
Course Opening, Assignment and Timetabling with Student Preferences

Sacha Varone and David Schindl
Economie d’Entreprise, Geneva School of Business Administration, Route de Drize 7, 1227, Carouge, Switzerland

Keywords: Optimization, Scheduling, Application.

Abstract: We consider the following problem of course scheduling and assignment of students. Students express their
preferences for each course from several sets of proposed courses and each student has to take a certain number
of courses from each set. A minimum number of students is required to open a course and a maximum number
of students is specified for each course. The courses have to be scheduled on a limited number of periods so
that simultaneous courses have no students in common. This problem can be seen as a generalization of the
Student Project Allocation problem. It consists in determining which courses to open, specifying the schedule
for these opened courses, and assigning students to them, sothat their preferences are maximized. Our model
is an Integer Programming problem, which we solve with a common available solver using an iterative process.

1 INTRODUCTION

We present in this paper a real case from the Geneva
School of Business Administration (HEG), which
was modelled as an integer programming problem
and solved with available solvers using exact meth-
ods. The problem is the following: according to
the Bologna Declaration on the European space for
higher education , students may choose some of their
courses from a list of courses. The timetabling prob-
lem begins therefore with the following question:
which courses to open? The decision is based mainly
on the number of students and on their preferences for
each course.

In the literature, the most similar problem is the
Student-Project Allocation problem (SPA), in which
a list of projects is available for students who express
preferences over the projects. Methods for solving
the SPA problem are, among others, building an in-
teger program and solving it with a solver (Anwar
and Bahaj, 2003), defining a linear program for some
particular cases (Saber and Ghosh, 2001), or develop-
ing specific heuristics like a genetic algorithm (Harper
et al., 2005). Manlove and O’Malley (Manlove and
O’Malley, 2008) show the complexity and give an ap-
proximation algorithm for a generalized SPA problem
in which both the students and the lecturers have pref-
erences over the projects. The main difference be-
tween the SPA problem and our case study is that in
the SPA problem there is no restriction on the min-
imum number of students assigned to a project. On
the contrary, our case requires a minimum number of
students to be assigned to a course in order to open it.

In other words, the SPA problem has a lower bound of
L = 0 and may have an upper bound ofU > 0 on the
number of students, for each project assignment. Our
case study has a lower bound ofL ≥ 0 and an upper
bound ofU ≥ L. In that sense, the SPA problem may
be seen as a particular case of the problem we present
in this paper. More generally, our problem belongs to
the so called timetabling problems, which is an active
research area (e.g., (Rudová et al., 2011)).

2 PROBLEM DESCRIPTION

During the last year of bachelor education at the
Geneva School of Business Administration, students
have to take, apart from the required courses, one ma-
jor course and one or two minors courses, selected
from a list of courses. A major course is a full-day
course for the whole academic year, whereas a minor
course is a four-hour evening course for one semester.
Since the number of minor courses exceeds the num-
ber of available evenings, some of them have to be
scheduled at the same evening.

Selecting a major course and some minor courses
can also be done through a predefined portfolio of
courses. It consists of one major course and two mi-
nor courses, one in the fall semester and one in the
spring semester. Students may or may not choose a
portfolio. If they do, then only one portfolio can be
chosen from a set of portfolios. Those having cho-
sen a portfolio are assigned to the courses contained
in the portfolio, with a priority over other students’
course assignment. This priority has been stated by

5Varone S. and Schindl D..
Course Opening, Assignment and Timetabling with Student Preferences.
DOI: 10.5220/0004189901530158
In Proceedings of the 2nd International Conference on Operations Research and Enterprise Systems (ICORES-2013), pages 153-158
ISBN: 978-989-8565-40-2
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

the management team of the school.
The capacity of each course, as well as the capac-

ity of each portfolio, is limited, and therefore some
students will not be assigned to their preferred course.
There is also a minimum number of students required
to open a course or a portfolio.

The Geneva School of Business Administration
has two types of students: full-time students and
part-time students. The former have to be assigned
to one major course, two minor courses during the
fall semester and one minor course during the spring
semester. The latter, referring to students working
part-time and studying part-time, have to be assigned
to one major course, one minor course during the
Fall semester and one minor course during the Spring
semester.

