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Abstract: In this position paper we propose to enhance learning algorithms, reinforcement learning in particular, for 
agents and for multi-agent systems, with the introduction of concepts and mechanisms borrowed from 
associative learning theory. It is argued that existing algorithms are limited in that they adopt a very 
restricted view of what “learning” is, partly due to the constraints imposed by the Markov assumption upon 
which they are built. Interestingly, psychological theories of associative learning account for a wide range of 
social behaviours, making it an ideal framework to model learning in single agent scenarios as well as in 
multi-agent domains. 

1 INTRODUCTION 

Emergent technologies such as the Internet demand 
personal, continuously running, independent 
systems. Therefore, for software systems to perform 
successfully in real-life applications they must be 
able to behave in an autonomous, flexible manner in 
unpredictable, dynamic, typically social domains. In 
other words, new software systems are agents. 

As any other concept in computer science, 
defining agency is controversial. A weak notion 
prescribes autonomy, social ability, reactivity, and 
pro-activeness, to which a strong one adds various 
mental states, emotions, and rationality. How these 
features are reflected in the system’s architecture 
will depend on the nature of the environment in 
which the agent is embedded and on the degree of 
control that the designer has over this environment, 
the state of the agent, and the effect of its actions on 
the environment. 

It can be said, therefore, that, at first glance, 
learning does not seem to be an essential part of 
agency. In fact, agent research has moved from 
investigating agent components, including learning, 
to multi-agent systems organization and 
performance.  

Yet, one of the main arguments against 
considering learning as a requisite for agency is that 
there are scenarios in which agents can be used and 
learning is not needed.  For example, little can be 

learned in accessible domains where agents can 
obtain complete, accurate, up-to-date information 
about the environment's state, or in deterministic 
domains where any action has a single guaranteed 
effect, or in static domains where the environment 
remains unchanged unless an action is executed. 

It is our contention though that in such domains 
agents are not strictly necessary and that applying 
object-oriented (OO) technology would suit best the 
requirements and constraints the designers must 
meet and abide by. Put roughly, if you can use 
objects, do not use agents. Unlike agent-oriented 
technology, OO technology is well established and 
understood, and enjoys clear modeling and 
specification languages (UML) and programming 
languages (Java, C++). On the other hand, as stated 
in (Alonso, 2002), a Unified Agent Modeling 
Language is still under development, and although 
some OO features such as abstraction, inheritance 
and modularity make it easier to manage 
increasingly more complex systems, Java (or its 
distributed extensions JINI and RMI) and other OO 
programming languages cannot provide a direct 
solution to agent development.  

On the other hand, agents are ideal for uncertain, 
dynamic systems. The “Laws of Software 
Evolution”, particularly, those referring to 
“continuing change” and “increasing complexity” 
have proven true with the growth of the Internet, and 
the arrival of cloud computing, and agile computing. 
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Certainly, it has become increasingly complicated to 
model and control the way software systems interact 
and get co-ordinated. Designers cannot foresee in 
which situations the systems will encounter 
themselves or with whom they will interact. 
Consequently, such systems must adapt to and learn 
from the environment so that they can make their 
own decisions when information comes. To sum it 
up, agents need to learn in real-life domains. 
Therefore, in real-life domains, learning is essential 
to agency.  

We need to be more specific however: Various 
machine learning methods, notably supervised 
learning methods, are not easily applied to real-life 
domains since they typically assume a “teacher” 
which can provide the agents with the correct 
behaviour for a given situation. Thus the large 
majority of the papers in this field have used reward-
based methods. In turn, reward-based learning 
literature may be approximately divided into two 
subsets (Stone and Veloso, 2000): reinforcement 
learning methods which estimate value functions; 
and stochastic search methods such as evolutionary 
computation, simulated annealing, and stochastic 
hill-climbing, which directly learn behaviours 
without appealing to value functions. In this paper 
we focus on reinforcement learning.  

The rest of the paper is structured as follows: In 
the next two sections, we will survey reinforcement 
learning techniques applied to single-agent and 
multi-agent scenarios respectively. Then, our 
proposal to improve existing reinforcement learning 
models and algorithms (Q-learning in particular) by 
incorporating associative principles currently used to 
explain trial and error learning in animals is 
introduced. We shall finish with conclusions. 

