
Multiple Hypotheses Multiple Levels Object Tracking

Ronan Sicre1;2 and Henri Nicolas1

1LaBRI, University of Bordeaux, 351 Cours de la Liberation, 33405 Talence Cedex, France
2MIRANE SAS, 16 Rue du 8 mai 1945, 33150 Cenon, France

Keywords: Object Tracking, Motion Detection.

Abstract: This paper presents an object tracking system. Our goal is to create a real-time object tracker that can handle
occlusions, track multiple objects that are rigid or deformable, and on indoor or outdoor sequences. This
system is composed of two main modules: motion detection and object tracking. Motion detection is achieved
using an improved Gaussian mixture model. Based on multiple hypothesis of object appearance, tracking is
achieved on various levels. The core of this module uses regions local and global information to match these
regions over the frame sequence. Then higher level instances are used to handle uncertainty, such as miss-
matches, objects disappearance, and occlusions. Finally, merges and splits are detected for further occlusions
detection.

1 INTRODUCTION

Object tracking is an important task in the computer
vision field. There are two main steps in object
tracking: interest moving object detection and track-
ing these objects from frame to frame. Then anal-
ysis can determine the objects behaviors. Thus, ob-
ject tracking is used in various applications, such
as: motion-based recognition, automated surveil-
lance, traffic monitoring, human computer interac-
tion, etc.

Tracking can be defined as estimating the trajec-
tory of an object in the image, i.e. assigning consis-
tent labels to each tracked objects in the frames of
a video. The tracking process often provides object
size, orientation, area, or shape.

The main difficulties of tracking are: loss of in-
formation due to the 2D nature of the data, noises,
complex object motion, non-rigid objects, occlusions,
illumination changes, and real-time requirements.

To select a relevant method, we have to an-
swer various questions: What type of object do we
track? What model can efficiently detect these ob-
jects? What representation should be used for track-
ing? What information do we require for further anal-
ysis?

We are interested in tracking any object: de-
formable or non-deformable objects. We can use
a pixel-based background model to detect motion.
Tracking can be achieved by matching regions fea-

tures that are likely to remain stable from one frame
to the next, such as color, size, surface area, etc. We
want to precisely detect objects shape and contours,
for further behavior analysis in a shopping setting
(Sicre and Nicolas, 2010) for example.

2 PREVIOUS WORK

This section presents motion detection and object
tracking. For an overview of the field the reader can
refer to (Hu et al., 2004), (Yilmaz et al., 2006), and
(Moeslund et al., 2006).

2.1 Motion Detection

The aim in this phase is to distinguish the moving ob-
jects from the background. Most motion detection
techniques use a background model. Depending on
the type of model used, we can classify methods. The
model can be pixel based, local, or global.

Pixel based models associate to each pixel of an
image a value or an intensity function that gives the
appearance of the background. Local models use the
neighborhood of a pixel instead of the pixel itself to
calculate the similarity measurement. Global meth-
ods use the entire image at each moment to build a
model of the entire background.

In our study, we chose a pixel based model that
offers a good compromise between quality and speed.

355Sicre R. and Nicolas H..
Multiple Hypotheses Multiple Levels Object Tracking.
DOI: 10.5220/0004183103550360
In Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP-2013), pages 355-360
ISBN: 978-989-8565-48-8
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



2.2 Object Tracking

Once moving regions are detected, the following step
is to track these regions from one frame to another.
Tracking can be based on regions, contours, features
or a model (Yilmaz et al., 2006).

Region based tracking identifies connected re-
gions corresponding to each object in the scene, de-
scribes and matches them. Active contour uses the
shape of the detected regions to match them from one
frame to another. Feature-based tracking does not aim
at tracking an object as one entity. We do look here for
distinctive features that can be local or global. Model
based tracking can be done in various ways: articu-
lated skeleton, 2-D contours, 3-D volumes. For each
new image, detected regions are compared to models
previously built.

In this paper, we propose an object tracking
method based on regions and regions features. More
recent tracking system are presented in (Zhang et al.,
2012), (Yang and Nevatia, 2012), and (Pinho and
Tavares, 2009).

