly manner (Escobet et al., 2008). 

The FIR model consists of its structure (relevant 
variables) and a set of input/output relations (history 
behavior) that are defined as if-then rules. Feature 
selection in FIR is based on the maximization of the 
models' forecasting power quantified by a Shannon 
entropy-based quality measure. The Shannon 
entropy measure is used to determine the uncertainty 
associated with forecasting a particular output state 
given any legal input state. The overall entropy of 
the FIR model structure studied, Hs, is computed as 
described in equation 1.  

 

( )s i
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H p i H
∀

= − ⋅∑ , (1)
 

where p(i ) is the probability of that input state to 
occur and Hi is the Shannon entropy relative to the 
ith input state. A normalized overall entropy Hn is 
defined in equation 2. 
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Hn is obviously a real-valued number in the range 
between 0.0 and 1.0, where higher values indicate an 
improved forecasting power. The model structure 
with highest Hn value generates forecasts with the 
smallest amount of uncertainty.  

Once the most relevant variables are identified, 
they are used to derive the set of input/output 
relations from the training data set, defined as a set 
of if-then rules. This set of rules contains the 
behaviour of the system. Using the five-nearest-
neighbors (5NN) fuzzy inferencing algorithm the 
five rules with the smallest distance measure are 
selected and a distance-weighted average of their 
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fuzzy membership functions is computed and used 
to forecast the fuzzy membership function of the 
current state, as described in equation 3.  
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The weights 
jrelw are based on the distances and 

are numbers between 0.0 and 1.0. Their sum is 
always equal to 1.0. It is therefore possible to 
interpret the relative weights as percentages. 

For a more detailed explanation of the fuzzy 
inductive reasoning methodology refer to (Escobet 
et al., 2008). 

3 METHODOLOGY 

3.1 Data 

The data used for this study stems from the 
Atmospheric Monitoring System of Mexico City 
(SIMAT in Spanish) that measures contaminants 
and atmospheric variables from 36 stations 
distributed through the 5 regions of the Mexico 
City metropolitan area (SIMAT, 2012). The 
registered variables are the air pollutants, including 
PM2.5, as well as other 10 contaminants, and 
meteorological variables, 24 hours a day, every day 
of the year. The web page of SIMAT (SIMAT, 
2012) offers a data base with meteorological and 
contaminant registers since 1986 up to date, 
although PM2.5 has been registered for the first time 
in 2004.  

A mechanically oscillated mass balance type 
instrument, TEOM 1400a, is used for the 
registration of the PM2.5. This instrument is very 
sensitive to changes in concentrations of mass and 
can provide accurate measurements for samples 
with less than an hour in length. 

This study is centered on the univariate modeling 
and forecasting of particulate matter with diameter 
of 2.5 micrometres or less (PM2.5) in the Merced 
station, located in the commercial and administrative 
district at the downtown of Mexico City 
Metropolitan Area (MCMA).  

The PM2.5 variable is an hourly instantaneous 
observation, not the maximum or the mean of 
minute registered data. We have chosen to work 
with the scalar time series on PM2.5 concentrations 
keeping in mind the idea that if we use a large 
enough window of data as input, the effect of other 

pollutants or meteorological data should be implicit 
in its structure (Pérez et al., 2000). 

The typical pattern of PM2.5 from some city 
areas, such is for example downtown, suggests that 
concentrations of this contaminant increase regularly 
between 8:00 and 16:00 hours, with maximum 
concentrations around 13:00 hours (Muñoz et al., 
2000). 

Therefore, we have decided to use in this study 
data from the half of the year that Mexico city 
suffers higher PM2.5 concentrations, i.e. from 
December to May. We have used 4 data sets 
containing 6 month of hourly registers each one, 
i.e. from the 1st of December until de 31st of May, 
for years 2007-2008, 2008-2009, 2009-2010 and 
2010-2011. 

 
Figure 1: Hourly concentrations of PM2.5 data for 
December 2009. Units are µg m-3. From the 720 data 
points, 42 are missing values that are not plotted. 