2 SINGLE-AGENT LEARNING 

2.1 Reinforcement Learning 

Reinforcement learning has been defined as learning 
what to do – how to map situations to actions – so as 
to maximise a numerical reward signal.  

In its simplest form, the reinforcement learning 
problem is presented as follows: An agent exists in 
an environment described by some set of possible 
states. Each time it performs an action in some state 
the agent receives a real-valued reward that indicates 
the immediate value of this state-action transition. 
This produces a sequence of states, actions, and 
immediate rewards. The agent’s task is to learn an 
optimal control policy, i.e., a policy that maximizes 

the expected sum of rewards, with future rewards 
discounted exponentially by their delay. In other 
words, the idea is to learn a policy that maximizes 
the cumulative value for all the states. The learner is 
not told which actions to take, but instead must 
discover which actions yield the most reward by 
exploiting and exploring their relationship with the 
environment. Typically, actions may affect not only 
the immediate reward but also the next situation and, 
through that, all subsequent rewards. These two 
characteristics, trial and error search and delayed 
reward, are the two most important features of 
reinforcement learning.  

2.2 Techniques 

Several techniques have been used to solve this 
problem, namely: Dynamic Programming, Monte 
Carlo methods, and Temporal Difference learning 
(Sutton and Barto, 1998). These techniques work 
under different assumptions about the model of the 
environment they use, and about whether or not they 
bootstrap, that is, whether or not they update 
estimates based on other learned estimates, without 
waiting for a final outcome. Dynamic Programming 
refers to a collection of algorithms that can be used 
to compute optimal policies given a perfect model of 
the environment. Because of the unrealistic nature of 
this assumption, and their great computational 
expense, classical dynamic programming algorithms 
are of limited utility. In contrast, Monte Carlo 
methods require only experience – sample sequences 
of states, actions, and rewards from on-line or 
simulated interaction with the environment. Without 
prior knowledge of the environment’s dynamics 
these methods can still attain optimal behaviour. 
Finally, Temporal Difference learning is a 
combination of Monte Carlo ideas and Dynamic 
Programming ideas. Like Monte Carlo methods, 
they can learn directly from raw experience. Like 
Dynamic Programming, Temporal Difference 
methods do bootstrap.  

Temporal Difference methods are the most 
commonly used reinforcement learning techniques 
due to their great simplicity. They can be applied on-
line to experience generated from interaction with an 
environment, and they can be expressed nearly 
completely by simple equations that can be 
implemented with small computer programs. 
Allegedly the most popular reinforcement learning 
algorithm is Q-learning, an off-policy algorithm 
where the optimal expected long-term return is 
locally and immediately available for each state-
action pair. A one-step-ahead search computes the 
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long-term optimal actions without having to know 
anything about possible successor states and their 
values. Under certain assumptions, Q-learning has 
been shown to converge with probability 1 to the 
optimal policy.  

2.3 Problems 

Regardless of their popularity in the machine 
learning community several difficulties have so far 
prohibited the application of reinforcement learning 
techniques to real-life problems: 
1. Exploration-exploitation balance: Unlike other 
machine learning paradigms, reinforcement learning 
assumes that, for optimal performance, agents 
explore (state-action pairs for which the outcome is 
unknown) and exploit (those state-action pairs for 
which rewards are known to be high). Finding the 
right balance between exploration and exploitation is 
not, however, a straightforward exercise;  
2. Temporal discounting: A discount factor is set 
for delayed rewards representing the fact that it is 
preferred to obtain the reward sooner rather than 
later. The problem is that small discounts can make 
the learner too greedy for present rewards and 
indifferent to the future, while large discounts slow 
down learning;  
3. Generalisation: This approach does not allow for 
the “transfer” of learning between different yet 
similar situations. What is learned depends on the 
reward structure – if the rewards change, learning 
has to start over;  
4. Large state spaces: Despite the apparent success 
of systems that have incorporated function 
approximation algorithms that substitute lookup 
tables, for most practical tasks with large state 
spaces reinforcement learning fails to converge. 
Besides, it generates extreme computational costs 
when not dealing with small numbers of state-action 
pairs – which are very rare in any real learning 
scenario. For example, in Q-learning all state-action 
pairs must be repeatedly visited, which in practice 
means that many thousands of training iterations are 
required for convergence in even modest-sized 
problems. 

