
Discovering Data Quality Issues in Service-oriented Architectures
A Framework and Case Study

Plamen Petkov, Markus Helfert and Thoa Pham
School of Computing, Dublin City University,

 Glasnevin, Dublin 9, Ireland
{ppetkov, markus.helfert, thoa.pham}@computing.dcu.ie

Keywords: Service Oriented Architectures, Service Composition, Data Quality, Data Monitor, Business Rules,
Business Process, Quality of Service.

Abstract: In this paper we examine web services from a data quality perspective. Based on a data quality management
approach, we propose a framework for analysing data produced by the composite service execution. Apart
from other monitoring tools available which targeting the technical aspect of service composition – service
time response, service throughput and etc., we propose data consistency and accuracy monitoring, focusing
on the business value of the data produces by the services. We developed framework that will store business
rules into a rules repository. By analysing service data against the rules we will be able to identify problems
in service composition and execution. Moreover taking into account the Quality of Service (QoS) we are
able to provide an approximate location of the error.

1 INTRODUCTION

As a result of the global networks, information
systems progress, and the need for flexibility,
traditional closed, static and centralized architectures
have evolved to dynamic and heterogeneous. The
tasks of developing completely new applications,
making certain adaptors for legacy systems, or
rewriting present applications are now outdated.
Principally boosted by Web services connectivity,
service-oriented architectures (SOA) are now
considered the preferred way to designing an
information system. SOA endeavours to provide
existing functions of an information system as
"services" that can be accessed in a loosely coupled
way (Papazoglou, 2007), independently from the
technical platform. The architecture is seen as an
orchestration of requests for those services.
Generally, In SOA, workflow or orchestration
processes are fundamental.

However in more complex architectures
orchestrating the services can be difficult to handle.
There is no efficient way to managing such
architectures without having the awareness of the
data, processes and events running within the
enterprise environment. To support the process of
orchestrating, as well as development and evolving
progress, a monitor tool(s) must be integrated. These

tools, of course, must comply with business
requirements, in order to achieve adequate
surveillance result.

In other words, management tools and
techniques are inadequate without using an
appropriate monitoring. Thus why, crucial assistant
for proficient and effective deployment and
operation of an SOA-based net-centric system is a
comprehensive monitoring capability. Nevertheless,
present monitoring solutions fall short with respect
to such systems because they do not hold the
capabilities to implicitly aggregate metrics,
effectively detect inconsistent or inaccurate data, and
so to provide comprehensive shared situational
perception.

In this paper we propose data quality monitoring
approach by developing framework that will be able
to identify data quality problems.

The remainder of the paper will be structured as
follows: Section 2 describes the importance of
Quality of service (QoS) for service selection. In this
section we also present some data quality issues
related with service composition. In Section 3 we
propose framework that will identify and localize the
data related problems. In section 4 deals with simple
case study and discussion of our framework.
Finally, conclusions are presented along with
suggestions for future work.

72
Helfert M., Petkov P. and Pham T.
Discovering Data Quality Issues in Service-oriented ArchitecturesA Framework and Case Study.
DOI: 10.5220/0004461300720080
In Proceedings of the Second International Symposium on Business Modeling and Software Design (BMSD 2012), pages 72-80
ISBN: 978-989-8565-26-6
Copyright c© 2012 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 TOWARD TO MONITORING
UTILIY IN SOA

2.1 Importance of Service Selection

Web services are the key technology in SOA, in
which services are considered as “autonomous,
platform-independent entities that can be described,
published, discovered, and loosely couple in novel
ways” (Papazoglou, 2007). A service oriented
application includes a service provider and a service
requester. A service discovery agency (e.g.
Universal Description Discovery and Integration
UDDI)) may act as intermediate between provider
and requester and provides functionality to promote
available services. The service provider defines a
service description and publishes it (to the agency).
After retrieving a suitable service, the service
requester is able to invoke that service (The SoA
Open Group). In this regard, service composition
encompasses the process of searching and
discovering relevant services, selecting suitable web
services of best quality and finally composing these
services to achieve an overall goal that usually in a
business context aims to support an underlying
business process.