For the first data set, i.e. 1st December 2007 to 
31st May 2008, the average concentration is 31.2 µg 
m-3, the maximum is 147 µg m-3 and the standard 
deviation is 15.6 µg m-3. For the second data set, i.e. 
1st December 2008 to 31st May 2009, the average 
concentration is 26.6 µg m-3, the maximum is 102 
µg m-3 and the standard deviation is 14.3 µg m-3.  

For the third data set, i.e. 1st December 2009 to 
31st May 2010, the average concentration is 20.8 µg 
m-3, the maximum is 101 µg m-3 and the standard 
deviation is 13.4 µg m-3. For the last data set, i.e. 1st 
December 2010 to 31st May 2011, the average 
concentration is 32.5 µg m-3, the maximum is 175 
µg m-3 and the standard deviation is 16.5 µg m-3. 
Fig. 1 shows the hourly concentrations of PM2.5 
during December, 2009. 

The data available contains missing values that 
correspond to data that was not registered due to 
instrument problems. From the total number of 
17496 hourly data registered, 1316 are missing 
values.  
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3.2 Fuzzy Models Development 

As mentioned before, our goal is to obtain FIR 
models capable of forecasting the PM2.5 
concentrations some time in advance, in such a way 
that efficient actions could be taken in order to 
protect the citizens of high concentrations episodes. 

We first performed a study of the 
autocorrelation, both causal and temporal, of the 
PM2.5 time series. To this end, we used the model 
structure identification process of the fuzzy 
inductive reasoning methodology that performs a 
feature selection based on the entropy reduction 
measure, described in section 2. 

We have found that it is possible to relate the 
concentration of PM2.5 at a given time of the day to 
the sequence of 24 points corresponding to the 
hourly concentrations on the previous day. 
Moreover, the structure of the fuzzy inductive 
reasoning model has determined that there is a direct 
causal relation between the level of pollution at 
present time and its values at hours 6, 12, 18 and 24. 
That is, there is a positive correlation at hours 12 and 
24 and a negative correlation at hours 6 and 18.  

With this information available we think that an 
interesting and useful approximation to modeling 
and forecasting PM2.5 concentrations is to obtain a 
model for each hour of the day, based on the values 
of the 6, 12, 18 and 24 hours of the previous day, i.e. 
hourly models.  

In order to study this approach, in this research 
we have developed FIR models for the prediction of 
hour 12 of the next day (FIR-12). The input 
variables of the system are PM2.5 concentration at 
hours 6, 12, 18 and 24. Therefore, we have 4 input 
variables. The output variable is PM2.5 concentration 
at hour 12 of the next day. Therefore, for this FIR 
prediction model, pollutant concentrations are given 
12h in advance. 

We plan to obtain FIR models, in the near future, 
for each hour of the day, i.e. FIR-1 to FIR-24, 
predictions will be made from 1 to 24 h in advance, 
respectively. 

In order to obtain the FIR-12 model it is 
necessary to arrange the data in such a way that we 
have a data stream for each day instead of 24 data 
streams (one for each hour of that day).  

The 4 data sets available have been arranged 
accordingly, obtaining now a total number of 725 
daily data, out of which 220 are missing values. 

In this work a 10-fold cross validation is used to 
assess how the results of the obtained models will 
generalize to an independent data set. The objective 
is to estimate how accurately the predictive models 

developed in this study will perform in practice. As 
described before, 505 data points are available, i.e. 
725 minus 220 missing. Therefore, 10 test sets with 
50 data points and 10 training sets with 450 data 
points are used. 

The first step in order to obtain the FIR-12 model 
is to convert quantitative values in fuzzy data, to this 
end, it is necessary to specify two discretization 
parameters, i.e. the number of classes per system 
variable (granularity) and the membership functions 
(landmarks) that define its semantics. In this study 
the granularity and the clustering method used to 
obtain the landmarks are summarized in table 1. Half 
of the folds are discretized into two classes using the 
fuzzy c-means clustering method. It is not possible 
to use more classes in this case because the number 
of training data (450 points) is not larger enough. 
Other clustering methods such are median linkage, 
k-means and equal frequency partition are also used 
in this study. However, no one of these methods take 
into account the uncertainty associated to the data in 
order to obtain the landmarks parameter. 

