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Abstract: This paper presents a concept for an UHF tag supporting cryptographically strong authentication which is 
based on the Rabin-Montgomery public key cryptosystem in accordance with the framework of ISO/IEC 
29167-1. It uses an easily computable long integer square operation for the public key encryption of a tag ID 
record. Only a legitimate interrogator who is in possession of the private key can decrypt this message and 
retrieve the authentic tag ID. A working prototype based on a standard FPGA is shown which demonstrates 
the feasibility of the proposed cryptographic function. 

1 INTRODUCTION 

Backscatter-coupled RFID systems are being used in 
a large number of applications such as logistics, 
supply chain, warehouse management, retail stores, 
and similar applications. 

Backscatter-coupled RFID systems are mainly 
operated in the UHF frequency ranges 868 MHz 
(Europe) and 915 MHz (USA, Asia). These UHF-
RFID Systems are primarily covered by the standard 
(ISO/IEC 18000-6, 2010). 

The majority of the applications mentioned 
above operate according to ISO/IEC 18000-6 
Type_C (ISO/IEC 18000-6C will be published as 
Part -63 in the future (ISO/IEC FDIS 18000-63)) 
which describes the physical characteristics and pro-
tocol behaviour of the so called “Electronic Product 
Code”, the EPC. This standard is designed for the 
fast detection of huge numbers of transponders in 
the field at the same time, and for a small amount of 
data to be transferred between an interrogator and a 
tag. 

A typical transponder is field-powered and uses 
modulated backscatter signals to transmit data back 
to the interrogator. The operating range of these pas-
sive (or field-powered) transponders is mainly lim-
ited by the ability to get sufficient power from the 
field into the transponder in order to operate the sili-
con chip. Typical maximum operating distances of 
such passive transponders are between 3 and 10 m.  

 

Figure 1: Principle of UHF RFID. 

Another class of transponder uses an on-board 
battery to supply the silicon chip with energy. The 
operating range of these battery assisted passive 
(BAP) tags is mainly limited by the interrogator’s 
ability to receive and detect the modulated backscat-
ter signal from the transponder, in addition to its 
own high-power signal. Typical maximum operating 
distances of BAP transponders are up to 25 m. 

Despite of these range limitations, there are real 
time locating systems (RTLS), which are able to 
detect a locally powered transponder from a distance 
of 100 m and above. These systems are much more 
sensitive than RFID readers, because they do not 
suffer from the strong signal carrier emitted at the 
same antenna, as an interrogator does. 

With special equipment like communication re-
ceivers and high gain directional antennas, there is 
always the possibility to eavesdrop a communication 
between an UHF-RFID interrogator and a tran-
sponder from a considerable distance up to several 
hundreds of meters. 
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In many cases it is not desirable that an object or 
subject carrying an RFID tag can be identified or 
tracked, either with a standard RFID interrogator or 
by eavesdropping the communication between the 
tag and an interrogator. For example, whenever the 
tag is associated with a person, privacy rules apply. 
Furthermore, it could be possible to transmit strong 
backscatter signals with forged information which 
superimpose the original data sent by the tag. 

Therefore, it is desirable to have a secure variant 
of RFID, where cryptographic functions allow only 
a legitimate interrogator to identify a tag, to impede 
eavesdropping and to prevent the infiltration of false 
information. 

 

Figure 2: Technology leap with Secure UHF. 

For inductively coupled RFID devices, mainly 
operated in the 13.56 MHz RF frequency range, 
cryptographic functions and even complex smart 
card operating systems (SCOS) are available for 
nearly one and a half decades now. Inductively cou-
pled RFID devices however are operated close to the 
reader, typically at a distance of up to 10 cm. Due to 
the strong coupling between the reader and the tag’s 
antenna inductive RFID systems have sufficient 
power to operate complex microprocessors even 
with cryptographic co-processors. UHF RFID tags 
on the other hand have to be operated with about 10 
to 100 times less power. Therefore, UHF RFID tags 
in the past provided no cryptographic security at all 
(Finkenzeller, 2012).  