The Publish – Discover – Binding schema is
depicted below.

Figure 1: Publish – Discover – Binding.

On reviewing prominent approaches for service
discovery, it appears they mainly involve functional
attributes of service advertised in the service
description. These include service type, operation
name, input/output data format and semantics (Zeng,
2003). In order to select suitable services, quality of
service (QoS) evaluation is usually used as approach
for service selection among many services of similar

functionality. In literature, many approaches have
been proposed to measure QoS with non-functional
quality criteria. QoS dimensions often refer to non-
functional criteria that include execution price,
execution duration, reputation, reliability and
availability (Jeong, 2009).

Meanwhile the functional quality of a set of
composed services receives little attention. Often, it
is assumed that the service functions execute
according to the stated and published service
description. However, as with any execution and
operation of applications, this may not be the case.
Indeed, discussions with practitioners show, web
services often do not fulfil the functional quality and
thus the expected output is not achieved. In contrast
to other research, we consider this problem and
provide a framework that can help to detect some of
the problems during the execution of the services.

Service selection is crucial stage in service
composition and QoS act as blueprint of SoA
reliability. QoS could also play significant role into
service composition monitoring as we will show
later in this paper.

2.2 Data Quality Issues in Web Service
Composition

Data can be considered as output/input product of
service orientated composition and execution. The
product quality is key factor for entrepreneurs and
customers. Therefore the quality of data component
is the most important in a SoA project. Moreover,
data can be manipulated by different parties like
portals, devices or even orchestration engine. This
means that data quality is mirror reflection of the
quality of overall SoA implementation. Many
researchers have been done investigations about
defining Data Dimensions (Wand 1996), Data
Quality Requirements Analysis and Modelling
(Wang, 1998). However most of these studies apply
to monolithic information systems. Since the
introduction of the composite architecture few
researcher take into account data quality issues
(Thoa and Helfert, 2011).

Incorporating quality issues into web service
composition and execution (WSCE), is a major
problem regarding the application integrity.
(Fishman, 2009) represented the problem with bad
data quality in SoA by comparing the different
services with animals and human – they are different
by nature but share the same diseases. In other
words, integrating an application into SoA, which
does not comply with the business rules and thus
provides inaccurate or inconsistent data, can affect

Discovering Data Quality Issues in Service-oriented Architectures - A Framework and Case Study

73

all other applications and cause cumulative effect of
errors typical for system development lifecycle.
Figure 2 illustrates the service composition and
service incompliance.

Figure 2: Data incorporation in SoA framework.

As it can be seen from the diagram,
incompliance at service level (Application A) can
‘spread’ all irrelevant data through the Service
Enterprise Bus to all other application and its
databases (Master enterprise data, Composite
Application C and its database D). Note that
Application B has not its own database but it
supplies the whole infrastructure with functionalities
and thus it has been involved indirectly in the
process of distributing poor data – e.g. affecting
master enterprise database.

The data quality literature explored the most four
dimensions of data quality which are accuracy,
completeness, consistency, and timeliness (Wand,
1996).Corresponding to the functional quality of
WSCE, in this paper we will explore these
dimensions of data quality (Table 1). Analysing
those dimensions help to clarify the causes of poor
data quality in WSCE.

Taking into account quality issues in WSCE,
many approaches for static or dynamic web service
composition and execution have been developed
(Agarwal, Narendra, Silva, Zhang). However,
quality issues of mapping functional requirements to
service composition and execution are current.

Table 1: Quality Dimensions and problem description.

Quality
Dimension Problem description

Accuracy The data value does not correctly
reflect the real-world condition.