3 MULTI-AGENT LEARNING 

Broadly speaking, multi-agent learning is the 
application of machine learning techniques to 
problems involving multiple agents. We focus on a 
how reinforcement learning may be applied to multi-

agent systems. 

3.1 The Four Agendas 

Four agendas to solve the multi-agent learning 
problem have been identified (Shoham et al., 2003):  
a) The descriptive agenda asks how humans learn 
in a context of other learners; 
b) The distributed AI agenda focuses on how a 
central designer controls the way in which learning 
tasks are decomposed among different agents. Team 
Learning constitutes a variety of this kind of 
learning, where a learner discovers a set of 
behaviours for a team of agents. In this approach, 
multi-agent learning uses standard single-agent 
machine learning techniques to maximize global 
utility;  
c) The equilibrium agenda studies the problem of 
multi-agent learning from a game-theoretic 
perspective. This proposal pivots around the concept 
of Nash equilibrium: No single agent should have a 
rational incentive (in terms of a better payoff) to 
change its individual strategy away from the 
equilibrium. The theory of learning in games 
provides the designer with many useful tools for 
determining the possible equilibrium points of such 
a system, and has thus been the most popular in the 
multi-agent learning community; 
d) The AI agenda adopts the “optimal agent design” 
perspective and does not consider the equilibrium 
concept to be central or even necessarily relevant. 
Instead, single-agent learning where there is only 
one learner trying to maximise its own utility value 
is used, and the behaviours are plugged into only 
one agent rather than distributed amongst multiple 
agents. 

3.2 Reinforcement Learning and the 
Equilibrium Agenda 

Supervised learning methods such as artificial neural 
networks and pattern recognition are not easily 
applied to the multi-agent learning since they 
typically assume a critic which can provide the 
agents with the correct behaviour for a given 
situation, an unrealistic assumption when dealing 
with large collections of independent agents. Thus 
the large majority of papers in this field have used 
reward-based methods, reinforcement learning 
methods in particular, to the extent that the Multi-
Agent Learning problem can be re-defined as the 
Reinforcement Learning problem for Multi-Agent 
Systems. Different options have been explored: 
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 The simplest way to extend single-agent Q-
learning algorithms to multi-agent Stochastic Games 
(SG) is just to add a subscript to the original Q 
formula, that is, to have the learning agent pretend 
that the environment is passive (e.g., Sen et al., 
1994). However simple this technique may be, the 
definition of the Q-values assumes incorrectly that 
they are independent of the actions selected by other 
agents; 
 To solve this problem Littman (Littman, 1994) 
suggested a minimax Q-learning algorithm for zero-
sum games (two-person strictly competitive games 
where what one gains, the other loses). The problem 
is that minimax-Q is no longer well motivated in 
general-sum SGs;  

 One alternative is to try to explicitly maintain a 
belief regarding the likelihood of the other agents’ 
policies, and update the value function based on the 
induced expectation of the Q-values. Claus and 
Boutilier implemented such an idea with Joint 
Action Learners in the context of common-payoff 
games (aka team games or pure co-ordination 
games) in which agents that receive the same pay-
off at each outcome co-operate (Claus and Boutilier, 
1998); 

 Hu and Wellman proposed Nash-Q learning that 
updates the values based on some Nash equilibrium 
on a special class of SGs (Hu and Wellman, 2001). 
For general-sum games, several refinements of such 
an algorithm have been implemented, e.g., the 
Friend-or-Foe algorithm (Littman, 2001), 
Correlated-Q learning (Greenwald et al., 2002), 
EXORL (Suematsu and Hayashi, 2002) and Optimal 
Adaptative Learning (Wang and Sandholm, 2002).  