Course Selection. Prior to 2010, students expressed
their preferences by filling out a paper questionnaire,
in which they specified their preferences for three ma-
jor courses, and three minor courses each semester.
Since the data treatment and the optimization were
done manually, it was tedious and time consuming to
do it each year for about 150 students. Such problems
often occur in universities and their solution involves
building an automated process, as it was done in
(Hinkin and Thompson, 2002) with their SchedulEx-
pert software, or using goal programming to build a
course schedule with preferences (Badri et al., 1998;
Schniederjans and Kim, 1987). It was decided that
each student will express his own preferences for each
available course, major and minor, for each semester,
using a web form.

Students have to rank all the major courses by
preference. They also rank all the minor courses in
each semester. A strict ordering is therefore expressed
for each type of course (major and minor in the fall
and minor in the spring). Then, they may indicate if
they are willing to take one of the predefined portfo-
lios.

Data Process. To avoid the previously used paper
form, we designed a web form linked to a database
to collect the data. The web form uses an internal
authentication via the Lightweight Directory Access
Protocol (LDAP1). Once the data has been collected,
a model is created using a mathematical modeling
language, for example AMPL. The model is then sent
with the data and the commands to a solver, for ex-
ample Gurobi, which returns the solution files. The
ultimate goal is to produce a worksheet so that the
project leader may easily use the result.

1“an Internet protocol for accessing distributed directory
services”

3 MODEL FORMULATION

We built an integer programming model, with binary
variables in order to define the assignments of stu-
dents to portfolios (s) and to courses (x). Two types
of binary variables refer to the decision of whether
or not to open a course (zj) and a portfolio (zp). The
binary variables (y) define the assignments of courses
to periods.
First, we introduce the relevant notation.

J Set of courses
I Set of students
H Types of courses: major or minor
K Set of periods
P Set of portfolios
T = (tip) Selection of portfolio
Q= (qp j) Definition of portfolios
A= (ai j) Matrix of preferences

More precisely,

tip =

{

1 if portfolio p is selected by studenti
0 otherwise

qp j =

{

1 if coursej ∈ portfolio p
0 otherwise

Student i ranks ai j the course j, starting with 1
as the preferred course.

Moreover, in order to balance the weight between
a major course and a minor course, we introduce a
cost matrixC= (ci j) such that

ci j =

{

2ai j if course j is a major course
ai j otherwise

This means that the utility of assigning a major
course with rank 1 and two minor courses with rank 2
is the same as the utility of assigning a major course
with rank 2 and two minor courses with rank 1.

The binary variables are of three types: those
related to assignment, those related to scheduling,
and those related to opening.

sip =

{

1 if studenti is assigned to portfoliop
0 otherwise

xi j =

{

1 if studenti is assigned to coursej
0 otherwise

y jk =

{

1 if coursej is scheduled in periodk
0 otherwise

zj =

{

1 if coursej is opened
0 otherwise

zp =

{

1 if portfolio p is opened
0 otherwise

ICORES�2013�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

6

3.1 Portfolio Problem

The opening of a portfolio only depends on the num-
ber of students assigned to it. If this number is smaller
than the minimum number needed to viably sustain
the portfolio, then the portfolio is not opened. The
minimum number of students is given by the aca-
demic department, which is a common practice (see
(Saber and Ghosh, 2001) for example).

If the number of students who wish to take a port-
folio exceeds its capacity, then some of them can not
be assigned to it. The students selected to attend the
portfolio are those with the highest sum of prefer-
ences for the courses in the portfolio. This has been
defined during the ranking procedure, in which all
courses have to be ranked by the students. In other
words, thanks to the complete ordering defined for
each set of courses (majors and minors during the fall
semester and minors during the spring semester), it
is possible to give a score to the portfolio choice of
each student. This selection process is expressed by
the objective function (1). In case of a similar portfo-
lio choice, with equal score for several students, and a
number of students exceeding the upper limit, the se-
lection may be done at random or by the solver itself.