Table 1: Interval values (landmarks) associated to each 
class for input and output variables. 

 Number 
classes Clustering method 

FOLD 1, 5, 7, 8, 9 2 Fuzzy C-means 
FOLD 2, 6 3 Equal Frequency Partition 
FOLD 3, 10 2 Median Linkage 

FOLD 4 2 K-Means 
 

The FIR model structure obtained in this case 
may be described using the scheme shown in 
equation 4. 

 

),,,( 2418126 xxxxfy qt =  (4)
 

where yt is the predicted value at time t on the 
following day; xi represent the pollution data on a 
given day at the ith hour; and fq is the qualitative 
relation of the FIR model. We focus this research in 
FIR models for t=12. 

3.3 Model Evaluation 

Two error measures were used to evaluate the 
performance of each of the FIR-12 models. These 
are: the root mean square error and the mean 
absolute error. The root mean square error (RMSE) 
is described in equation 5. 
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where ŷ (t) is the predicted output, y(t) the system 
output and N the number of samples. 

The mean absolute error (MAE) is defined in 
equation 6. 

 

1

1 ˆ( ) ( )
N

i i
i

MAE y t y t
N =

= −∑  (6)

4 RESULTS AND DISCUSSION 

The results obtained by the FIR models are 
compared with the ones obtained when using the 
persistence method. This consist of a very simple 
prediction, i.e. tomorrow at time t PM2.5 mass 
concentration will be the same as today at time t. In 
this case equation 4 takes the form of equation 7. 
 

tt xy =  
(7)

 

Therefore, there are no parameters to adjust. The 
prediction results obtained by FIR and persistence 
models of the PM2.5 contaminant at hour 12 of the 
next day, for each fold, are summarized in table 2. 

Table 2: Prediction errors of each fold separately and its 
average for the PM2.5 concentration series. Predictions are 
at hour 12 of the next day using FIR and persistence 
models. The inputs of the FIR models are PM2.5 at hours 6, 
12, 18 and 24 today. 

 MAE 
FIR 

MAE 
PERS. 

RMSE 
FIR 

RMSE 
PERS. 

FOLD 1 
(1-50) 15.9 19.9 20.9 24.0 

FOLD 2 
(51-100) 13.6 13.7 17.6 18.3 

FOLD 3 
(101-150) 10.8 13.5 14.1 17.1 

FOLD 4 
(151-200) 13.3 14.7 16.8 18.6 

FOLD 5 
(201-250) 9.5 9.8 13.5 14.1 

FOLD 6 
(251-300) 17.0 19.7 21.9 26.8 

FOLD 7 
(301-350) 12.0 10.1 14.7 13.4 

FOLD 8 
(351-400) 19.0 22.1 25.1 31.4 

FOLD 9 
(401-450) 11.9 13.4 15.4 18.1 

FOLD 10 
(451-505) 11.9 13.1 15.5 17.0 

MEAN 
FOLDS 13.5 16.5 17.5 19.9 

 
From table 2 it can be seen that FIR models 

perform much better than persistence, for all the 
folds except for fold 7. Notice, that the range below 
the number of the fold means the set of forecasted 

data. The mean prediction errors are significantly 
lower for the FIR models, i.e. 13.5 vs. 16.5 of MAE 
and 17.5 vs. 19.9 of RMSE. However, the accuracy 
of the predictions produced with the FIR models is 
probably poor in order for the results to have 
practical application in environmental pollution 
policies.  

In order to try to enhance the previous results we 
have considered including meteorological variables 
in the study. Cobourn concludes that the 
meteorological variables that have a nonlinear 
relationship with PM2.5 statistically significant are 
maximum temperature and wind speed. Moreover, 
the strongest single relationship between PM2.5 and 
any one meteorological variable is the relationship 
with daily maximum temperature (Cobourn, 2010). 

Therefore, the next step in our research was to 
study the prediction capability of the models when 
the maximum temperature of the day is also 
considered as an input variable.  

In this case, the number of missing values 
increases and instead of 505 data available we only 
have 481. Therefore, each fold of the 10-fold cross 
validation has now 48 data points.  

