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Abstract: A Brain Computer Interface (BCI) is a system where a direct connection is established between the brain 
and a computer, providing a subject with a new communication channel. Unfortunately, BCI have many 
drawbacks: signal recording is problematic, brain signatures are non reproducible from individual to 
individual, etc. A dependent-BCI prototype, the BrainPC project, was developed in the SIGMA laboratory. 
Electroencephalographic (EEG) signals collected by a BrainAmp amplifier in responses to flickering light 
stimuli (Steady State Visual Evoked Potentials) are converted into machine-readable commands. This 
system is coupled with a human-machine interface. We propose a solution for fast calibration of the 
automatic detection of SSVEP between experimental subjects. We tested different calibration methods; 
harmonic and electrode selections were shown to be the most efficient methods. 

1 INTRODUCTION 

Brain–Computer Interfaces (BCI) are 
communication systems that enable users to send 
commands to a computer by using only their brain 
activity (Nicolelis, 2011). This activity is generally 
being measured through EEG, which is a 
noninvasive technique for recording brain electrical 
activity at the surface of the scalp. In a BCI, the 
brain signals are recorded and analyzed to extract 
features that represent the messages buried inside the 
EEGs. Then a translation algorithm is needed to 
convert the features to a command which is 
supposed to be sent to the computer or external 
machine. It is through this procedure that disabled 
people can control a computer screen or navigate a 
wheelchair (Wolpaw et al., 2002). SSVEP-based 
BCIs are those BCIs that allow the users to 
communicate with a computer or machine, by 
SSVEP responses that are generated in their brain by 
looking at a repetitive visual stimulus. Steady State 
Visual Evoked Potential (SSVEP) is an oscillatory 
activity in human visual cortex that is phase locked 
to repetitive visual stimulation (Vialatte et al., 2010). 
Studies on developing SSVEP-based BCIs have 

used several algorithms for detecting the SSVEPs. 
Most of the studies in literature identify user’s 
intended target by calculating the frequency 
spectrum analysis of the signal and this is typically 
implemented using the Fourier Transform, 
particularly Fast Fourier Transform (FFT). Detection 
is usually based on considering a threshold for the 
power spectrum at stimuli frequencies (Vialatte et 
al., 2010). There are also other recent studies, 
introducing new methods for detection of SSVEPs. 
(Friman et al., 2007, Lin et al., 2006, Bin et al., 
2009, Zhang et al., 2012) 

For a BCI to have applicability in daily life, it is 
very important to make it work in different 
situations and for different subjects. This is not 
always easy due to the subject variability in the 
spatial patterns and spectrotemporal characteristics 
of brain signals (Volosyak et al., 2010). This subject 
variability makes the pattern recognition part quite 
difficult. For solving this issue, a rather long 
calibration phase is usually added to BCI 
experiments in order to collect EEG data from the 
subject to train the classifier or to adapt the stimuli 
parameters for each subject.  The main problem with 
the calibration phase is the long times it takes for 
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recoding the EEGs. For several applications (e.g. 
video games or neurorehabilitation), a fast 
calibration is necessary. Some previous studies have 
proposed methods for reducing the calibration time 
but most of them require a database of recordings 
from different subjects or several past recordings 
from the same BCI user. Krauledat et al. (2008) 
showed in their study on motor imagery BCI users, 
how predefined spatial filters and classifiers on the 
recorded data of previous training sessions of the 
same user would eliminate the need for a whole 
calibration phase at the beginning of each online 
experiment. To do this, they adjusted the bias of the 
classifier at the beginning of the online experiment. 
However, their good classification results were 
showing the power of their method for session to 
session transfer for the same subject but not for 
inter-subject variability. Lotte (2011) proposed a 
method based on generation of artificial EEG trials 
from the few previous collected trials in order to 
increase the training data set of classifier. 
Generating artificial EEG trials was based on 
segmentation of the data from different trials and 
then concatenating the segments from different trials 
to make new trials. Shishkin et al. (2011) proposed 
to use single stimulus for the calibration phase in a 
P300-based BCI in order to avoid the conflicts of 
non-target stimuli. The performances of their BCI 
system did not deteriorate significantly even when 
trained using a single-stimulus protocol. Wang et al. 
(2006) showed that user variability could be reduced 
by adapting channel, stimulus frequency and speed 
of command detection for each subject. Volosyak et 
al. (2010) compared two calibration methods of 
single LED and multi-target group LED stimuli for 
exploring the best stimulation frequencies. They 
found a strong correlation between the selected 
stimulation frequencies through both methods. They 
concluded they could shorten the calibration time 
significantly by using the multi-target group LED 
stimuli for detecting the best stimuli frequencies.  