3 MOTION DETECTION

Motion detection uses a pixel based model of the
background. We use a method based on the Gaus-
sian mixture model (GMM) first introduced in (Stauf-
fer and Grimson, 2002). The GMM is composed of
a mixture of weighted Gaussian densities, which al-
lows the color distribution of a given pixel to be multi-
modal. Such a model is robust against illumination
changes.

Weight w, mean µ, and covariance S are the pa-
rameters of the GMM that are updated dynamically
over time. The following equation defines the proba-
bility density function P of occurrence of a color u at
the pixel coordinate s, at time t, in the image sequence
I.

P(I(s; t) = u) =
k

å
i=1

wi;s;tN(I(s; t);µi;s;t ;Si;s;t) (1)

Where N(I(s; t);µi;s;t ;Si;s;t) is the i-th Gaussian
model and wi;s;t its weight. The covariance matrix
Si;s;t is assumed to be diagonal, with s2

i;s;t as its diag-
onal elements. k is the number of Gaussian distribu-
tions.

For each pixel value, I(s; t), the first step is to
calculate the closest Gaussian. If the pixel value
is within Ts deviation of the Gaussian mean, then
parameters of the matched distribution are updated.
Otherwise, a new Gaussian with mean I(s; t), a large

initial variance, and a small initial weight is created to
replace the existing Gaussian with the lower weight.
Once Gaussians are updated, weights are normal-
ized and distributions are ordered based on the value
wi;s;t=si;s;t .

As proposed in (Zivkovic and van der Heijden,
2006), we improve the GMM by adapting the num-
ber of selected Gaussian densities. To select the most
reliable densities, we modify the calculation of their
weights. The weight is decreased when a density is
not observed for a certain amount of time.

wi;t = wi;t�1 +a(Mi;t �wi;t�1)�a cT (2)

Where a is the learning rate and Mi;t is equal to 1
for the matched distribution and 0 for the others. cT
is a scalar representing the prior evidence.

Pixels that are matched with any of the selected
distributions are labeled as foreground. Otherwise,
pixels belong to the background. We note that the
model is updated at every frame.

This method remains sensible to shadows. Thus,
we use a shadow detection algorithm. Shadows detec-
tion requires a model that can separate chromatic and
brightness components. We use a model that is com-
patible with the mixture model (KaewTraKulPong
and Bowden, 2001). We compare foreground pixels
against current background model. If the differences
in chromatic and brightness are within some thresh-
olds, pixels are considered as shadows. We calculate
the brightness distortion a and color distortion c as
follow:

a = argminz(I(s; t)� zE)2 and c = jjI(s; t)�aEjj
(3)

Where E is a position vector at the RGB mean of
the pixel background and I(s; t) is the pixel value at
position s and time t. A foreground pixel is consid-
ered as a shadow if a is within Ts standard deviations
and t < c < 1. Where t is the brightness threshold.

Finally, we modify the updating process to better
handle objects stopping in the scene. With the current
model, stopped people starts disappearing, because
they become part of the background. We modify the
updating process for the distributions parameters, i.e.
we do not update the model on areas that are consid-
ered as belonging to a tracked object. Tracked objects
are defined in the next section.

We introduce Fs;t that is a binary image represent-
ing these tracked objects. Fs;t is a filtered foreground
image where regions that were tracked for several
frames, or objects, are displayed. Pixels covered by
an object have value 1 while the others have value 0.
We modify the distribution parameters updating equa-
tions:

VISAPP�2013�-�International�Conference�on�Computer�Vision�Theory�and�Applications

356



wi;t = wi;t�1 +(1�Fs;t)(a(Mi;t �wi;t�1)�a cT )

µt = µt�1 +(1�Fs;t)(r(I(s; t)�µt�1)

s
2
t = s

2
t�1 +(1�Fs;t)r((I(s; t)�µt)

T (I(s; t)�µt)�s
2
t�1)

(4)

Where r = a h(Is;t jµk;sk). Once shadows are de-
tected and erased, morphological filters are finally ap-
plied on this result to reduce noises, fill holes, and
improve regions shape.