Consistency

The data values persist from a
particular data element of the data
source to another data element in a
second data source.
Consistency can also reflect the
regular use of standardized values,
particularly in descriptive elements

Completeness

Data element is always required to be
populated and not defaulted
Data element required based on the
condition of another data element

Timeliness

When two source data systems are
synchronized outside of a shared
transaction boundary, there exists a
timing window during which a service
accessing both systems may encounter
mismatched data.
The entity represents the most current
information resulting from the output
of a business event.

3 FRAMEWORK FOR
ANALYSING DATA QUALITY

The data quality analysing process will be separated
in two stages – problem discovery stage (1) and
problem localization stage (2).

In order to execute the process above, our
proposed framework is spitted into two modules.
The first module will be able to detect a data quality
issues. It follows a business rules-based approach to
data quality. Based on detected problem by the first
module and the QoS properties of the services, the
second module will be able to recommend a
particular service where the problem stems from. A
simple block schema along with the analysing
process is given on the Figure 3.

Figure 3: Data Analysing Framework.

(1)Discovery (2)Localization

Data Analyzing Framework

Detecting
module

Localizing
module

Analyzing process

Second International Symposium on Business Modeling and Software Design

74

3.1 Data Quality Issue Detecting
Framework

The proposed framework follows a business rules-
based approach to data quality. Business rules are
“statements that defines or constrains some aspects
of a business” A business rule is normally described
by the natural language, which can be reconstructed
in form of Event-Condition-Action (Bubenko and
Herbst), in form of If-Then expression, or in form of
<Subject> Must <constraints> (Morgan, 2002).
Based on our earlier work (Thoa and Helfert, 2011)
and the approach above, we developed a framework
for service composition that is presented in Figure 4.

In the next few paragraphs we will give more
detailed overview of our detecting module.

Business Process:
This block represents the conceptual business
process (BP) model that a service composition must
comply with. A BP model can be described with
BPMN, UML or EPC model. In our framework, we
are interested in the input and output of data of
activities/tasks in the BP. A part of the meta-data of
the BP model is stored in the Service Mapping and
Rule Repository (Figure 3).

Business Rules Specification:
This component concerns specifying business rules.
A business rule is related to one or many
activities/tasks in a business process and/or data
objects (1 and 2). The specified rules then are stored
in a Rule repository which could be relational
databases or XML files (3). The rule is usually in

form of If <Boolean logic expression>* Then
<Boolean logic expression>*, or an assertion of
aforementioned. <Boolean logic expression>* can
be composed of one or many Boolean logic
expressions combined together with logical
operators i.e. <Boolean logic expression> = <left
expression> <comparison operator> <Right
expression>. The left and right expression can be
mathematical formula, including data values, data
attributes, mathematical operations or aggregation
functions. Moreover logic expression consisting of
more logic expressions can be presented as binary
tree.

Service Mapping Repository:
This repository captures the mapping between
services to be composed to tasks/activities defined in
the underlying business process. A task corresponds
usually to a service, and a service can correspond to
one or many tasks. However in the case that a task
corresponds to many services, the service
composition is significantly more complex and is
currently not subject of this study. The information
is usually stored within the service composition
phase (8).

Service Log:
The service log captures specific events occurred
during the service execution. In our framework we
are particularly interested in events related to data
updates and changes. It is necessary to detect what
service instance in what composite service instance
writes what data to the database. Since in the most
service compositions the access to the service

Figure 4: Data problem discovery framework.

Discovering Data Quality Issues in Service-oriented Architectures - A Framework and Case Study

75

database is indirect, we cannot mine the data directly
Therefore our framework will work with the already
‘digested; data from service interface described with
WSDL. All these information should be stored in the
service log (9).

Although there are approaches to specify log
formats (Gaaloul, 2008), current approaches such as
the Common Log Format and Combined Log
Format of W3C are not sufficient for our approach
as they are not directly able to represent the required
information. Therefore, we propose a practical
oriented log file. The log file entries contain
following information:

<Entry>
<srv_location> …</Srv_location>
<Service_ID>… </Service_ID>
<instance_ID>… </ instance_ID>
<endPointName>… </endPointName>
<operationName>… </operationName>
<dataEntityName>… </dataEntityName>
<Data Value>...</Data Value>
</Entry>

The XML template can handle all data needed

for recording a problem. <endPointName> tag will
store the interface name of the service, while
<operationName> tag will store the function
delivering the error.