We investigate here methods for fast calibration 
of an SSVEP BCI based on selection of the channels 
and dominant frequency between the first and 
second harmonics of stimulation frequency 
independently for each subject. Such a method 
would allow us to use the system directly on new 
subjects, without long calibration times, but 
nevertheless exploiting previously collected data to 
design an optimal classifier. 

2 METHODS 

2.1 Experimental Paradigm 

A virtual phone keypad was used as the interface, 
with 9 digits displayed, each of them were flickering 
with a pre-decied frequency (5.45 , 20, 8.75, 4.62, 
6.67, 7.5, 12, 5 and 4 Hz). The background colour 
was black and the screen refresh rate was 60 Hz. 
This display was was realised using Cogent 
Graphics developed by John Romaya at the LON at 
the Wellcome Department of Imaging Neuroscience. 

 

Figure 1: SSVEP stimulation interface. 

2.2 Data Acquisition 

EEGs were recorded with a BrainAmp amplifier; 
with a sampling rate of the 500 Hz. 16 active 
electrodes were placed over the head, according to 
the 10-20 international system for electrode 
placement. The electrodes covered the frontal, 
temporal and occipital sites (Fp1, Fp2, F3, F4, F7, F8, 
C3, C4, T3, T4, T5, T6, Po1, Po2, O1, O2), with the 
reference and grounds placed in the central positions 
(Fz and Pz).The subjects were told to relax and focus 
during 30 seconds on each command consecutively. 
30 seconds of resting state eyes open were also 
recorded in front of a black screen at the beginning 
of each recording session. 

We recorded 7 subjects. All subjects were young 
adults without any known history or actual brain 
disorder or anomaly.  

2.3 Feature Extraction 

The overall workflow of signal processing is as 
follows: (1) supervised feature extraction, for all 
subjects; (2) calibration, for each subject 
independently; (3) command classification and 
performance evaluation. After having selected a set 
of seven relevant features for the BCI system, we 
use the database collected to evaluate the 
performance of the BCI on new unknown subjects 
(classification is detailed in section 4). We compared 
the results obtained on the raw data, with results 
obtained after calibration of the data (calibration is 
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explained in section 3). When applying calibration, 
it is applied for each subject: the “unknown” test 
subject as well as those used as a training reference 
for the classifier. All the selected features are pre-
processed, for each subject, using these calibration 
techniques. We will now explain the supervised 
feature selection approach used. 

Most BCIs are designed around a pattern 
recognition approach. In an EEG-based BCI, the 
first step is to extract features describing the relevant 
information buried in the EEG signals. They are then 
fed into a classifier which identifies the class which 
these features belong to. For detection of SSVEPs, 
we extracted the following features from the signals: 

Fourier Peak: For detecting the SSVEPs in the 
signal, one first need to transform the time domain 
EEG into the frequency domain using Fourier 
transform. Once it is transformed into frequency 
domain, peaks at stimulation frequency and its 
harmonics are detectable. For detecting these peaks, 
we took the maximum amplitude in the Fourier 
spectrum of the signal at a small margin around each 
stimulation frequency. 

Signal to Noise Ratio Peak: Signal to Noise 
Ratio (SNR) is a measure that depends on the 
frequency f and is computed as the ratio of Fourier 
Power at frequency f and average Fourier power at 
its adjacent frequencies. This is actually a way to 
enhance SSVEP peaks (Wang et al. 2006) and is 
computed according to the following formula:  

Xᇱሺfሻ ൌ 	
୬ଡ଼ሺ୤ሻ

∑ ଡ଼ሺ୤ା୩∆୤ሻ౤/మ
ౡస౩ ା∑ ଡ଼ሺ୤ି୩∆୤ሻ౤/మ

ౡస౩

	, (1) 

where X(f) is the value for Fourier power of a signal 
at the frequency f and X’(f) is the value of the SNR 
at frequency f, and Δf is the frequency step. The 
maximum SNR value at a small margin around each 
stimulation frequency is then defined as the SNR 
Peak.  