max∑
p∈P

∑
i∈I

(|J|− ∑
p′∈P

tip′ ∑
j∈J

qp′ jai j) sip (1)

sip ≤ tip ∀ i ∈ I , p∈ P (2)

∑
i∈I

sip ≥ 15zp ∀ p∈ P (3)

∑
i∈I

sip ≤ 30zp ∀ p∈ P (4)

The objective function (1) indicates that the pref-
erences of the students have to be maximized. Con-
straint (2) ensures that portfoliop is assigned only to
students who have selected it. The minimum num-
ber of students necessary to open a portfoliop is
expressed by constraint (3), whereas the capacity of
portfolio p is defined by constraint (4). The values of
these parameters in our school are 15, respectively 30.

3.2 Course Problem

The objective is to maximize the preferences of the
students, or equivalently, to minimize the dissatisfac-
tion of the students (5).

Each student should be assigned to the right num-
ber of courses of each type. This number of courses
is defined by a functionn(i,h), wherei represents stu-
dent i ∈ I and h ∈ H represents the type of course.

The values of the functionn, considered as a parame-
ter, are necessary as some students (full-time or part-
time) may already have successfully passed a major
or a minor course. The number of courses to be taken
by each student is expressed by equation (6). The
bounds on the capacity of each course also have to
be respected (7)(8). Each course may be opened and
in that case a single period has to be assigned to it (9).

Since several minor courses may be taken by the
same student, a non-simultaneous course constraint
has to be valid (10). To understand this constraint,
suppose that a studenti is assigned to coursesj and
j ′. This would mean thatxi j = xi j ′ = 1. The simul-
taneity of coursesj and j ′ would be expressed by as-
signing the periodk to both j and j ′, that is to say
y jk = y j ′k = 1. Therefore, in such a case, the left-hand
side of inequality (10) would be equal to 4, which
would violate the constraint. Suppose now that either
studenti is not assigned toj or j ′, or coursesj and
j ′ are not simultaneously given. Then the maximum
value of the left-hand side of inequality (10) would be
3, which satisfies the constraint.

Finally, the students assigned to a portfolio have
to take the courses in it (11). This last constraint (11)
is linear if the values ofzp andsip are fixed. Notice
that the portfolio capacity should not be set to a value
larger than the courses’ capacities, otherwise the stu-
dent to course assignment may produce an infeasible
solution. This will indeed be the case since, as ex-
plained in section 4, the portfolio problem is solved
before the course problem.

The model is presented below:

min∑
j∈J

∑
i∈I

ci j xi j (5)

∑
j∈h

xi j = n(i,h) ∀i ∈ I ,h∈ H (6)

∑
i∈I

xi j ≤ 30zj ∀ j ∈ J (7)

∑
i∈I

xi j ≥ 15zj ∀ j ∈ J (8)

∑
k∈K

y jk = zj ∀ j ∈ J (9)

xi j + xi j ′ + y jk + y j ′k ≤ 3 ∀i ∈ I ,k∈ K,

j, j ′ ∈ J (10)

zptipqp jsip ≤ xi j ∀i ∈ I (11)

4 SOLUTION METHODOLOGY

We first solve the portfolio allocation problem, as it
has priority over the course allocation. Once a solu-
tion is found, constraint (11) ensures that students en-

Course�Opening,�Assignment�and�Timetabling�with�Student�Preferences

7

rolled in a portfolio are assigned to the corresponding
major and minor courses. Then we solve the remain-
ing assignment and scheduling problem, which con-
sists in optimizing the students assignment to courses
along with the courses’ schedule.

4.1 Portfolio Allocation

Since portfolio allocation is given priority over course
allocation, this sub-problem can be solved first. Its
goal is to define which portfolio to open and which
not, and which students to assign to each opened port-
folio. In our case, even though we have a binary pro-
gram, the size of the instance is small so that usage
of common solvers allows to easily find an optimal
solution within a few seconds.

4.2 Course Allocation

Once the portfolio sub-problem is solved, it is neces-
sary to assign students enrolled in a portfolio to the
corresponding courses. This will fix some of the vari-
ables and hence reduce the size of the instance.

