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Abstract: One problem of fMRI images is that they include some noise coming from many other sources like the heart 
beat, breathing and head motion artifacts. All these sources degrade the data and can cause wrong results in 
the statistical analysis. In order to reduce as much as possible the amount of noise and to improve signal 
detection, the fMRI data is spatially smoothed prior to the analysis. The most common and standardized 
method to do this task is by using a Gaussian filter. The principal problem of this method is that some 
regions may be under-smoothed, while others may be over-smoothed. This is caused by the fact that the 
extent of smoothing is chosen independently of the data and is assumed to be equal across the image. To 
avoid these problems, we suggest in our work to use an adaptive Wiener filter which smooths the images 
adaptively, performing a little smoothing where variance is large and more smoothing where the variance is 
small. In general, the results that we obtained with the adaptive filter are better than those obtained with the 
Gaussian kernel. In this paper we compare the effects of the smoothing with a Gaussian kernel and with an 
adaptive Wiener filter, in order to demonstrate the benefits of the proposed approach.  

1 INTRODUCTION 

Functional Magnetic Resonance Imaging (fMRI) is a 
method to map the brain which does not require any 
invasive analysis. This is a very useful technique to 
identify brain regions of interest activated by 
different types of stimulation or activity and also 
during resting state. The indicator used to identify 
the local activity is the Blood Oxygenation Level 
Dependent (BOLD) contrast, which is based on the 
brain oxygenation of the neuronal processes 
associated with the experimental tasks. Oxygen and 
other nutrients is what neurons need to work. Thus, 
when brain neurons are activated, there is a change 
in blood flow and oxygenation that causes a change 
in the Magnetic Resonance (MR) signal received by 
the receiver coils. A major level of oxygen in blood 
in a particular area means that there is an increase in 
neural activity in this zone and a lower level means 
the opposite (D’Esposito et al., 1999). 

To obtain the BOLD contrast, the subject under 
study lies in the magnet under the influence of a 
powerful magnetic field and perform a task or is 
exposed to an external stimulus. At the same time, a 
large amount of images are acquired using ultra-fast 
sequences through magnetic resonance. For some of 
these scans the stimulus is present and for some 
others the stimulus is absent. The low resolution 
brain images of the two cases can then be compared 
in order to see which parts of the brain were 
activated by the stimulus.  

After the experiment has finished, the set of 
images is pre-processed and analyzed.  

One problem of fMRI data is that includes 
contributions from many other sources including the 
heart beat, breathing and head motion artifacts, 
which can cause wrong results (S.A Huettel. et al., 
2004). In order to reduce as much as possible the 
amount of noise and to improve signal detection, the 
fMRI data is spatially smoothed prior to the analysis. 
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The most common and standardized method to do 
this task is by using a Gaussian kernel. The principal 
problem of this method is that some regions may be 
under-smoothed favoring the presence of false 
positives, while others are over-smoothed causing a 
loss of information. This problem is due to the fact 
that the extent of smoothing is chosen independently 
of the data and is assumed to be equal across the 
image. 

Several studies have proposed approaches which 
are different from the Gaussian proposal based on 
the same theoretical principles, the extent of 
smoothing is choosen independently of the data, fact 
that can carry on the problems discussed. Some of 
these methods are the prolate spheroidal wave 
functions (Lindquist and Wager, 2008), wavelets 
(Van DeVille, Blu, and Unser, 2006), Gaussians of 
varying width (Poline and Mazoyer,1994; Worsley 
et al., 1996) and rotations (Shafie et al.,2003). To 
solve these problems and limitations, some authors 
have proposes to use adaptive smoothing methods as 
the use of the Gaussian Markov random field 
specifies (Yue et al., 2010) and Propagation-
separation procedures (Tabelow et al.,2006). 

In this report we present an alternative procedure 
to denoise the fMRI images that differs from the 
ones used in the traditional fMRI analysis. This 
method is based on an adaptive Wiener filter which 
smooths the images adaptively minimizing the loss 
of information caused by the over-smoothing and the 
apparition of the false positives when the images are 
under-smoothed. In this paper, we compare the 
effects of the adaptative smoothing based on the 
Wiener filter and the effects of the non adaptative 
smoothing of the use of the Gaussian kernel, 
combinend in both cases with an Independent 
component analysis. 

2 MATERIALS AND METHODS 

The study was performed in a 3 T MRI scanner 
(Magnetom Trio Tim, Siemens Medical Systems, 
Germany) at the Diagnostic Imaging Centre at 
Hospital Clínic of Barcelona (CDIC) using the 
blood-oxygen level-dependent (BOLD) fMRI signal. 

