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Abstract: Blind Source Separation (BSS) is an effective and powerful tool for source separation and artifact removal 
in EEG signals. For the real time applications such as Brain Computer Interface (BCI) or clinical Neuro-
monitoring, it is of prime importance that BSS is effectively performed in real time. The motivation to 
implement BSS in Field Programmable Gate Array (FPGA) comes from the hypothesis that the 
performance of the system could be significantly improved in terms of speed considering the optimal 
parallelism environment that hardware provides. In this paper, FPGA is used to implement the SOBI 
algorithm of EEG with a fixed-point algorithm. The results obtained show that, FPGA implementation of 
SOBI reduces the computation time and thus has great potential for real time. 

1 INTRODUCTION 

EEG is one of the most widespread brain mapping 
techniques to date and is used extensively for 
monitoring the electrical activity within the human 
brain both for research and clinical purposes. The 
raw EEG data represent a projection of a set of 
signals, which are a mix of brain and artifact 
information. BSS is the process of recovering the 
source signals from a linear mixture of measured 
signals. 

There is no general consensus about any one 
BSS Algorithm being the best. Each algorithm has 
its unique set of pros and cons and makes certain 
assumptions about the sources in order to 
compensate for the lack of information about the 
mixing matrix and to be able to process the signals 
blindly. (Joyce et al., 2004; Fitzgibbon et al., 2007) 
and (Hyvarinen et al.) can serve as good reads for 
literature on Artifact detection and removal in EEG 
signals. SOBI using time structure of signals has its 
unique set of advantages to offer as mentioned in 
(Delorme et al., 2007) and was the chosen algorithm 
in this work. 

SOBI assumes stationary sources with non-
identical spectra and considers components at 
various time lags and focuses on decorrelating them 
as much as possible. As mentioned earlier, SOBI 

offers some unique advantages such as ability to 
resolve correlated signals, ability to resolve more 
than one gaussian sources, more robust behaviour in 
adverse Signal to Noise ratio (SNR), need for fewer 
data points implying shorter epoch length – 
something which is must for real time processing. 
The application and usefulness of SOBI in Brain 
Computer Interface has been shown in (Wang et al.). 
It was shown that SOBI converges after only a few 
iterations thus proving it worthy for real time 
applications. However, the computational 
complexity and cost for SOBI is high which can be 
partially taken care of by appropriate design of the 
FPGA architecture. Also, when real time processing 
is the main goal a little additional cost is justifiable. 

In this paper, an FPGA implementation of the 
SOBI algorithm of BSS model is presented with co-
simulation design concept based on the fixed-point 
number representation. The BSS Model and SOBI 
algorithm are introduced in Section 2. In section 3, 
the FPGA implementation is described. The result 
analysis and the conclusion are given in section 4 
and 5. 
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2 ALGORITHM AND PROBLEM 
FORMULATION 

2.1 BSS Model 

BSS is the process of recovering the source 
signalsfrom a linear mixture of measured signals. 
There are three distinct steps required for removal of 
artifact/noise from EEG using BSS: 1) separate 
(unmix) the measured EEG into sources using a BSS 
algorithm, 2) identify and discard artifact/noise 
sources and retain brain sources, and 3) project the 
retained brain sources back into sensor space 
resulting in artifact/noise-free EEG as is illustrated 
in Fig. 1 

 

Figure 1: Artifact detection and removal using BSS. 

Component estimation from EEG data can be 
mathematically formulated as follows. 

X = AS (1)

meaning that the sensor data X is rotated by an 
unmixing matrix ିܣଵ, to arrive at the components S. 
To clarify, all quantities in Equation 1 are matrices. 
A is referred to as the mixing matrix, each column of 

which describes signal propagation from an 
individual source to each electrode site. The 
meaning of “blind” is that both the original sources 
(represented by matrix S) and the way the sources 
were mixed (represented by A) are all unknown, and 
only mixed signals or mixtures represented by X) 
can be measured and observed. 