Over the years however, silicon technology con-
tinuously improved, resulting in ever-decreasing 
power consumption. In the recent years a point has 
been reached, where cryptographic functions on 
UHF RFID tags seem to become feasible. For that 
reason, ISO/IEC JTC1/SC31 has recently started 
standardisation activities to provide crypto suites for 
future UHF RFID tags. The results will be published 
in a new standard series ISO/IEC 29167 with differ-
ent parts, which are currently available in first work-
ing drafts (WD). 

In the remainder of this paper a concept for a se-
cure UHF tag with strong cryptography will be pre-
sented in section 2. As the required protocol exten-
sion is not yet available, a first prototype working 
with currently defined standards, and first results are 
shown in sections 3 and 4. 

It is paramount that the secure RFID tag shall be 
fully compatible with ISO/IEC 18000-6, such that 
interrogators conforming to this standard can be con-
tinued to be used. The proposed protocol is designed 
along the command structure which is currently be-
ing discussed in the context of security suites in 
ISO/IEC WD 29167. 

Especially because suitable interrogators are not 
yet available, a preliminary workaround protocol 
had to be used to achieve first results.  

2 PROTOCOL CONCEPT FOR A 
SECURE RFID TAG 

2.1 General Concept 

In accordance with WD 29167-1 we developed a 
secure protocol for authentication and identification 
of a tag by use of the Authenticate command as de-
fined in the working draft. Within this framework 
we defined a specific format for the payload field. In 
the following the content of this payload is ex-
plained. 

The authentication protocol comprises the en-
cryption of a message by the tag containing the tag’s 
identification information. In order to guarantee the 
freshness of the encrypted message, random num-
bers originating both from the interrogator and the 
tag are also included. Because the confidentiality of 
a key stored in the tag cannot be assured, it is neces-
sary to employ a public key cryptosystem with the 
public key stored in the tag(s) and the private key on 
the interrogator side. 

In the following, the particular cryptosystem and 
the format of the plaintext message is explained. In 
the context of public key cryptosystems the message 
is considered as a long integer number M, which 
constitutes the payload field as defined in WD 
29167-1. 

2.2 The Rabin Cryptosystem 

For the authentication part we used the Rabin public 
key cryptosystem which is based on the modular 
multiplication of long integers (Rabin, 1979). A step 
by step explanation of the algorithm can be found in 
(Menezes et al., 1997). 
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A proof that breaking a particular encryption 
scheme is as difficult as solving a computational 
problem which is believed to be difficult, is a desir-
able property. The Rabin public key encryption 
scheme was the first example of provable security, 
because the problem of breaking it is computational-
ly equivalent to factoring. 

In order to generate a public key and the corre-
sponding private key, two random and distinct 
primes p and q of roughly the same size need to be 
generated. To keep the decryption algorithm simple, 
we assume that these primes satisfy the congruence 
condition 

3 qp  )4(mod  (1) 

Here p and q together constitute the private key 
while the product 

qpn   (2) 

is the public key. 
The plaintexts in the Rabin encryption scheme 

are the integers 0 <  M < n. The ciphertext C corre-
sponding to M is defined as the square of the long 
number M modulo n 

nMC mod2  (3) 

Rabin decryption thus means taking the modular 
square root of cipher text C, 

nCM mod  (4) 

In the general case there is no efficient algorithm 
to find M. For a modulus n = p q, with p and q 
prime, the following roots can be determined: 

pCmp mod  (5) 

qCmq mod  (6) 

By virtue of the congruence condition (1) the two 
roots are given by 

pCm
p

p mod4

1

  (7) 

qCm
q

q mod4

1

  (8) 

By means of the extended Euclidian algorithm it 
is possible to determine integers yp and yq which 
satisfy the equation 

1 qypy qp  (9) 

Finally four roots of C, namely +r, -r, +s, and -s, 
can be calculated by application of the Chinese Re-
mainder Theorem as  

nmqympyr pqqp mod)(   (10) 

rnr   (11) 

nmqympys pqqp mod)(   (12) 

sns  (13) 

Which one of the four roots (±r, ±s) is the de-
sired clear text message M has to be determined by 
searching for a specific characteristic, such as an 
embedded checksum or other redundant information. 