Whereas the pre-processing of MR images and 
the regression model were performed using SPM8 
software (SPM8, Wellcome Department of 
Cognitive Neurology, London), the data analysis 
was carried out using Group ICA of fMRI Toolbox 
(Calhoun et al., 2001). Both pre-processing and 
analysis software were run on a Matlab platform 
(R2009b version). 

2.1 Participants 

Forty right-handed healthy undergraduate students 
[50% women; age range 18–25, mean (+S.D.) 19.6 
(+1.7)] were recruited from the University of 
Barcelona. Subjects with chronic disorders, nervous 
system disorders or history of mental illness were 
excluded, as well as regular drinkers and those on 
medication. All participants were non smokers and 
low caffeine consumers (< 100mg/day), had 
intermediate circadian typology and reported an 
undisturbed sleep period of at least 6 h during the 
night prior to the fMRI scan sessions.  

Caffeine may affect the performance of the task 
(Serra-Grabulosa et al., 2010a); Adan and Serra-
Grabulosa, 2010). For this reason the participants 
abstained from caffeine intake for a minimum of 12 
h and fasted for at least 8 h prior to the first fMRI 
session.  

The study was approved by the ethics committee 
of Hospital Clínic de Barcelona. Written consent 
was obtained from all participants, who were 
financially rewarded for taking part. 

2.2 Experimental Design 

The functional magnetic resonance imaging was 
obtained using gradient echo sequence single-shot 
echo-planar imaging, with the following parameters: 
TR (repetition time): 2000 ms, TE (echo time): 40 
ms, FOV (field of view): 24 x 24 cm, matrix 128 x 
128 pixels, flip angle 90, slice thickness: 2 mm, gap 
between sections: 0.6 mm, 36 axial slices per scan. 
A total of 243 volumes were purchased, with 46 
slices each. 

During the acquisition of fMRI, in order to 
obtain the BOLD contrast, the subjects performed a 
sustained attention and working memory task (CPT-
IP, Continuous Performance Test-Identical Pairs), 
which is a modification of the Cornblatt task 
(Cornblatt et al., 1989) and a control task. CPT-IP 
task was created with the software Presentation 
(Neurobehavioral System, USA). All stimuli were 
presented to the subjects through glasses specially 
designed for use in the scanner. 

The CPT-IP task was performed using a block 
design. It started with a block of 35 seconds of 
accommodation to the scanner, which had a blank 
screen that the subject had to stare at. After this first 
block, 9 blocks of CPT were alternated with 9 
blocks of control (Figure 1). Preceding each block, 
subjects received instructions for what to do in the 
next block for a duration time of 5 seconds. 
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Figure 1: Design of the sustained attention task with 
alternation between blocks. 

 
Figure 2: The following figure illustrates the design of the 
task blocks. The top (A) exemplifies the figures presented 
in the CPT blocks. In this example, you should respond 
to the stimulus e3. The bottom (B) exemplifies the figures 
presented in the control blocks. 

Each of the CPT blocks had a total of 27 
numbers formed by 4 digits (1 to 9, without 
repeating the same figure), so that 23 of the figures 
were different and 4 were repeated. The presentation 
time of each number was 450 ms and the interval 
between the onsets of each of the 27 consecutive 
digits was 750 ms. Subjects’ task was to detect the 
repeated figures and respond by pressing a button as 
quickly as possible (Figure 2A). The position of the 
repeated figures was randomized over the blocks 
CPT. Concerning the control block, it always had 
the same 4 digits (1 2 3 4) and the task of the 
subjects was only to stare at it throughout the 
presentation (Figure 2B). 

2.3 Data Pre-processing 

Image pre-processing was performed with SPM8 
(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) as 
described in (http://www.fil.ion.ucl.ac.uk/spm/doc/ 
spm8_manual.pdf). The pre-processing steps were 
(1) realigning and unwarping the images to correct 
for movement artifacts and related susceptibility 
artifacts, (2) coregistration of the anatomical to the 

functional images, (3) segmentation and normalizing 
of the anatomical image to the standard stereotactic 
space (Montreal Neurological Institute), (4) 
application of normalization transformation to the 
functional images, and (5) smoothing the images 
with a 8 mm full-width half maximum (FWHM) 
Gaussian filter and with an adaptive Wiener filter in 
order to have two groups of the same images with 
different types of smoothing to compare them later. 