2.2 SOBI Algorithm 

SOBI was first introduced by Adel Belouchrani, 
Karim Abed-Meraim, Jean François Cardoso and 
Eric Moulins in the year 1997. The steps involved in 
SOBI algorithm are illustrated in Figure 2 while the 
detail explanation of the algorithm may be found in 
(Belouchrani et al., 1997). As previously stated, 
SOBI exploits the time coherence of the source 
signals for source separation. As opposed to the 
other approaches, it relies only on stationary second 
order statistics. It was shown in (Tong et al., 1990; 
Belouchrani et al., 1993) that blind identification is 
feasible based on the eigen decomposition of spatial 
covariance matrices. In (Belouchrani et al., 1997), 
blind identification is achieved by performing joint 
diagonalization of a set of spatial covariance 
matrices. In (Belouchrani et al., 1997) it was also 
shown that considering a set of matrices rather than 
unique correlation matrix increases the robustness at 
a low additional computing cost. SOBI exploits the 
time coherence of the source signals and assumes 
that the signals are uncorrelated in time. Also, for 
the sake of simplicity the noise is modelled as 
additive white noise. However, this assumption is 
not crucial. The aim of BSS is to identify the 
mixture matrix A and to recover the source signals s 
(t) from the array output x (t) without any a priori 
knowledge of the array manifold. 

 
Figure 2: Schematic Representation of BSS using SOBI. 
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The first pre-processing step is Normalization so 
as to ensure that the source signals have unit 
variance. The next step is Whitening which is 
achieved by Singular Value Decomposition of the 
mixture matrices. Whitening reduces the 
dimensionality of the BSS problem, following which 
the mixing matrix A may be defined as  

A = ܹ#U (2)

Where W is the whitening matrix and U is a unitary 
matrix. It is shown in (Belouchrani et al., 1997) that 
the whitening matrix is determined from covariance 
matrix at t = 0 (R (0)), provided the noise covariance 
matrix is known or can be estimated. The Unitary 
factor U may be thought of as a unitary matrix that 
simultaneously diagonalizes a set of covariance 
matrices considered at various time lags. A detailed 
analysis of SOBI algorithm can be found in 
(Belouchrani et al., 1997). Though SOBI has not 
been implemented in hardware before, (Huang et al., 
2008; Shyu et al., 2008; Li and Lin, 2005 and Du 
and Qi, 2004) can be good references for literature 
on hardware implementation of other BSS 
algorithms. 

3 DESIGN AND 
IMPLEMENTATION 

3.1 Design Methodology 

Fig 2 illustrates the basic flow of the SOBI 
Algorithm. As is evident, Whitening i.e. Singular 
Value Decomposition, Correlation i.e. determining 
the correlation matrices and Joint Diagonalization of 
the correlation matrices; comprise of the major part 
of the algorithm. Firstly, a SIMULINK model was 
developed and the results were compared to those 
obtained from the MATLAB code. The SIMULINK 
model was built in order to be able to perform 
Hardware Co-simulation, which is an intermediate 
stage between software and hardware 
implementation. This intermediate approach is 
expected to gauge the benefits of both software and 
hardware and thus could provide a better solution. 
This is based on the belief that it is not always 
prudent and economical to implement the entire 
system in hardware. Instead, implementing only 
those blocks which allow certain amount of 
parallelism and / or for which the computational 

time is to be reduced, could turn out to be more 
economical and better solution.  

The three approaches to develop a Co-simulation 
between SIMULINK/ MATLAB and XILINX ISE 
are as mentioned below: 

1) Using System Generator 
2) Using HDL Coder and EDA Simulator Link 
3) Using EDA Simulator Link and a Black Box 

containing the hand coded VHDL code. 

In the first two approaches, the VHDL code is 
automatically generated from a MATLAB code or a 
SIMULINK model. However, there are several 
restrictions on what all MATLAB functions can be 
directly mapped onto a VHDL code. In view of 
these limitations and after several failed attempts 
with the first two approaches, it was decided to hand 
code the VHDL code. Also, hand coded VHDL code 
offers the advantage that it can be optimized as per 
the need. 

Thus, VHDL code for three of the most 
important blocks – Singular Value Decomposition, 
Correlation and Joint Diagonalization - of the SOBI 
model were written and simulation results were 
obtained for the same. The next step was to 
synthesize the blocks. The code for which 
simulation results were obtained was written using 
real data type, which is not synthesizable. Thus, the 
code for Correlation block was rewritten using 
Floating point representation and simulation results 
were obtained for the same. However, as the floating 
point package (Bishop, 2005), (that need to be used 
since floating point was not an inbuilt data type until 
VHDL 2008) integrated in VHDL 2008 is not yet 
officially supported by Xilinx XST13.4, several 
synthesis issues were encountered. Thus, the 
correlation Block was finally synthesized using 
signed number representation. Finally, the synthesis 
report was generated and the parameters were 
modified so as to optimize the performance. 