4 OBJECT TRACKING

Based on the motion detection, we want to match the
detected connected regions, or blobs, over the frame
sequence.

After presenting our problematic, the first step is
to merge regions, so these regions better match actual
persons. Then we match detected regions from two
consecutive frames. These matched regions are then
used to build and maintained an object list. Objects
are higher level instances that correspond to regions
that are tracked for several frames. In our application,
one object should correspond to one person or more
than one when an occlusion occurs. Finally, object
merge and split are detected to solve occlusions. Fig-
ure 1 shows the functional diagram of the system.

4.1 Multiple Hypotheses

In practice, a detected object, or person, can be cov-
ered by several disconnected regions, because the al-
gorithm misses part of the person, see figure 2. Thus,
we assume that a detected region can be:

� a part of a person

� an entire person

� a group of people

Therefore our system is complex and has to cope
with many cases.

4.2 Merging Regions

After filtering out small regions, there are two sep-
arated part in the merging process. First, relevant
merges are made. These merges are detected when
two regions bounding boxes overlap with a surface
area greater than a given value. After this process,
regions better match actual persons.

Then potential merges are considered. These
merges are less reliable and are detected when two
regions bounding boxes a slightly overlapping, when
regions are closed one to another, or when regions are

located in the same vertical axis. In fact, we assume
that a person is significantly taller than wide. We note
that this ratio depends on each person and on the cam-
era view point. Therefore, when several regions cover
a person, they should be closed one to another and
relatively in the same vertical axis.

The two types of merge have different effects on
the matching process. When two regions are reliably
merged, the two original regions become one merged
region. However, when two regions are potentially
merged, the two original regions are kept in the region
list and a new merged region is generated. Since we
are not sure about the reliability of these merges, we
use the following matching process to decide whether
merging is relevant or not. Figure 2 shows an example
of reliable and potential merge.

4.3 Frame to Frame Matching

In order to match regions, we first build a descrip-
tor for each of them. The descriptor is composed of
the region gravity centre position, size, position of the
bounding box centre, surface area, and first and sec-
ond order color moments.

We note that all these measurements allow us to
match regions of different size and shape. Therefore,
the selection of such feature is consistent with our hy-
potheses.

The regions’ matching is achieved by using a de-
scriptor matching algorithm, similar to (Matas et al.,
2004). We define two sets, or list, of regions descrip-
tors S1 and S2. S1 corresponds to the previous frame
and S2 to the current one. Two regions with descrip-
tors x 2 S1 and y 2 S2 are matched if and only if x is
the most similar descriptor to y and vice-versa, i.e.

8y0 2 S2ny : sim(x;y)> sim(x;y0) and

8x0 2 S1nx : sim(y;x)> sim(y;x0)
(5)

Where sim is the asymmetric similarity measure
defined below. To calculate sim, each component of
the descriptor is treated independently. The similar-
ity between the i-th component of x and y is equal to
1 if y i-th component is the closest measurement to
x i-th component. Otherwise, the similarity is equal
to 0. Closest measurements have smaller Euclidean
distance.

simi(x;y) = 1 i f 8y0 2 S2;simi(x;y)� simi(x;y0)
0 otherwise

(6)

The overall similarity measure is defined as fol-
lows

sim(x;y) =
n

å
i=1

w
i simi(x;y) (7)

Multiple�Hypotheses�Multiple�Levels�Object�Tracking

357



Figure 1: Diagram of the proposed object tracking method.

Where n is the dimension of the descriptor and wi

the weight of the i-th measurement. We choose to give
the same weight w0 = 1 to each measurement of the
descriptor. The calculation of sim(y;x) is analogous
with the roles of S1 and S2 interchanged.

An interesting property of this calculation is that
the influence of any single measurement is limited to
1. Another major property of this algorithm is that
measurements of different orders of magnitude can fit
together in the descriptor and are easily handled.

4.4 Matches Filtering and Regions
Identification

Once the matching process is achieved, we have cou-
ples of matched regions. We first filter these matches:
we remove under-regions, i.e. regions that are a part
of other matched regions. Then, we test matched re-
gions for relevant merging.

