
Rehabilitation through Brain Computer Interfaces 
Classification and Feedback Study 

Arnau Espinosa1, Rupert Ortner1, Danut Irimia2 and Christoph Guger1 
1g.tec Guger Technologies OG, Sierningstrasse 14, Schiedlberg, Austria 

2Faculty of Electrical Engineering, Technical University of Iasi, Iasi, Romania 

Keywords: BCI, EEG, Stroke Rehabilitation, Feedback, 3D Virtual Reality. 

Abstract: A Brain-Computer Interface (BCI) is a tool for reading and interpreting signals recorded directly from the 
user’s brain. Most brain-computer interfaces (BCI) are based on one of three types of electroencephalogram 
(EEG) signals: P300s, steady-state visually evoked potentials (SSVEPs), and event-related 
desynchronization (ERD). EEG is typically recorded non-invasively using active or passive electrodes 
mounted on the human scalp. In recent years, a variety of different BCIs for communication and control 
applications were developed. A quite new and promising idea is to utilize BCIs as a tool for stroke 
rehabilitation. The BCI detects the user's movement intention and provides online feedback to train the 
affected parts of the body to restore effective movement. This publication tries to optimize current BCI-
strategies for stroke rehabilitation using immersive 3-D virtual reality feedback (VRFB). Other work has 
continued to show that higher density electrode systems can reveal subtleties of brain dynamics that are not 
obvious with fewer electrodes. Hence, we used a larger electrode montage than typical BCI studies.  

1 INTRODUCTION 

Brain - Computer Interfaces (BCI) allow new 
communication channels using different mental 
states. In a typical BCI, a user performs voluntary 
mental tasks. Each task produces distinct patterns of 
electrical activity in the electroencephalogram 
(EEG). Using monitoring systems and on-line signal 
processing software, automates tools can identify 
which mental tasks a user performed at specific 
times. Most modern BCIs rely in one of three types 
of mental tasks, which are associated with different 
types of brain activity: 

Imagined movement, which produces event-
related desynchronization (ERD) dominant over 
central electrode sites (Guger, 2003 and Neuper, 
2009); 

Attention to oscillating visual stimuli, which 
produces steady-state visually evoked potentials 
(SSVEP) dominant over occipital sites (Friman, 
2007); 

Attention to transient stimuli, which produces the 
P300 event-related potential dominant over parietal 
and occipital sites (Guger, 2009 and Townsend, 
2012). 

In the last few years, several publications provide  

evidence that using MI-based BCIs can induce 
neural plasticity and thus serve as an important tool 
to enhance motor rehabilitation for stroke patients. 
Ang et al. (Ang, 2009) reported higher 2-month 
post-rehabilitation gain for patients using a BCI-
driven robotic rehabilitation tool compared to a 
control group, but without significant results. 
Recently, Shindo et al. (Shindo, 2011) tested the 
effectiveness of neurorehabilitation training when 
using a BCI for controlling online feedback from a 
hand-orthosis. Also here, the conclusion promises 
increased rehabilitation results. Grosse-Wentrup et 
al. deliver a good overview about the state of the art 
on this research topic (Grosse, 2011).  

On MI-based BCI, neurofeedback plays a crucial 
role to optimize the user’s performance (Neuper, 
2010). Feedback must reflect the user’s task in an 
appropriate way: for example, when using the BCI 
for motor rehabilitation, the feedback should be 
similar to the motor activity.    

In this study, two different feedback strategies 
that can be used for a rehabilitation task are 
evaluated. During two sessions, the participants 
were asked to perform MI of either the right or left 
hand (in random order) as dictated by a visual 
paradigm. The first feedback strategy shows the 
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hands of an avatar in a 3-D Virtual Reality Feedback 
environment (VRFB, see section II for more details). 
Either the left or the right hand of the avatar moves 
according to the MI. For comparison, a popular 
strategy (bFB, e.g. in Guger, 2003) was used. Here 
the feedback entails the movement of a bar on the 
computer screen. This bar always starts in the 
middle of the screen and extends either to the left or 
right side of the screen, according to the classified 
motor imagination. Nine subjects did recordings 
with 63 EEG channels. Two subjects did the same 
session with using 63 and 27 channels (See Figs. 1 
and 2). For these two persons using 63 and 27 we 
evaluated the difference in accuracy. 