The FIR model structure obtained in this case 
may be described using the scheme shown in 
equation 8. 

 

),,,,( 2418126 zxxxxfy qt =  (8)
 

where yt is the predicted value at time t on the 
following day; xi represent the pollution data on a 
given day at the ith hour; z is the maximum 
temperature on a given day; fq is the qualitative 
relation of the FIR model. 

Table 3: Interval values (landmarks) associated to each 
class for input and output variables. 

 Number 
classes 

Clustering method 

FOLD 1, 4, 8, 9 2 Fuzzy C-means 
FOLD 2, 6, 7 2 and 3 Equal Frequency Partition 

FOLD 3 2 Median Linkage 
FOLD 5  2 K-Means 

 
The granularity and the clustering method used 

to obtain the landmarks in this case are summarized 
in table 3. 

Table 4 shows the prediction results obtained by 
FIR and persistence models of the PM2.5 contaminant 
at hour 12 of the next day, for each fold, when the 
inputs of the model are: PM2.5 at hours 6, 12, 18 and 
24 and maximum temperature today. 

As can be seen for the prediction errors of table 4 
the inclusion of today’s temperature as input 
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variable of the model does not enhance substantially 
the accuracy of FIR-12 models. 

Table 4: Prediction errors of each fold separately and its 
average for the PM2.5 concentration series. Predictions are 
at hour 12 of the next day using FIR and persistence 
models. The inputs of the FIR models are PM2.5 at hours 6, 
12, 18 and 24 and maximum temperature today. 

 MAE 
FIR 

MAE 
PERS. 

RMSE 
FIR 

RMSE  
PERS. 

FOLD 1 
(1-48) 

17.1 20.4 21.4 24.4 

FOLD 2 
(49-96) 

11.5 11.4 14.4 15 

FOLD 3 
(97-144) 

11 13.8 13.8 17.7 

FOLD 4 
(145-192) 

12.7 14.5 16.7 18.5 

FOLD 5 
(193-240) 

10.6 9.5 14 14 

FOLD 6 
(241-288) 

16.7 20.5 21.9 27.4 

FOLD 7 
(289-336) 

10.4 10.3 12.7 13.6 

FOLD 8 
(337-384) 

15.9 19.5 21.1 28.8 

FOLD 9 
(385-432) 

11.6 12.7 15.7 17.3 

FOLD 10 
(433-481) 

11.5 13.6 14.3 17.6 

MEAN 
FOLDS 

12.9 14.6 16.6 18.4 

 
PM2.5 is a difficult contaminant to be predicted 

due to the fact that there are significant variations of 
the concentrations of this pollutant from one day to 
the next day, and, from one hour to the next one, 
even with similar weather conditions.  

Previous works have been focused on the 
modelling and prediction of mean (Kang et al., 
2010) or maximum (Cobourn, 2010) PM2.5 
concentrations. Also, there are studies that perform 
binary predictions, i.e. if a dangerous level has been 
reached (Dong et al., 2009). Contrarily, we have 
focused on a short-term PM2.5 forecast, although 
uncertainties in hourly registers pose enormous 
challenges for developing accurate models.   

5 CONCLUSIONS 

In this paper PM2.5 models based on the fuzzy 
inductive reasoning approach were developed for 
downtown Mexico city metropolitan area, to predict 
the concentration of this contaminant at hour 12 of 
the next day. 

The results obtained are better than the 
predictions encountered by persistence models. 

However, we think that the accuracy reached is still 
poor for the results to have practical application in 
environmental policies. 

In order to enhance the predictions the maximum 
temperature has been used as an additional input 
variable. The prediction errors are quite similar to 
the ones obtaind by the FIR models when only PM2.5 
is used. 

As a future work we propose to: 
• Include other meteorological variables into the 
model.  
• Include additional information such are day of 
the week or hour of the day into the models. 
• Develop models for all the hours of the day, in 
such a way that predictions will be from 1 to 24 
hours in advance. 
• Use hybrid modelling techniques such as fuzzy 
inductive reasoning with genetic algorithm, which 
will help to find in an efficient way the number of 
classes and landmarks parameters of FIR 
discretization process. 
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