2.3 Montgomery Multiplication 

Modular reduction as in equation (3) is usually quite 
cumbersome to calculate for a microprocessor with 
low capabilities, because of the division involved. 
The paper (Montgomery, 1985) proposes an alterna-
tive computation scheme which requires only multi-
plication. The cost of multiplication is much less 
than that of division, especially if a hardware multi-
plier is available. 

Consider a residue R where R is a power of 2 

and an odd modulus Rn k  2 . In other words, R 
a power of 2 which is larger than n. Usually k is a 
multiple of the word size w of the processor per-
forming the hardware multiplication. For a suitable 
R one calculates 

nRMC mod12*   (14) 

Without the cost for squaring M, the quantity C* 
can be computed with (k/w)2 + O(k/w) multiplica-
tions of w-bit numbers, and without any divisions, 
see (Montgomery, 1985) for details. Squaring M 
costs 0.5(k/w)2 + O(k/w) more multiplications, so 
that in total we need 1.5(k/w)2 + O(k/w) multiplica-
tions of w-bit numbers. 

One should be aware that C*≠ C, and before we 
can proceed with calculating the roots, we have to 
undo the effect of the Montgomery multiplication 

nRRMnRCC mod)(mod 12*   (15) 

The final calculation needs, apart from approxi-
mately the double length operands, just one conven-
tional modular reduction, but this is made on the 
host system connected to the interrogator where 
computing power and space requirements should not 
pose any problem. 

If the modulus n is chosen to satisfy the condi-
tion 

)2(mod1 2/kn   (16) 

which means that about one half of the least signifi-
cant bits of n (except for the last one) are zeroes, 
about one third of the necessary multiplications to 
evaluate equation (14) can be saved.  
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Figure 3: Identification message (before MIX). 

Unlike modular reduction the Montgomery mul-
tiplication method does not guarantee that the result 
in equation (14) is actually smaller than the modulus 
n, therefore a final reduction step may be necessary 
which causes high computational load and leaks side 
channel information due to different timing with and 
without reduction. The probability for a modulus 
overflow in equation (14) can be significantly re-
duced by choosing the residual exponent k a bit larg-
er than actually required. In practical terms one se-
lects the exponent as k ≈ log2 n + d where d is a se-
curity parameter, so that k is a multiple of the tag 
microprocessor hardware multiplier’s word length. 

In our example we chose n = 1024 and d = 64 for 
a 1616 multiplier unit, giving k = 1088 and R = 2k. 

2.4 The Identification Message 

The most important part of the identification mes-
sage is the unique tag ID. In order to preserve its 
authenticity it is digitally signed before it is person-
alised into the tag during production. The signature 
method is out of scope for these considerations; 
however, for practical purposes one would choose 
an appropriate Elliptic Curve Cryptosystem (ECC), 
because the size has to fit into the tag authentication 
message. 

With the parameters chosen, the authentication 
message has a size of 128 bytes. To resolve the am-
biguity of the four possible square roots two bytes 
are reserved for a checksum and the most significant 
byte must contain 0x00. Only the root with the cor-
rect checksum will be processed by the interrogator. 
This leaves 125 bytes for the actual ID content. 

As discussed earlier we need some random bytes 
to guarantee the freshness of the encrypted ID mes-
sage and to prevent the recycling of an eavesdropped 
ID record. We chose 10 random bytes to be contrib-
uted by the interrogator and another 10 bytes con-
tributed by the tag. 

After these considerations 105 bytes remain for 
the ID information. To gain flexibility in the size of 
the individual elements of the signed tag ID these 
are TLV (tag-length-value) encoded. If the ID in-
formation does not fill the whole space available, the 
tag will insert the necessary amount of fresh random 

data in order to provide the required total of 128 
bytes. 

Figure 3 shows the composition of the identifica-
tion message described so far. If we used this ID 
message for encryption there would be some risk of 
leaking information, because to a large extent (the n 
bytes signed tag ID) these data are static. The intro-
duction of a MIX function neutralises this problem, 
because it interleaves static and dynamic compo-
nents. 