2.4 Adaptive Wiener filtering 

This filter is a (non-linear) spatial filter which 
operates on the principle of least squares. Imagine 
that we have a noisy image M’ of some original 
image M and a restored version R. Obviously, what 
we intend is to have R as close as possible to the 
original image M. One way to know if the image R 
is close as the image M is by adding the squares of 
all differences: 

∑(mi,j – ri,j)
2 (1)

where the sum is taken over all pixels of R and M 
(which we assume to be of the same size). This sum 
can be taken as a measure of the closeness of R to 
M. If this value is the minimum the resultant image 
of the denoising process will be as close as possible 
to the original image. The noisy image M’ can be 
written as: 

M’ = M +N (2)

where M is the original correct image and N is the 
noise which we assume to be zero-mean normally- 
distributed.  

However, the mean may not be zero. Therefore 
we suppose that the mean is mf and the variance in 
the mask is σ2

f. We suppose also that the variance of 
the noise over the entire image is known to be σ2

g. 
Then the output value can be calculated as: 

mf +                (g - mf ) (3) 

where g is the current value of the pixel in the noisy 
image. See Lim, 1990 for details. In practice, we 
calculate mf by simply taking the mean of all grey 
values under the mask, and σ2

f by calculating the 
variance of all grey values under the mask. We may 
not necessarily know the value σ2

g. So the Matlab 
function wiener2 (used to filter the images) which 
implements Wiener filtering uses a slight variant of 
the above equation: 

mf +                             (g - mf ) 
(4) 

σ2
f + σ2

g

σ2
f

max {0,σ2
f – n} 

max {σ2
f, n}
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where n is the computed noise variance, and is 
calculated by taking the mean of all values of σ2

f 
over the entire image. This can be very efficiently 
calculated in Matlab. 

 

Figure 3: Regression model proposed to explain, for each 
voxel of the functional MRI images, the variability in the 
signal along the recorded 243 volumes. Each one of the 10 
columns corresponds to one of the input variables in the 
regression. The first one corresponds to the attention task 
in which the subject has to respond to repeated stimuli. 
The second one corresponds to the task of looking at 
numbers and the third one to the task of initial rest. The 
next 6 columns are the values applied to correct the head 
movements in the pre-processing step. The last one 
represents the error. On the right side of the table the 
registered volumes are listed from 1 to 243. For each 
variable, white colour indicates that this helps to explain 
the variability while black colour indicates the opposite. 

2.5 Implementation of the Regression 
Model 

After the pre-processing step, we proceeded to 
perform the regression model to explain brain 
activations. To do this, we created a regression line 
where signal changes observed in each voxel could 
be explained by changes in the proposed task 
minimizing the residual error (Figure 3). 

2.6 Independent Component Analysis 

After pre-processing and regression model creation 
steps, we applied ICA analysis in both types of the 
smoothed images. What we intend with this analysis 
is to check that the components obtained with the 
Wiener filter have a time course more similar to the 
task pattern than the time course obtained with the 
Gaussian kernel (see Figure 4). 

 

 

Figure 4: Task pattern followed during the CPT task. 

To perform the ICA analysis we used the Group 
ICA of fMRI Toolbox. This program has the option 
to make the analysis using different algorithms, as 
Jade, Erica, Infomax, Simbec, Amuse and others. 
The chosen algorithm to analyze fMRI data was 
Infomax because it has been one of the most 
commonly used algorithms for fMRI data analysis 
and has proven to be quite reliable (Calhoun et al., 
2004). 

3 RESULTS 

3.1 Selection of the Independent 
Components 

After ICA analysis we selected some of the 
components in order to evaluate results. For that, we 
did a multiple regression and a statistic correlation 
with every paradigm. We excluded the components 
that had a p-value greater than 0.01, and the ones 
which were associated to noise. Therefore we 
selected 3 components for the CPT task coming 
from every approach.  

3.2 Obtention of the Areas of Interest 

After the selection of the independent components, 
we performed a T – test with all the subjects and all 
the components. We also performed a ‘multiple 
regression’ SPM8 analysis to establish the 
relationship between CPT-IP-related activations. 

The fMRI results were interpreted only if they 
attained both a voxelwise threshold p<0.05 
(corrected) (cluster extent (k) = 10voxels). The 
anatomical location of the activated brain areas was 
determined by the Montreal Neurological Institute 
(MNI) coordinates. Anatomical labels were given on 
the basis of anatomical parcellation developed by 
(Tzourio-Mazoyer et al., 2002).  

3.3 Results with the Different 
Smoothing Methods 

In the following images taken from one sample, we 
can see the results obtained with every smoothing 
method. The first image (Figure 5) is an example of 
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Figure 5: fMRI image without smoothing. 