Recently, Neuper and colleagues compared 
different BCI feedback strategies (Neuper, 2011). 
There, the realistic feedback consisted of a hand 
grasping a target, and the bar feedback was similar 
to the present study. While Neuper used only three 
bipolar channels for the classification, the present 
study used a common spatial patterns (CSP) 
approach that takes advantage of the high number of 
EEG channels. 

2 METHODS 

2.1 Common Spatial Patterns 

The method of CSP is known for discrimination of 
two motor imagery tasks (Blankertz, 2008) and was 
first used for extracting abnormal components from 
the clinical EEG (Koles, 1991). By applying the 
simultaneous diagonalization of two covariance 
matrices, one is able to construct new time series 
that maximize the variance for one task, while 
minimizing it for the other one. 

Given N channels of EEG for each left and right 
trial, the CSP method gives an N x N projection 
matrix. This matrix is a set of subject-dependent 
spatial patterns, which reflect the specific activation 
of cortical areas during hand movement imagination. 
With the projection matrix W, the decomposition of 
a trial X is described by: 

WXZ   (1)

This transformation projects the variance of X 
onto the rows of Z and results in N new time series. 
The columns of W-1 are a set of CSPs and can be 
considered time-invariant EEG source distributions.  

Due to the definition of W, the variance for a left 
movement imagination is largest in the first row of Z 
and decreases with the increasing number of the 

subsequent rows. The opposite occurs for a trial with 
right motor imagery. For classification of the left 
and right trials, the variances have to be extracted as 
reliable features of the newly designed N time series. 
However, it is not necessary to calculate the 
variances of all N time series. The method provides 
a dimensionality reduction of the EEG. Mueller-
Gerking and colleagues (Mueller, 1999) showed that 
the optimal number of common spatial patterns is 
four. Following their results, after building the 
projection matrix W from an artifact corrected 
training set XT, only the first and last two rows (p=4) 
of W are used to process  new input data X. Then the 
variance (VARp) of the resulting four time series is 
calculated for a time window T. After normalizing 
and log-transforming, four feature vectors are 
obtained. 

















 

4

1

log

p p

p
p

VAR

VAR
f  (2)

With these four features a linear discriminant 
analysis (LDA) classification is done to categorize 
the movement either as left-hand or right-hand. 

2.2 Data Processing 

EEG data were recorded over 63 positions (see Fig. 
1) or 27 channels (see Fig. 2) of the motor cortex, 
using active electrodes (g.LADYbird, g.tec medical 
engineering GmbH, Austria). A multichannel EEG-
amplifier was used (g.HIamp, g.tec medical 
engineering GmbH) to record the data with a 
sampling frequency of 256 Hz. The workflow model 
is shown in Fig 3. The sampled data went into a 
bandpass filter (Butterworth, 5th order) before the 
four spatial filters were applied. The variance was 
computed for a moving window of one second. 
Normalization is done according to Eq. (2). Finally, 
the LDA classification drives the feedback block of 
the paradigm.  

2.3 Paradigm and Sessions 

Before the tests started, the healthy users (all male 
between 25 and 30 years old; all right handed) were 
trained on motor imagery tasks until their 
performance was stable. After that, the two sessions 
with different feedback were executed. The 
workflow can be seen in the middle of Fig. 3. Each 
session consisted of seven runs; each run included 
20 trials for left-hand movement and 20 trials for 
right-hand movement in a randomized order. The 
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Figure 1: Spatial patterns for S1 during VRFB runs 2, 3, 4 
and 5. The upper panel shows the first spatial filter that 
sets higher weights to electrodes around the region of C3. 
The lower panel is the last spatial pattern that sets more 
weight to the region around C4. The single small spots 
show the 63 used electrode positions. C3, Cz and C4 are 
marked separately. 