A major difficulty in solving “difficult” binary
programs, in the sense of NP-hard problem, is that the
time to solve them optimally increases exponentially
with the size of the instance. One approach is to build
a specific heuristic which solves the problem but of-
ten without a guarantee of optimality, or in some cases
with a bound on the gap between the solution and the
optimal solution. This approach is described in sec-
tion 4.3. Another approach, described by Algorithm
2, is to arbitrarily fix some variables to values they
are likely to take at optimality, so as to reduce the size
of the problem in the hope that it will become small
enough to be tractable by available solvers.

Instead of considering all available courses, a sub-
set of them may be selected with the aim of solving
the subproblem optimally (Algorithm 2). The selec-
tion of the subset of courses is based on the expressed
preferences of the students: a maximum rank is de-
fined as an upper bound on the possible assignment
of a student to a course. Then, for each course, if
the number of students with a preference lower than
or equal to this maximum rank is lower than the re-
quired lower bound, then the course is not opened
(Algorithm 1). Since there is a limited capacity for
each course, it may imply that the problem is infeasi-
ble. In that case the maximum rank is increased by
one unit and this process is run iteratively.

4.3 Further Ideas

A direct attempt to solve the course problem pre-

Algorithm 1: Course elimination.

Require: MaxRank
1: for all j ∈ J do
2: if ∑

i
δ(ai j ≤ MaxRank)< 15 then

3: J = J\{ j}
4: end if
5: end for

Algorithm 2: Direct method : IterateElimination procedure.

1: Presolve{Course assignment with respect to
portfolio assignment}

2: MaxOrder= 2 {Initialization of maximal prefer-
ence}

3: repeat
4: MaxOrder = MaxOrder + 1
5: Call algorithm 1(MaxOrder)
6: Solve the courses alloc. problem (5)-(11)
7: until Problem solved or MaxOrder= min{|{ j :

j ∈ h}| : h∈ H}

sented in Section 3.2 may not result in a solution,
due to the intrinsic complexity of this binary problem.
Then an heuristic procedure would be necessary.

The idea expressed by Algorithm 3 is the follow-
ing: a first difficulty in solving the courses allocation
problem (5)-(11) is the assignment of courses to pe-
riods, so that constraint (10) is satisfied. In our ap-
plication, the set of periods associated to each type of
courses (major, minor in spring, minor in autumn) are
disjoint: i.e., the set of available periods for a major
course is different from the one for a minor course,
and the set of available periods for a minor course in
spring is different from the one for a minor course in
autumn. This assumption is made as a requirement
for Algorithm 3. The first step is therefore to choose
the assignment of periods to courses (line 1). To pro-
ceed, one should avoid two courses with a lot of high
preferences to be scheduled at the same period.

Algorithm 3: Heuristic for the courses allocation problem.

Require: Non overlapping periods between types of
courses

1: Assign periods to courses
2: Build the associated flow network
3: Solve the associated min cost max flow problem
4: while feasible solution is not founddo
5: Eliminate 1 course with insufficient number of

students
6: Solve the associated min cost max flow prob-

lem
7: end while

ICORES�2013�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

8

A second difficulty lies in the minimal number
of students necessary to open a course. This con-
straint (8) is temporarily relaxed. The second step
(line 2) consists of building a transshipment network
G = (V,A,c,w) with capacitiesc and weightsw on
the arcs. The set of nodesV contains a source and a
sink, a node(i,h) for each student with each type of
course, a node(i,k) for each student with each period,
and the courses with their already associated periods
(j,k). The set of arcs is (source,(i,h)), ((i,h),(i,k)),
((i,k),(j,k)), ((j,k), sink). The capacityc and weight
w functions are defined as follows:

ArcsA Capacityc Weightw
(source,(i,h)) n(i,h) 0
((i,h),(i,k)) 1 0
((i,k),(j,k)) 1 ai j
((j,k), sink) 30 0

Since the capacities and the weights are all inte-
gers, this transshipment problem can be solved opti-
mally using continuous variables, as stated by the well
known integrality theorem; this problem is known un-
der the name of min cost max flow problem and is
polynomially solvable:For every network flow prob-
lem with integer data, every basic feasible solution
and, in particular, every basic optimal solution as-
signs integer flow to every arc.