Data and Service Analysing
This component analyses the data produces by the
endpoint of the service against the rule repository.
Information about the service and data content
produced is reported using Service log template.

3.2 Problem Localization Framework

Problem localization process (figure 3 (2)) is a part
of overall data quality analysing process. This
process aims to provide approximate problem
location, since the problem can involve two or more
services. In fact, in service orientation environments
it is very likely that the problem is either in one or
another service.

In order to localize the potential error giving
service, we will propose localization framework will
provides us with estimate solution. To do so, we will
use the service log delivered by the problem
detection framework during the data issues
discoverer stage (figure 3 (1)). Moreover we will use
the Quality of Service (QoS) properties of the
‘infected’ services to decide which one is more
likely to be the source of the problem.

Base on approach above, we developed a
framework that is represented in Figure 5.

Figure 5: Framework for data problem localization.

The following paragraphs describe the main
elements of our framework.

Service Log
In section 3.1 we proposed a framework for
detecting quality issues and notating the services that
produce data into a XML log file. We also proposed
exhaustive log format that provides our localization
module with needed information.

The service log is been generated during the first
stage (discovery stage) of analysing process and acts
as a starting point for this framework. Logged data
then is passed to the ‘Problem localization’ element
(1) to be processed.

Service Repository and QoS Properties
Service Repository in a place where services
descriptions are store. Usually this repository is
called Universal Description Discovery and
Integration (UDDI) and supplies the ‘Problem
localization’ with service information (2).

Quality of Service block is vital in this
framework. This element contains all list with all
QoS properties concerning given Service(s). QoS
dimensions often refer different criteria but most of
them include execution price, execution duration,
availability and reliability. Reliability criteria are
maybe one of the most important one, in order to
localize objectively the problem. By reliability we
mean, least error productivity and least time that

Second International Symposium on Business Modeling and Software Design

76

service is out-of-order. For the sake of brevity, we
will not discuss QoS criteria further.

The QoS criteria are granted (3) to the
localization element for further treatment.

Problem Localization
Problem localization is the core element in our
structure. It provides the framework with the
following functionalities:

• collects the necessary data from the Service log
and Service repository along with appropriate
Quality of Service properties i.e. out-of-order
delivery

• performing a comparison (based on QoS
criteria) of the problematic services.

• prioritise the services using ‘the least reliable,
the more likely to be problematic’ method.

• ability to tracing a problem
• working up a detailed report and proposing

approximate problem location(4).
As you can perceive, because of the duality

nature of the problems, our methodology can
provide only rough solution of the problems.
Therefore we strongly recommend manually
examination on the generated by localisation
framework report and further investigation of
problems.

In the next chapter we will apply our data
analysing framework to given simple ‘package
booking’ study case.

4 CASE STUDY AND
DISCUSSION

The following case study illustrates the developed
framework with a common service that provides the
booking of travelling packages. The case study is
motivated by a real case study. Initially, customers
search information about available travel packages,
and then subsequently may book a flight and a hotel.
Once the booking is completed, the user pays the
total amount and confirms the booking.
Alternatively the user may cancel the booking. We
developed a service oriented application for Travel
package booking and analyzing data quality of the
application along the two phases: preparation and
analyzing.

Initially, a conceptual business process model for
the booking travelling package is modelled. Next,
the service composition process is realized; the
mapping information between the tasks of the BP
and individual services are stored. We suppose this
is a design time service composition. The service

composition can be described with BPEL based on
the orchestration depicted in Figure 6.

The composite service Booking package is
composed of a set of available services: Book Flight
service, Book Hotel service, and Payment service.
The flows of data/message between services are also
described in the orchestration.