 

 

Figure 2: Spatial patterns for S1, during the same run as in 
Fig. 1. This time only 27 channels were used for 
computation. The single spots again show the electrode 
positions. 

first run (run1) was performed without giving any 
feedback. The resulting data were visually inspected, 
and trials containing artifacts were manually 

rejected. These data were used to compute a first set 
of spatial filters (CSP1) and a classifier (WV1). 

With this first set of spatial filters and classifier, 
another four runs (run2, run3, run4, run5) were 
performed while giving online feedback to the user. 
The merged data of these four runs (run 2, 3, 4 and 
5) were used again to set up a second set of spatial 
filters (CSP2) and a classifier (WV2) that used a 
higher number of trials and was more accurate. 
Finally, to test the online accuracy during the 
feedback sessions, two more runs (run 6, run 7; 
merged data: run 6 and 7) were done.  

Each trial lasted eight seconds, between each 
trial there was a random intertrial interval between 
0.5s and 1.5s. After two seconds, a beep directed the 
user to the upcoming cue. The cue-phase, during 
which the subject was told to perform either an 
imagination of the left or right hand, started at 3s 
and stopped at 4.25s. The end of the cue-phase was 
marked by a second beep. The feedback-phase 
started at 4.25s and lasted until the end of the trial 
(8s). The user was asked to perform the MI from the 
beginning of the cue-phase until the end of the 
feedback-phase. 

Comparing the presented cue and the classified 
movement, an error rate can be calculated. The error 
rate, as displayed in Table 1, is calculated by 
applying CSP2 and WV2 onto the merged datasets 
run 6 and 7. The classifier and the errors are 
calculated every half a second. For every such 
calculation, the classifier was applied to the features 
and the classification result compared to the cue, 
resulting in the error rate that was averaged over all 
trials.  

2.4 Feedback Strategies 

Feedback strategy number one (bar feedback; bFB) 
is quite common for motor imagery tasks. A bar 
begins in the middle of the computer screen and 
expands either to the left or the right of the screen. If 
a left-hand movement is detected, the bar grows to 
the left; for a right-hand movement, it extends to the 
right side. The length of the bar is proportional to the 
classified LDA-distance. During the cue phase, in 
addition to the bFB, a red arrow points to the left or 
to the right side of the screen, indicating to the user 
which MI he or she should perform. 

Within the virtual reality feedback (VRFB) task, 
a virtual reality research system (g.VRsys, g.tec 
medical engineering GmbH, Austria) is used. The 
user sits in front of a 3D-PowerWall wearing shutter 
glasses. The size of the PowerWall is 3.2m x 2.45m, 
and the distance between PowerWall and user is 
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Figure 3: Workflow of the model. The biosignal amplifier records the data that is bandpass-filtered between 8 Hz and 30 
Hz. Four CSPs are applied, and the variance within a moving window T of one second is computed. The LDA classifier is 
then applied to the normalized variances. The output of the classifier drives the feedback block that gives feedback 
according to the chosen session. 

about 1.5m. The user sees the left and right hands of 
an avatar from a subjective point of view (see Fig. 
4). The only movement the avatar performs is the 
continuous opening and closing of either the left or 
the right hand. No modulation of the speed of the 
movement is done. During the cue-phase (from 
second 3 until second 4.25 of the experiment), the 
user needs to know which MI has to be performed. 
In the VRFB task, the opening/closing of one of the 
hands provides this information. After second 4.25, 
a second beep appears, and the observed movement 
of the avatar is the feedback to the performed MI. 

 

Figure 4: Virtual reality feedback. During the feedback 
session, the fingers of either the left or the right hand close 
and open according to the classified movement. 

3 RESULTS 

Table 1 summarizes the results from the three 
subjects. For each session, the averaged error rate 
over all trials and over the single time-steps starting 
from 3.5s until 8s is shown. These values reflect the 
accuracy resulting from applying CSP2 and WV2 to 

the data of runs 6 and 7, and show the online 
accuracy that the users experienced during these 
runs. The number in parentheses shows the 
minimum error for the single time-steps. For S1 and 
S2 the error rate was recorded twice: once with all 
63 channels and again when cutting out 27 channels 
(positions are shown in Fig. 2). This reflects of 
course only an estimated error rate that the user 
would have experienced if only the subset of 27 
electrodes would have been used. For S3 only the 27 
channels were recorded. In three out of four sessions 
the error rate increased as the number of electrodes 
was reduced, but in one session, it increased from 
14.8% up to 19.8% (S1, VFRB). The minimum error 
rate increased in three sessions and stayed constant 
in one of them (S1, bFB).  