The next step is to identify regions. Regions re-
ceive the identification of the region they are matched
with, in the previous frame. If this region is not iden-
tified, we create an identity for the matched region.

4.5 Objects Identification

However, we need to achieve matching on several lev-
els to handle the uncertainty. We use objects to repre-
sent tracked regions. These identified objects use ex-
tra temporal information. We compare each matched
region with the list of tracked objects. There are two
main cases:

- A matched region corresponds to an object and
this object is corresponding to only one region. The
region is used to update objects information, such as
its location, size, surface, color, etc.

- No object is corresponding to a matched region;
this region can be a new object entering the scene or
an old object that was lost, due to an occlusion for ex-
ample. To retrieve an object after a miss-detection
or an occlusion, we reiterate the matching process.
However, we modify the descriptor by only keeping
the measurements that are invariant to displacement.
If the region is matched to an inactive object, we may

Figure 2: Diagram representing the merging process. After
filtering, we have three regions A, B, and C. B and C are
reliably merged. Then, A and BC are potentially merged
(blue bounding box).

have encountered an occlusion. Otherwise, a new ob-
ject is created and filled with the region’s information.

4.6 Merges - Splits Detection

We note that when an object disappears, during an oc-
clusion for example, as soon as this object reappears,
our method can not find a match to the detected re-
gion. Therefore, the algorithm tries to find a match
with an old object, as presented in the previous sec-
tion. This process already solves most occlusions.

However, some cases can be more complex and
then splits and merges offer us another clue to identify
occlusions.

Merge Detection. Several regions are merging when
these regions are considered as different identified re-
gions in the previous frames and then become one
single region at the current frame. For example, two
regions are tracked A, B and a region C = A;B rep-
resenting the potential merge of these two regions is
matched at the current frame. Then a merge just oc-
cur.

Split Detection. A region is splitting into several re-
gions when a tracked region is not matched at the
current frame and only its under-regions are matched.
For example, one potentially merged region C = A;B
is not tracked anymore and two under-regions are
matched at the current frame: A and B.

Occlusion Detection. We use several measurements
to define the consistency of these splits and merges.
First, we filter out small objects that can not corre-
spond to an entire person. Then, when a merge, or
split, occur we calculate if the concerned object(s)
was (were) tracked for a certain amount of time.

In fact, these events do not last for a long pe-

VISAPP�2013�-�International�Conference�on�Computer�Vision�Theory�and�Applications

358



Figure 3: The three left columns present motion detection results. The original frame is on the first row, the GMM on the
second, and the improved GMM (with shadow detection in grey) on the third. These results are obtained from V1, V2, and
LAB videos. The last column shows occlusion sequences from LAB and PETS datasets.

riod of time when they occur on a single person
that splits into several parts and merge back into one
piece. Moreover, when two tracked people meet, they
are usually tracked for a certain time before the en-
counter. Finally, we calculate the amount of time be-
tween the merge and the split. Based on these mea-
surements we can detect occlusions.

5 RESULTS

We first present some motion detection results. Figure
3 shows three images from three different sequences
and the detection results for GMM and iGMM. The
two first columns show that shadows detection im-
proves the detection results. The third column shows
the detection of a stopped person. iGMM detects
properly stopped objects where GMM fails to detect
them. Further evaluation of this method is presented
in (Sicre and Nicolas, 2011).

Then, we compare our method with four tracking
algorithms from OpenCV. These algorithm are com-
monly used and cover the main current tracking meth-
ods: a connected component with Kalmann Filter-
ing (CC) method, a mean-shift tracker initialized us-
ing motion detection (MS), a particle filtering method
using mean-shift weight (MSPF) (Korhonen et al.,

2005), and a combined CC tracker with particle fil-
tering to solve collisions (CCMSPF).

We first compare these trackers on partial and
complete occlusion sequences, see table 1. We use
our dataset showing shopping scenarios and videos
from PETS 2006 (Pet, 2013). The number of occlu-
sions correctly handled on the total number of occlu-
sions are presented in table 1. We note that tests are
achieved on more occlusions sequences for our tech-
nique. In fact, the other methods require a longer ini-
tialization phase. It is therefore not possible to com-
pare results on several videos because the other meth-
ods do not track the objects fast enough.