We computed Fourier Peak and the SNR Peak 
for occipital, parieto-occipital and Frontal channels. 
(O1, O2, Po3, Po4, F3, F4) 

Magnitude Squared Coherence: Magnitude 
Squared Coherence (MSC) is a measure for 
quantifying the synchronization between two 
signals. This feature is computed between pairs of 
EEG channels to see how similar their power 
spectrums in terms of magnitude are. The magnitude 
squared coherence is a function of the power 
spectral densities (Pxx(f) and Pyy(f))and the cross 
power spectral density (Pxy(f)) of x and y.  

ሺ݂ሻܡܠ۱ ൌ 	
หܡܠ۾ሺ௙ሻห

మ

	ሺ௙ሻܡܡ۾ሺ௙ሻܠܠ۾
	, (2)

We computed this value for the following 
channel pairs: O1- O2, F3-F4, Fp1-O1, Fp2-O2, Fp1-O2, 
Fp2-O1.  

Fourier and SNR Peak for concatenated Signals: 
The FFT epochs of SSVEP signal require sufficient 
data length to achieve a satisfactory frequency 
resolution. However, increased epoch length comes 
at the cost of time taken to collect EEG. Since for 
the purpose of online BCI applications, time for 
processing the data and estimation of the command 
is a crucial element to be kept short, detection 
should be done using short epochs of signals. Tomita 
et al. (2011) proposed concatenation method to 
improve the frequency resolution of the SSVEPs 
using short time window epochs. In their proposed 
method, they concatenated signals from different 
channels in the time domain and showed that the 
concatenated signal produces clearer SSVEP peaks 
in the Fourier Spectrum due to the increased 
frequency resolution. 

For this study, two groups of concatenated 
signals were built, one including two frontal 
channels (F3 and F4) and the other one including the 
parieto-occipital and occipital channels (O1, O2, Po3 
and Po4). Then the Fourier and SNR Peak were 
computed for both concatenated signals. 

2.4 Feature Ranking 

Since the number of candidate features was too large 
(Nf = 22) given the number of examples in the 
database (Ne = 100) for each stimulation frequency, 
feature selection was performed by the orthogonal 
forward regression (OFR) algorithm (Guyon and 
Elisseef, 2003) to select the most relevant features 
for discriminating the 9 Stimuli. For this purpose we 
used OFR algorithm 36 times, each time finding the 
most relevant features for discrimination of two 
different Stimuli (36 different combinations for 9 
different stimuli frequencies). OFR algorithm 
calculates the angle between each candidate feature 
ui and the quantity to be modelled y and defines the 
most correlated feature as the feature that has the 
smallest angle (i) with y.  

ܒܝ ൌ ݃ݎܽ ሺ݉ܽݔ௜ሼܿݏ݋ଶሺΘ௜ሻሽሻ	, (3) 

Then y and all the remaining candidate features 
are projected onto the null space of the selected 
feature and the same procedure is iterated until all 
candidate features are ranked. We performed our 
feature ranking on half of our database in order to 
avoid a bias. Finally 8 features were selected (see 
Table). 
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Table 1: Top-ranked features from the feature selection 
step. 

Feature Channels 

Frequency peak Average (O1,O2) 

Frequency peak Average (F3,F4) 

SNR peak Average (Po3,Po4) 

Magnitude squared coherence O1, O2 

Concatenation: frequency peak  F3, F4 

Concatenation: SNR peak F3, F4 

Concatenation: frequency peak O1, O2,Po3, Po4 

Concatenation: SNR peak O1, O2,Po3, Po4 

3 CALIBRATION 

3.1 Distribution Calibration 

We hope to reduce the inter-subject variability by 
calibrating the data, so that the SSVEP responses 
would be more homogeneous. ‘First level’ 
calibration is based on a mathematical projection of 
the data into a reference space, which is defined 
based on a short period of time. We investigated two 
different first level calibration approaches: 

- Resting state eyes open data. In this case, we 
remove for each feature the mean value of 30 
sec of resting state. 

- Resting state eyes open data and active state 
data (see Figure 2): active state data is a 
collection of 30 sec of SSVEP response at a 
given frequency. In this case, we remove the 
separating threshold between active and 
passive data, so that active data and non-active 
data will be discriminated on their sign. The 
threshold is determined using linear 
classification (active vs. rest data). Active data 
values should then be positive and non-active 
data values should be negative. 

 

Figure 2: Frequency #2 is defined as active state frequency 
while the other pads are defined as non-active.   