Table 1: Results from the six sessions. The first number in 
each cell shows the mean error rate beginning from 3.5 
seconds until 8 seconds. The number in parenthesis shows 
the minimum error rate within this time.  

  bFB VRFB 

Subject 27ch 63ch 27ch 63ch 

S1 12.8 (2.5) 12.75 (2.5) 14.8 (5) 19.8 (4.5)

S2 20.8 (11.25) 19.9 (5.0) 25 (12.5) 19.2 (5.9)

S3 25.0 (8.0)   21.8 (10.0)   

mean 19.5 (7.25) 16.3 (3.75) 20.5 (10.1) 19.5 (5.2)

Fig. 5 shows an example of the error rate from 
S1 during the two sessions that used all 63 channels 
for classification. The black line at three seconds 
indicates the onset of the cue. The error rate before 
the cue is about 50 percent and then drops below ten 
percent for both sessions. It stays below ten percent 
from second 5.5 until the end of the trial, showing 
the good control the subject had.  
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Figure 5: Error rate from the two feedback runs for S1. 
The vertical bar indicates the cue onset. 

Table 2 summarizes the accuracy results of the 
seven subjects using all 63 channels. The average 
and min error rate has been calculated in the same 
way as the Table 1. The results show a significant 
performance variance between subjects. In three out 
of seven subjects, the error rate increased with the 
VRFB, but overall, the bFB yielded worse results 
compared to the virtual reality (S1, S2, S4 and S6). 
Better results are under 5% error in 3 subjects (S2, 
S6 and S7).   

Table 2: Accuracy of 7 subjects using the 63 channel 
system. The first number shows the mean error rate, and 
the second number shows the minimum error rate. The 
accuracy has been calculated using data trials beginning 
from 3.5 seconds until 8 seconds. 

 bFB VRFB 

Subject Mean Err. Min. Err. Mean Err. Min Err. 

S1 42.30% 33.80% 37.30% 31.30% 

S2 5.50% 0% 3.20% 0% 

S3 35.50% 20% 37% 25% 

S4 45.70% 37.50% 30.70% 25% 

S5 5.20% 2.50% 14.10% 5% 

S6 17% 11.30% 5% 1.30% 

S7 3.90% 1.30% 4.60% 0% 

mean 22.16% 15.20% 18.84% 12.51% 

4 CONCLUSIONS 

This study compared two different feedback 
strategies for performing MI for stroke 
rehabilitation. The VRFB provided realistic 
feedback that was similar to the imagined 
movements. Hence, we expected this strategy would 
lead to better classification. This hypothesis was not 
consistent with the results. In fact, performance was 
slightly worse with the VRFB in comparison to the 
bFB sessions. After the sessions, subjects said that it 
was quite disturbing when the classifier did a 
misclassification and hence the “wrong” hand 
moved during the VRFB session. We propose that 
this mismatch between expected and actual feedback 
was primarily responsible for both this cognitive 
dissonance and worse performance. In future 
studies, we will test to give only feedback when the 
correct hand is classified. 

The BCI performs better using 63 EEG-channels 
instead of 27. This result should encourage the use 
of larger montages when practical. Furthermore, the 
comparison of the spatial patterns shows that 
electrodes that are mounted over the motor cortex 
and near C3 and C4 (which are present in the 63 and 
27 channels configurations) are the most important. 
Also, positions that are not part of the 27 channel-
configuration play an important role for 
classification.  

The results we obtained with 64 electrodes 
encourage us to test 128 EEG-channel montages in 
future work. Also, the current study shows results 
achieved by healthy users only. A future goal will be 
to utilize the lessons learned here for rehabilitation 
of patients suffering stroke. 
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