We finally achieve the task of counting cars for
traffic monitoring purposes, see table 1. We count
only objects that are tracked for at least 30 frames.
Based on the same detection, we test the various
tracking algorithms. Our method outperforms the
other methods on this task and is the second fastest
method, see table 1.

6 CONCLUSIONS

This paper presents our tracking algorithm. The
method is based on several hypotheses of the mov-
ing objects appearances. We match moving regions

Multiple�Hypotheses�Multiple�Levels�Object�Tracking

359



Table 1: Table relating the evaluation of several tracking algorithm on the task of counting vehicles and handling occlusions.

on several levels to cope with uncertainty and we de-
tect splits and merges to detect occlusions.

We compare our method with other tracking
method such as connected components, mean-shift,
particle filtering, and a combination of connected
components and particle filtering to manage occlu-
sions.

The proposed method can track more than a dozen
objects simultaneously. We track various types of
objects: deformable, non-deformable, with different
sizes. Tracking works indoors or outdoors and han-
dles various occlusions sequences. Finally, our sys-
tem can be used for real-time applications.

ACKNOWLEDGEMENTS

ADACIS sarl and CETE sud-ouest provided the traffic
sequences.

REFERENCES

(2013). PETS: Performance Evaluation of Tracking and
Surveillance.

Hu, W., Tan, T., Wang, L., and Maybank, S. (2004). A
survey on visual surveillance of object motion and be-
haviors. Systems, Man and Cybernetics, Part C, IEEE
Transactions on, 34(3):334–352.

KaewTraKulPong, P. and Bowden, R. (2001). An im-
proved adaptive background mixture model for real-
time tracking with shadow detection. In Proc. Euro-
pean Workshop Advanced Video Based Surveillance
Systems, volume 1. Citeseer.

Korhonen, T., Pertil, P., and Visa, A. (2005). Particle filter-
ing in high clutter environment. In Proceedings of the
2005 Finnish Signal Processing Symposium. FINSIG.

Matas, J., Chum, O., Urban, M., and Pajdla, T. (2004).
Robust wide-baseline stereo from maximally stable
extremal regions. Image and Vision Computing,
22(10):761–767.

Moeslund, T. B., Hilton, A., and Krger, V. (2006). A sur-
vey of advances in vision-based human motion cap-
ture and analysis. Computer Vision and Image Under-
standing, 104(2-3):90 – 126.

Pinho, R. and Tavares, J. (2009). Tracking features in image
sequences with kalman filtering, global optimization,
mahalanobis distance and a management model.

Sicre, R. and Nicolas, H. (2010). Human behaviour analy-
sis and event recognition at a point of sale. In IEEE,
editor, Proceedings of PSIVT PSIVT.

Sicre, R. and Nicolas, H. (2011). Improved gaussian mix-
ture model for the task of object tracking. In Com-
puter Analysis of Images and Patterns, pages 389–
396. Springer.

Stauffer, C. and Grimson, W. (2002). Adaptive background
mixture models for real-time tracking. In Computer
Vision and Pattern Recognition, 1999. IEEE Com-
puter Society Conference on., volume 2.

Yang, B. and Nevatia, R. (2012). An online learned crf
model for multi-target tracking. In Computer Vision
and Pattern Recognition (CVPR), 2012 IEEE Confer-
ence on, pages 2034–2041. IEEE.

Yilmaz, A., Javed, O., and Shah, M. (2006). Object track-
ing: A survey. Acm Computing Surveys (CSUR),
38(4):13.

Zhang, T., Ghanem, B., Liu, S., and Ahuja, N. (2012).
Robust visual tracking via multi-task sparse learning.
In Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on, pages 2042–2049. IEEE.

Zivkovic, Z. and van der Heijden, F. (2006). Efficient adap-
tive density estimation per image pixel for the task of
background subtraction. Pattern recognition letters,
27(7):773–780.

VISAPP�2013�-�International�Conference�on�Computer�Vision�Theory�and�Applications

360