3.2 Feature Calibration 

3.2.1 Harmonic Selection 

Depending    on    the    subject    and    the  observed 

frequency of stimulation f, features can have higher 
value depending on if they are calculated at the 
fundamental f or at the harmonic 2f. While the mean 
value is commonly used, a calibration can be 
performed to detect the frequency and feature that 
emphasize this specificity for each subject. Based on 
a 9 30-second recordings for each stimulation 
frequency, a selection between the value of the 
feature at f, 2f and the mean value is processed via 
the Mann-Whitney test. This test determines whether 
the medians are significantly different. A case where 
the Mann-Whitney z-score is above 2 or -2 indicates 
that either the fundamental or the harmonic 
dominates. Otherwise the medians are not different 
enough, and then the mean value is kept. 

3.2.2 Channel Topography Selection 

Eight classic features were isolated as explained 
above, but these 8 features are not optimal for all the 
subjects. We optimized the channel selection, by 
subdividing the selected features into 7 groups of 
features. The 7 groups are organized in order to 
access a subject-specific topography (see Table). 

Table 2: 7 Groups of expanded features These features are 
more detailed topographic mappings of the selected 
features, so that the topography can be further adapted to 
each subject. 

Group1 Concatenation: frequency peak 

O1 O2 Po3 
O1 O2 Po4 
O1 Po1 Po4 
O2 Po1 Po4 
O1 O2 Po3 Po4 

Group2 Concatenation: SNR peak 

O1 O2 Po3 
O1 O2 Po4 
O1 Po3 Po4 
O2 Po3 Po4 
O1 O2 Po3 Po4 

Group3 Magnitude squared coherence 1 

O1 O2 
Po3 Po4 
O2 Po3 
O1 Po4 

Group4 SNR peak 
F3  
F4 
F3 F4 

Group5 SNR peak 

O1 O2 
Po3 Po4 
Po3 O2 
Po4 O1 
O1 
O2 
Po4 
Po3 
O1 O2 Po3 Po4 

Group6 Magnitude squared coherence 2 

F3 O2 
F3 Po4 
F4 O1 
F4 Po3 

Group7 Frequency peak 
O1  
O2  
O1 O2 

Based  on  one 30-second  recording  at only one 
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stimulation frequency, considered as a reference, 
one feature of each group is selected via OFR for 
each subject (therefore personalizing the channel 
topography for each subject). Each subject has then 
his personalized7-feature set. 
The selection processed is OFR based: 

- find the best feature in the 33 features. 
- remove all features corresponding to the same 

group 
- project the remaining candidate features (from 

the other groups) onto the null space of the selected 
feature. 

The above two steps can be iterated in subspaces 
of decreasing dimensions until one candidate of each 
group has been selected. 

4 CLASSIFICATION 

The classes correspond to the frequencies of 
stimulation, they indicate which of the buttons on 
the dial pad the subject wishes to activate. The 9-
class classifier is in fact composed of 36 2-class 
linear classifiers (LDA). Each 2-class classifier is 
based on twice the features account, as the class 
parameters are the features calculated at both 
frequencies of analysis. 

For a given 3s signal, the features are extracted 
for the 9 stimulation frequencies. Then for each 
couple (fa, fb) of frequencies, the corresponding 
features are compared to determine whether the 
signal corresponds to class #a or class #b, in other 
words if the observed command flickered at 
frequency fa or at fb. The command estimation is 
based on the best mean score after the 36 
comparisons. 

5 RESULTS 

5.1 Distribution Calibration 

We classify the data using a cross validation 
approach. As we intend to test the capability of the 
system to adapt to new subjects, we iteratively 
remove one subject, train the classifier with the other 
data, and test on the rejected subject. This method is 
similar, in spirit, with the classical leave-one-out 
cross-validation approach – but here we leave one 
subject out, instead of only one example.  

The success rate (SR) is defined as the trace of 
the confusion matrix after Leave-One-Subject-Out 
testing.  Generally,  SR is not significantly improved 

 

Figure 3: SR rate, sorted from the worst to the best 
subject. Black: no calibration (mean = 0.56); black dotted: 
passive distribution calibration (mean = 0.56); magenta: 
active distribution calibration (reference frequency 
6.67Hz, mean = 0.56). 

by the distribution calibration, except for the 
calibration on rest data which slightly improved the 
worst subject (at the expense of decreasing the SR 
for the best subject). These classification results are 
stable across frequencies, as is illustrated on the 
confusion matrix of Figure 4.  

 

Figure 4: Confusion Matrix (average of subjects). 
horizontal axis: stimulation frequency. Vertical axis: 
estimated command. 