 

Figure 6: fMRI image smoothed with a Gaussian kernel. 

 

Figure 7: fMRI image smoothed with an adaptive Wiener 
filter. 

a non smoothed image with noise. The next two 
images (Figures 6 and 7) correspond to the same 
image smoothed with the two mentioned methods.  

As we have mentioned before, we applied an 
ICA analysis on all the subjects in order to check the 
components obtained with every method, as is 
illustrated in the next images. 

Activations found in the CPT task with the 
Wiener filter were located bilaterally in frontal lobe 
(BAs Left 4, 6, 8, 9, 10, 32, right 45, right 46, 47), 
parietal (BAs 7, 39, 40), temporal (BAs Left 22, 37) 
and occipital (BAs Left 17, 18, 19). 

Activations found in the CPT task with the 
Gaussian kernel were located bilaterally in frontal 
lobe (BAs 4, 6, 8, 9, right 10, right 32, 45, 46, 47), 
parietal (BAs right 2, Left 5, 7, 31, Left 39, 40, Left 
41), temporal (BAs Left 20, 21, 22, Left 37) and 
occipital (BAs Left 17, 18, 19). 

4 DISCUSSION 

This paper introduces an approach to smooth fMRI 
data based on the use of an adaptive Wiener filter. 
The results from the proposed method were 
compared with those obtained through the 
conventionally used Gaussian smoothing.  

The principal feature of our approach respect to 
the classic methods is that it allows varying the 

extent of smoothing across the brain. This 
characteristic will help to avoid the problems related 
with over and under-smoothing that may occur if 
smoothing is performed using a Gaussian kernel of 
fixed width. In the following paragraphs we will 
comment these problems with the achieved results.  

If we take a look at the figures (Figures 5, 6 and 
7), we can observe that in figure 6 the edges of the 
images are fuzzy and have less resolution than the 
images in the figure 7. This fact indicates that the 
images in the figure 6 are over-smoothed causing 
probably a loss of information. On the other hand, 
the images of the figure 7 have more definition and 
the edges have been preserved after the smoothing 
process because the adaptive Wiener filter smooths 
an image adaptively, tailoring itself to the local 
image variance. Where the variance is large, 
performs little smoothing. Where the variance is 
small, performs more smoothing. As a result this 
filter is more selective than the Gaussian kernel and 
preserves better the edges and other high-frequency 
parts of the image. 

If we compare the time courses and the 
activations maps between the components achieved 
with the Gaussian kernel and the adaptive filter we 
can see that all of them are very similar except the 
ones presented in the figures 8 and 9.  

 

Figure 8: Component from the CPT task obtained with the 
Gaussian kernel. 

 

Figure 9: Component from the CPT task obtained with the 
adaptive Wiener filter. 
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If we take a look to the activations found, we can 
see that the adaptive filter found less active regions. 
These correspond to the zones parietal (BAs 2, 5, 3, 
41) and temporal (BAs 20, 21) which are basically 
present in the figures 8 and 10.  

Between all of these areas, the ones which 
probably could be activated by the task are the BA 5 
which is related with the working memory (Yoo et 
Al., 2004) and BA 20 which is associated with the 
dual working memory task processing (Yoo et Al., 
2004).  

However, if we look previous studies (Bartés et 
al. 2011) which studied the same task using ICA, we 
can see that the BAs 5 and 20 were not found. By 
this fact and because the figure 8 has more abrupt 
changes in the time course than the figure 9 which 
differs a little bit from the task pattern, we believe 
that the components of the figures 8 and 10 have 
some false positives which are removed by the 
adaptive Wiener filter in the figures 9 and 11. 

  

Figure 10: Component from the CPT task obtained with 
the Gaussian kernel. 

 

Figure 11: Component from the CPT task obtained with 
the adaptive Wiener filter. 

5 CONCLUSIONS  

We have compared the effects of two different 
denoising approaches: the use of Gaussian kernel 

and the use of an adaptive Wiener filter. After the 
analysis, the adaptive Wiener filter demonstrated to 
be a technique with a great potential. Comparing 
with the fixed Gaussian approache, is able to remove 
the noise minimizing the over/under-smoothing. The 
results provided evidences to state that the Gaussian 
kernels alter the spatial shape and extent of the 
activation regions, when applied for denoising fMRI 
data. Therefore, we believe that the approach 
proposed in this paper could be a good alternative to 
the classic smoothing methods.  

 

Figure 12: Component from the CPT task obtained with 
the Gaussian kernel. 

  

Figure 13: Component from the CPT task obtained with 
the adaptive Wiener filter. 
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