Mapping services and tasks in BP are as
following table:

Table 2: Service mapping.

����� ��	
����
���	�������� �����������
����������� �
���	�������� ���	��������
����������� �
���� ���� ���� ����

4.1 Analysing: Problem Discovery
Stage

Once the study case framework is deployed and all
service contacts are made we are ready to move to
analysing stage and problem discovery stage. Mind
that business rules sored into rule repository are
design according to the business model,

For our case scenario we propose the following
rules:

R1: If the booking is confirmed then the
payment must be fully paid. This rule relates to
Payment task and Confirm booking task (see Figure
6) and is described with pseudo logic predicate
language as follows:

If PackageBooking.Status =
‘confirmed’ then
Payment.Status=’Full_Paid’

R2 and R3 relate to the Booking task and
Payment task. These rules state that if the Flight or
Hotels is booked, it must be paid:

R2: If Flight.Status = ‘booked’ then
Payment.Status=’Paid’

R3: If Hotel.Status = ‘booked’ then
Payment.Status=’Paid’

Once the rules are set up the needed data is ready
to be retrieved through services endpoints. Then this
data is analysed against the rules we composed.

If there is any data that violates a rule, then the
related operation will be identified based on
information stored in the rule repository. For
example, we will focus on R1 and suppose there are
incorrect data produced of the services it scope.

Discovering Data Quality Issues in Service-oriented Architectures - A Framework and Case Study

77

Table 3: Service Log Report.

Figure 6: Booking package service composition.

Assume there is a confirmed Booking which is not
fully paid. This relates to two service operation; one
related to the Booking (the local one) service and the
other to the Payment service. The rule R1 is related
to the tasks Payment and Confirm booking. A log
extraction of the occurred problem discovery is
displayed in Table 3.

The service log file records that during the
discovery stage the service BookingPackage returns
through its endpoint booking status of ‘confirmed’
while Payment service returns value of ‘unpaid’.

From the above information, we can identify that
the cause of the incorrect data is related to the
Payment service and the BookingPackage composite
service.

Although this is not enough to identify which of
the listed services is the problematic one. That is
why we will put into further investigation our
generated log file in next stage – ‘Problem
localization’.

4.2 Analysing: Problem Localisation
Stage

In this stage we will examine produced XML log in
the discovery stage, while taking into account the

QoS criteria of involved services. Based on detected
problem by the first module and the QoS properties
of the services, the second module will be able to
recommend a particular service where the problem
stems from.

It is very important that Quality of Service
criteria apply to all services which are part of the
problem. It is also essential that QoS criteria are
chosen in the context of the services and the
business process. Failing to fulfil the latter
requirements will result in invalid estimation by the
error localization module.

In our framework we will adhere to service
reliability QoS criteria. Reliability property of a
service can be number of errors generated for certain
period of time or time that service is out-of-order.

In this study case scenario we will take into
account number of erroneous transactions per
10000 units.

We want to remark that this is only example
criteria and there are many other criteria that
services can be compared. This is very important in
cases where two services have similar indexes.
Bearing in mind the aforementioned QoS property
and the affected services we apply our problem
localization framework. Problem localization then

Second International Symposium on Business Modeling and Software Design

78

performs a comparison based on the selected criteria
and prioritise the services using ‘the least reliable,
the more likely to be problematic’ method. Applying
to ‘booking package’ scenario, it will generate a
report which is given in Table 4.

Table 4: QoS Report Chart.

Service name QoS* Priority

Booking
Package 107/10000 1

Payment 12/10000 2

As the QoS dimensions may differs, for every

QoS criteria a new chat will be generated. The table
above shows that QoS measured for booking
package service is 107 incorrect transactions per
10000 committed while payment service gives only
12 per 10000. This comparison makes payment
service more trustworthy than the booking package
service. Therefore the source of the problem is more
likely to be the Booking package Service.