3.2 Proposed Architecture for 
Correlation Block 

The Figure 3 denoted below represents the process 
to determine a single Correlation matrix. n such 
processes may be run in parallel to determine the n 
correlation matrices at various time lags. However, 
running the processes in parallel would imply more 
hardware resources being used. 
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Figure 3: Proposed architecture for implementation of Correlation Block. 

4 RESULTS 

4.1 Simulation Results 

As mentioned earlier, the simulation results for SVD 
block (using real data type), correlation Block (using 
real, floating point and signed numbers data type) 
and Joint Diagonalization block (using real and 
floating point data type) were obtained considering a 
2 x 4 input matrix, that is, 2 channels and 4 data 
points. The parameter p which determines the 
number of correlation matrices to be considered, was 
set to 2. Several observations were made which are 
listed below. 
If it is intended to write a synthesizable code, real 
data type should not be used. The use of Logic cores 
to implement mathematical functions such as square 
root, does introduce a bit of latency and thus some 
hand coded functions should be developed instead. 
Also, though it is easy to program in Floating Point 
it is certainly not a hardware Engineer’s choice as it 
utilizes a lot of hardware resources. 

Both the Joint Diagonalization and SVD block 
involved the calculation of eigen values and vectors. 
Based on the simulation results, it was concluded 
that the power method should be used only when the 
largest eigen value and the corresponding eigen 
vector is to be calculated. While it worked well in 
the Joint Diagonalization block, it didn’t produce 
accurate results for the SVD block which involved 
calculation of eigen values and vectors of a 2 x 2 
matrix. Thus, the Jacobi method should be used 
instead. 

 

4.2 Synthesis Results 

Using the signed integer data type, the synthesis of 
the correlation block was made possible and the 
synthesis report was generated. The mapping 
procedure failed due to the over utilization of IOBs 
(Bounded input output). However, the synthesis 
report generated does provide some insight into the 
synthesis of the code. The timing report shows a 
minimum delay of 12.795 ns which corresponds to a 
Maximum frequency of 78.155 Mhz. This is higher 
than the maximum frequency of 64 MHz achieved in 
(Huang et al., 2008). Although, in (Huang et al., 
2008) the entire algorithm was implemented while in 
our case only a part of it is implemented. As 
observed by changing a few parameters, it may be 
concluded that there is a lot of scope for 
optimization.  

5 CONCLUSIONS  

Thus, the synthesis results obtained for the 
Correlation Block, do verify that the computation 
time could be reduced by implementing the SOBI 
algorithm in FPGA. Also, there is scope for a lot of 
optimization that can be done to achieve higher 
speed. Also, as was observed while working on the 
codes, SOBI does offer a lot of scope for parallelism 
and pipelining as there are a lot of matrix operations 
involved and thus it seems only wise to implement it 
in FPGA. Once, the major blocks of Correlation, 
Joint Diagonalization and Singular Value 
Decomposition are made synthesizable, it might be 
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interesting to perform Co-simulation between 
MATLAB - Xilinx and make a comparison between 
Software, Hardware and Hardware Co-simulation. 
Based on the results, it can be decided as to what 
actually to implement in FPGA. This way an 
economical use of Hardware resources can be made. 
In the near future, when the floating and fixed point 
packages are officially supported by Xilinx XST for 
synthesis purpose, the same work can be 
implemented using Fixed or Floating point 
representation, which unlike integers is a descent 
way of representing real life EEG data.  

This work is the first initiative taken to 
implement SOBI to perform BSS in Real time and 
thus is just at a preliminary stage. The project 
provides a global view of the implementation, while 
considering the Correlation block in-depth. This 
work could be used to make a choice of the methods 
to implement various blocks, as an analysis of the 
methods for each block has been made in this 
project. A lot of work needs to be done further. 
However, the work does provide hope that SOBI 
could serve as a potential candidate for real time 
BSS. Thus, it could pave a way for on-line 
processing required in applications like Brain 
Computer Interface. 
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