3.3 Problems 

However interesting these results are, the fact is that 
the conditions for convergence are quite restrictive 
and the results awkward. Nash-Q attempted to treat 
general-sum SGs, but the convergence results are 
constrained to the cases that bear strong similarity to 
the already known cases of zero-sum games and 
common-payoff games. Furthermore, the constraints 
they impose are too strong: They must hold for the 
games defined by the intermediate Q-values 
throughout the execution of the protocol. It is 
extremely unlikely that the game will satisfy this 
condition, and in any case hard to verify at the outset 
whether it does.  

These unsatisfying aspects manifest a deeper set 
of issues. Regarding the use of Nash equilibrium in 
the execution of Nash-Q, such equilibrium has no 
prescriptive force resulting in the existence of 

multiple equilibria. Bowling and Veloso (Bowling 
and Veloso, 2001) did spot this problem and put 
forward two criteria for any learning algorithm in 
multi-agent settings, namely: (a) Learning should 
always converge to a stationary policy, and (b) 
learning should only terminate with a best response 
to play by the other agent(s). These are useful 
criteria, but they ignore the fact that one is playing 
an extended stochastic game. We again confront the 
centrality of Nash equilibrium to game theory, and 
whether it should play the same central role in AI. 

4 ASSOCIATIVE 
REINFORCEMENT LEARNING 

4.1 Proposal for Single Agents 

It has been argued that in order to solve highly 
complex problems, we must give up tabula rasa 
learning techniques and begin to incorporate 
psychological bias that will give leverage to the 
learning process. The necessary bias, we are told, 
can come in a variety of forms including shaping, 
local reinforcement signals, imitation, problem 
decomposition, and reflexes. Indeed, one historical 
thread of reinforcement learning concerns learning 
by trial and error, which has its roots in the 
psychology of animal learning. In particular, the 
“Law of Effect” includes the two most important 
aspects of trial and error learning, and hence of 
reinforcement learning: It is selectional (it involves 
trying alternative responses and selecting among 
them on the basis of their consequences) and 
associative (the response is associated with a 
particular situation). Unfortunately, such early 
theories have been proved wrong and, as a 
consequence, reinforcement learning techniques 
remain based on outdated principles. 

Our main proposal is to improve existing 
reinforcement learning models and algorithms (Q-
learning in particular) by incorporating current 
associative theories as follows: 
1. Reinforcement learning assumes that agents 
behaviourally “neutral”. We propose to introduce 
drives that will make the agent approach appetitive 
stimuli and avoid aversive ones. Moreover, 
exploration itself should be treated as an internal 
drive, i.e., the agent would tend to explore its 
environment by default;  
2. To endow agents with the ability to form various 
types of association other than simple stimulus-
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response (S-R) associations, a.k.a. habits, upon 
which reinforcement learning is based: 

 Stimulus-stimulus (S-S) associations that 
would allow the agent to learn about the 
relationships among the events that compose its 
environment;  

 Response-outcome (R-O) associations that 
inform the agent that a response will be followed 
by a particular outcome (goal-directed 
behaviour); 

3. To take into account associative theory's 
conception of event representation.  Reinforcement 
learning assumes that the events that enter into 
associations are irreducible entities. In contrast, 
learning theory maintains that the events that are 
associated are not unitary, but may be analysed as 
sets of component elements. Learning about an 
event is determined either by the summed 
associative strengths of the elements that comprise it 
(elemental theories) or by congifural cues; 
4. To redefine outcomes as comprising sensorial 
and motivational elements, subject to the following 
rules: 

 Both motivational and sensorial components of 
the outcome would be represented in associations 
involving that outcome;  
 Depending on their motivational value, 
outcomes can be appetitive or aversive. Thus the 
probability of a response will be increased if it is 
followed by an appetitive outcome, but will 
decrease if followed by an aversive outcome;  
 The unexpected omission of an event can also 
enter into associations – this is called inhibitory 
learning. The omission of an appetitive outcome 
constitutes an aversive event, and, conversely, 
the omission of an aversive outcome acts as an 
appetitive event; 
 Neutral stimuli can also gain reward value, by 
becoming associated with motivationally 
significant outcomes (second order 
conditioning); 