This confusion matrix corresponds to classification 
of the data without calibration; the (not shown) 
confusion matrices for all type of calibrations 
investigated in this manuscript share the same 
stability properties across frequencies. 

5.2 Feature Calibration 

Calibration based on the selection of the dominant 
harmonic led to a general improvement of the SR, 
where six of the seven subjects had SR above 0.55 
(Figure). 
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Figure 5: SR rate, sorted from the worst to the best 
subject. black: harmonic selection (mean = 0.58); black 
dotted: harmonic selection combined with passive 
distribution calibration (mean = 0.53); magenta: harmonic 
selection combined with active distribution calibration 
(reference frequency 6.67Hz, mean = 0.54). 

Topographic selection calibration also led to a 
significant improvement (average SR = 0.58 for 
reference frequency 8.75 Hz), but this improvement 
was not stable across frequencies. 

 

Figure 6: SR rate, sorted from the worst to the best 
subject. black: topographic selection, using a 4 Hz 
reference signal (mean = 0.60); black dotted: topographic 
selection combined with passive distribution calibration 
(mean = 0.57); magenta: topographic selection combined 
with active distribution calibration (mean = 0.59). 

Combining harmonic selection and topographic 
selection led to an improvement, which was this 
time much more stable across reference frequencies 
(SR = 0.57 for 10 Hz, SR = 0.58 for 6.67 Hz, and SR 
= 0.60 for 4 Hz).  

Whether using harmonic selection, topographic 
selection, or both, subsequent distribution calibration 
did not provide any improvement. 

6 DISCUSSION 

We investigated four different types of BCI system 
calibration, based on: 

- Distribution mapping, using a rest condition 
signal as reference, 

- Distribution mapping, using a rest condition 
signal and an active signal as references, 

- Subject dependent choice of electrodes, 
- Subject dependent choice of SSVEP 

harmonics. 
We compared the classification results for the 

detection of SSVEP peaks of these four calibration 
methods.  

For the choice of stimulation frequencies, we 
embedded 20 Hz stimulation in the design of our 
stimulation interface. The SSVEP responses that 
were generated with this frequency were strong 
enough to be detected. However, in a study by 
Bakardjian et al. (2010), the best choice of 
stimulation frequency for evoking the strongest 
response is reported to be among 5.6 to 15.3 Hz. On 
the other hand, there exist studies supporting the 
usefulness of high frequency stimuli in generating 
good SSVEP responses. (Wang et al., 2006, 
Volosyak et al., 2010). Wang et al. (2006) also 
employed high frequency stimuli in their 
experimental design, and explained this increase in 
the stimulus frequency bandwidth not only as a 
factor to decrease time length of signal epochs for 
detection of SSVEPs but also as a factor for 
reducing the eyestrain effect caused by the flickers. 
However, these effects may vary from subject-to-
subject, and we did not investigate further in this 
direction. 

We consistently show that distribution mapping 
proved to be useless. It never improved the 
classification rates, whether used alone or in 
combination with the other two calibration methods. 
The features values of resting state data don’t seem 
to be comparable to the features value of non-active 
state frequency. Depending on the subject, the 
frequency and the features, they can be lower or 
higher. Thus no way was found yet to find a 
generalization rule for all subjects. This result could 
be due to several reasons. First of all, 30 seconds of 
data may be insufficient to extract a sufficiently 
stable signature of the EEG activity. Using longer 
epochs might provide better results. Second, owing 
to the non-stationary nature of EEG (see e.g. Kaplan 
et al., 2005), it might be necessary to monitor the 
signal evolution along time (the data collection 
lasted up to one hour), otherwise the reference data 
used   for   calibration   may  not be a good reference 
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anymore. 
Selection of harmonics and topography led to 

much more clear improvements. This is to be 
expected: this method seeks to adapt the system to 
the specificities of each subject. It is noteworthy that 
each subject has specific brain responses to SSVEP 
(see e.g. Silberstein, et al., 1990), whether 
topographically or frequency-wise. It is therefore not 
surprising that an adaptation of the system to the 
specificities of each subject leads to an improved 
classification. The best calibration method between 
those two, according to our results, is the selection 
of the dominant harmonic in the SSVEP response. 
However, the reader should keep in mind that those 
two methods are based on very different approaches. 
Harmonic selection used 5 minutes of data, whereas 
topography selection used only 1 minute of data, but 
still led to some significant improvements. Our 
results therefore also confirm the interest of 
selecting the channels, which was already pointed by 
Wang et al. (2006).  
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