Despite of our efforts to deliver approximate
location of the problem, we do not disregard the
chance that the error may occur in the more
trustworthy service. That is why we encourage for
manual investigation by the system analytic.

5 CONCLUSIONS

Inspired from research in the area of data quality and
service oriented architectures, in this paper we have
presented a framework for monitoring web service
composition and execution. More specifically, we
have separated the monitoring process into two sub
processes, namely ‘problem discovery’ and
‘problem localization’.

We have proposed a framework and illustrated
relevantly every sub-process. The framework was
demonstrated using a case study.

Our problem discovery framework follows a
data quality management approach and incorporates
business rules concept. The core of latter is based on
the comparison of the business rules and the data
output of the services. Problem localization
framework, on the other hand, uses the output of the
first framework and the functional Quality of
Service criteria to provide system analytic with
approximately location of the problem.

Our approach differs from others well known
approaches by inspecting data delivered by the
services and Quality of Service properties.

In future we aim to improve the service log
technique in the discovery module as well as expand
some quality of service criteria used in localization
stage. We also aim to apply the concept in further
case studies.

ACKNOWLEDGMENTS

This work was supported by the Irish Research
Council for Science, Engineering and Technology
(IRCSET) under the Postgraduate Scholarship
Scheme.

REFERENCES

Agarwal V, Chafle G, Mittal S, Sribastava B (2008)
Understanding Approaches for Web Service
Composition and Execution, COMPUTE '08
Proceedings of the 1st Bangalore Annual Compute
Conference, ACM

Bubenko J, Jr & Wangler B (1993) Objectives driven
capture of business rules and of information systems
requirements. Proceedings of the International
Conference on Systems, Man and Cybernetics, 670

Fishman, Neal A. Viral Data in SOA: An Enterprise
Pandemic. IBM Press, 2009.

Gaaloul W, Baїna K, Godart C (2008) Log-based mining
technique applied to web service composition
reengineering, Service Oriented Computing and
Applications 2, pp.93-110.

Herbst H (1995) A meta-model for specifying business
rules in system analysis. Proceedings of CaiSE’95,
186–199.

Jeong B, Cho H, Lee C (2009) On the functionality
quality of service (FQoS) to discover and compose
interoperable web services, Expert Systems with
Applications 36, pp.5411-5418.

Morgan T (2002) Business Rules and Information
Systems: Aligning IT with Business Goals, Addison-
Wesley, Boston, MA.

Narendra NC, Orriens B (2007) Modelling Web Service
Composition and Execution via a Requirement-Driven
Approach, ACM SAC’07, Korea.

Papazoglou M.P, Traverso P, Dustdar S, Leymann F
(2007) Service-Oriented Computing: State of the Art
and Research Challenges. IEEE Computer,
November, 64-71.

Silva E, Pires LF, Sinderen MV (2009) On the support of
Dynamic Service Composition at Runtime, Springer-
Verlag, ICSOC’09.

The Business Rules Group: www.thebusinessrules
group.org

* incorrect transactions per 10000 units

Discovering Data Quality Issues in Service-oriented Architectures - A Framework and Case Study

79

The Open Group: Service Oriented Architecture, http://
www.opengroup.org/projects/soa/

Thoa P., Helfert M. Monitoring Information Quality
within Web Service Composition and Execution.
Dublin City University, ISD 2011.

Zhang D (2004) Web Service Composition for Process
Management in E-Business. Journal of Computer
Information Systems pp.16-18.

Zeng L, Benatallah B, Dumas M, Kalagnanam J, Sheng
QZ (2003) Quality Driven Web Service Composition,
ACM WWW.

Wand Y, Wang R. (1996) Anchoring Data Quality
Dimensions in Ontological Foundations,
Communications of the ACM, November 1996. pp.
86–95

Wang R (1998) A product perspective on total data
quality management. Communication of ACM 41

Second International Symposium on Business Modeling and Software Design

80