5. To take into account the fundamental conditions 
of association formation proposed by associative 
theory: 

 The contiguity of an event and an outcome is 
necessary but not sufficient for association 
formation. Relative predictive value (the 
outcome is not predicted by any other event that 
is present), surprisingness (the outcome is not 
fully predicted), and contingency (the probability 
of the association event-outcome) are 
fundamental pillars of association formation;  

 Reinforcement learning considers outcomes 
(rewards) as mere values, and fails to integrate 
them into the association. All current associative 
theories reject this assumption, because it fails to 
account for the fact that if a reward ceases to 
have value, it will no longer support responding.  

4.2 Proposal for Multi-agent Systems 

Regarding multi-agent learning, our proposal 
follows the AI agenda and studies multi-agent 
learning as learning in multi-agent scenarios. These 
are forms of single-agent learning in multi-agent 
systems where agents learn from interaction 
individually and separately. There may be 
interactions among the agents, but these interactions 
just provide input, which may be used in the other 
agents’ learning processes. Not the agents but their 
learning processes are, so to speak, isolated of each 
other. Each individual learner typically pursues its 
own learning goal without explicitly taking care of 
the other agents’ learning goals and without being 
guided by the wish or intention to support the others 
in achieving their goals. An agent, thus, learn ‘as it 
were alone’.  

Communication (not even indirect 
communication on which pheromone-based learning 
algorithms rely) or explicit co-ordination is not an 
issue therefore – co-operation and competition are 
not tasks to be solved but emergent properties of the 
environment. Likewise, agents do not have models 
of other agents’ mental states or try to build models 
of other agents’ behaviours. 

In such setting, the main criteria to measure an 
agent’s performance is not its ability to converge to 
an equilibrium in self-play. We ask what the best 
learning strategy is for a given agent for a fixed class 
of other agents in the game, that is, how to design an 
optimal (or at least effective) agent for a given 
environment. We follow the AI agenda in that we 
intend to place computational limitations on (the 
strategy space of) the agents. Such limitations 
should be given by recent advances in associative 
learning theories.  

Social psychologists have proved that social 
learning involves not only the use of social 
information. The effects of direct experience and the 
similarities between social learning and classical S-S 
conditioning are considered as crucial in 
understanding social behaviour (Griffin, 2004). For 
example, in the process of predator avoidance 
acquisition, the predatory cue is considered a 
conditional stimulus to which observers acquire 
avoidance responses after the stimulus has been 

Associative�Reinforcement�Learning�-�A�Proposal�to�Build�Truly�Adaptive�Agents�and�Multi-agent�Systems

145



presented in contiguity with an alarmed 
demonstrator, the unconditioned stimulus. More 
importantly, there are properties of socially acquired 
predator avoidance (e.g., the intensity of the 
unconditioned response increases with that of the 
unconditioned stimulus, and the fact that there is 
preferential learning about particular types of 
stimuli) that provide support of the idea that socially 
acquired behaviours are mediated by individual 
learning processes and not by independent social 
learning mechanisms. 

This line of research is complementary to the 
work done in imitation in the Artificial Intelligence 
community. Such approach has used social learning 
theories from psychology to develop adaptive agents 
that learn from others by observing their behaviour. 
In particular, (Mataric, 1994) has used vicarious 
reinforcement to deal with the Credit Assignment 
Problem.  

5 CONCLUSIONS 

It is our contention that the proposal outlined in this 
position paper will strengthen the connection 
between the study of computational and biological 
systems. In particular, the approach we advocate will 
contribute to answering the question of how 
psychological concepts such as motivation, attention 
and intention can be modelled in artificial organisms 
to affect adaptive behavioural modifications and 
control. 

Reinforcement learning algorithms have 
successfully been applied to simple domains in areas 
such as navigation robotics, manufacturing, and 
process control. More powerful algorithms will, no 
doubt, benefit larger scenarios in industrial 
applications such as telecommunications systems, 
air traffic control, traffic and transportation 
management, information filtering and gathering, 
electronic commerce, business process management, 
entertainment, and medical care.  
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