Once the problem solved, if some courses do not
contain enough students, one of these is eliminated
from the set of courses. The choice of the course to be
eliminated may depend on the preferences expressed
by the students, as stated by Algorithm 1. Technically,
the elimination of a course may be done by either re-
moving the course from the network model, or by set-
ting the capacity of the course to 0. And this process
iterates until all courses have the minimal number of
students (while loop) required to be opened.

Of course, in order to get a feasible solution, prior
to running Algorithm 3, one has to check that the
number of students in each type of course (major, mi-
nor in spring, minor in autumn) is less than or equal
to the sum of the capacities.

One could also extend the model by changing
some unused arc costs or capacities. For instance,
one could take into account students preferences over
days with costs on the arcs((i,h),(j,k)), or even by
putting a zero capacity if a student is not available a
given day. Moreover, if a course has a cost which
is linear with the number of students (for instance if
some material has to be bought for each student), one
could put a cost, sayb on each arc ((j,k), sink), ex-
pressing that each student following the course costs
an additional amount ofb.

5 APPLICATION

The student assignment problem to major and mi-
nor courses was successfully applied at the Geneva
School of Business Administration. In 2011, it in-
volved 146 students, of which 98 full-time students
and 48 part-time students, 14 major courses, 10 minor
courses during the fall semester and 9 minor courses
during the spring semester. The minimum number of
students necessary to open a portfolio or a course is
15, and the capacity of each course is 30.

The generated model contains 5904 variables and
66541 constraints. It is solved optimally within a
few seconds on a Intel Core 2 Quad PC with 4 Gb
memory, using the AMPL modeling language and the
Gurobi 4.5 solver. It was therefore, with our specific
data set, not necessary to apply the heuristic described
by Algorithm 3.

6 CONCLUSIONS

In this article, we described a successful application
of operations research tools. We created a convenient
way of data collection, modelled an assignment prob-
lem as a binary problem and finally solved it using
available solvers.

Solving an NP-hard problem, or at least one
viewed as ”difficult” from a practical point of view,
requires several steps: data collection, modeling,
solving and presenting the results. It is often agreed
that the development of a specific heuristic is required
even for middle-size “difficult” problems. We learned
from our experience in the field of practical opti-
mization of “difficult” problems that before develop-
ing home-made heuristics, it makes sense to try solv-
ing the problem with available commercial or open-
source solvers.

REFERENCES

Anwar, A. A. and Bahaj, A. S. (2003). Student project allo-
cation using integer programming.IEEE Transactions
on Education, 46:359–367.

Badri, M. A., Davis, D. L., Davis, D. F., and Hollingsworth,
J. (1998). A multi-objective course scheduling model:
Combining faculty preferences for courses and times.
Computers & OR, 25(4):303–316.

Harper, P. R., de Senna, V., Vieira, I. T., and Shahani, A. K.
(2005). A genetic algorithm for the project assign-
ment problem. Computers & Operations Research,
32(5):1255 – 1265.

Hinkin, T. R. and Thompson, G. M. (2002). Schedulexpert:
Scheduling courses in the cornell university school of
hotel administration.Interfaces, 32:45–57.

Course�Opening,�Assignment�and�Timetabling�with�Student�Preferences

9

Manlove, D. F. and O’Malley, G. (2008). Student-project
allocation with preferences over projects.Journal of
Discrete Algorithms, 6(4):553 – 560. Selected papers
from the 1st Algorithms and Complexity in Durham
Workshop (ACiD 2005), 1st Algorithms and Com-
plexity in Durham Workshop (ACiD 2005).

Rudová, H., Müller, T., and Murray, K. (2011). Complex
university course timetabling.Journal of Scheduling,
14:187–207.

Saber, H. M. and Ghosh, J. B. (2001). Assigning students
to academic majors.Omega, 29(6):513–523.

Schniederjans, M. J. and Kim, G. C. (1987). A goal pro-
gramming model to optimize departmental preference
in course assignments.Computers & OR, 14(2):87–
96.

ICORES�2013�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

10