The following C-like pseudo code describes the 
operation of the MIX function: 

for (i=0;;++i) { 
  get 5 bytes from signed ID; if out 
      of data, get random bytes; 
  if (i == 10) break; 
  get 1 byte from reader challenge; 
  get 5 bytes from signed ID; if out 
      of data, get random bytes; 
  get 1 byte random as tag challenge; 
} 
append checksum; 
append 0x00; 

2.5 Overall Message Flow 

The overall message flow for a secure tag authenti-
cation is as follows: 

First the interrogator generates a 10 byte random 
challenge and sends it to the tag. 

Then the tag processes the identification record 
as described above, mixing the interrogator chal-
lenge into the message and encrypting it according 
to the Ramon-Montgomery scheme. The result is 
backscattered to the tag. 

The interrogator has to decrypt the message and 
find the correct root out of the four presented by the 
algorithm. Then it has to roll back the effects of the 
MIX function and check whether the returned inter-
rogator challenge is identical to the one sent. This 
approves that the tag is in possession of the public 
key. 

Afterwards the interrogator investigates the 
signed ID record. If the signature can be verified 
with the public ECC key, the tag is identified and 
authenticated. The tag challenge can be preserved 
for further processing, as it can authenticate the in-
terrogator to the tag. 
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Figure 4: Tag state diagram. 

2.5.1 Tag State Diagram 

The logical process flow as developed above is now 
embedded into the framework as defined in WD 
29167-1. In accordance with the working draft the 
tag can assume the states as depicted in figure 4. 

A sequence of Authenticate commands needs to 
be sent to the tag to complete a full tag authentica-
tion protocol. For a successful authentication the 
entire sequence needs to be executed successfully. 
The crypto suite state transitions triggered by the 
authentication payloads are summarized in the next 
subsection below. State transitions and tag responses 
are according to the payloads of the Authenticate 
command sent by the interrogator. 

The processing of the Authenticate command 
may include generation of an authentication crypto-
gram that will be returned in the tag’s response; the 
tag may also return some buffered data. Because the 
authentication protocol produces the output data 
consecutively in the correct order, it is advantageous 
to split the response in small pieces and to return 
these pieces in parallel to the ongoing calculation.  

After power-up the tag transitions to the ‘Init’ 
state. Once the tag receives an Authenticate com-
mand with payload for step 1, it processes the com-
mand, sends the response and transitions to TAM1.1 

expecting an Authenticate command with payload 
for step 2. When the tag receives the first Authenti-
cate command for step 2, it processes the command, 
sends the response and remains in TAM1.2 as long 
as there are authentication data bytes remaining to 
be sent. In TAM1.2 the interrogator sends as many 
Authenticate commands as required to fetch the 
entire authentication data produced by the tag. 

The interrogator indicates the length of the au-
thentication cryptogram in the payload of the Au-
thenticate command for step 1. The tag indicates the 
number of bytes still available to fetch in the pay-
load of the response message. 

Whenever the tag receives an Authenticate 
command with payload for step 1, it resets all varia-
bles, transitions to TAM1.1 and starts processing the 
command. The tag transitions to Init state once it has 
sent out the last fragment of authentication crypto-
gram. 

In case of failure during one of the steps of the 
protocol, the crypto suite transitions to the ‘Init’ 
state. 

When Rabin-Montgomery encryption and I/O 
are overlapping in the tag there can be a couple of 
short response packets from the tag, the exact behav-
iour being dependent on tag firmware optimization. 
In any case, the final packet carries a success status 
word in its payload or an error indicator, if applica-
ble. 

2.5.2 Tag Authentication 

The sequence of exchanged messages for tag authen-
tication is depicted in figure 5. The first message 
includes a random challenge generated by the inter-
rogator and sent to the tag. The tag response is an 
encrypted message that only the legitimate interro-
gator can decrypt, since it possesses the necessary 
private key. 

 

Figure 5: Message exchange for tag authentication.  

In Step 1, the interrogator challenge is delivered 
to the tag. This message is used to request the tag to 
perform authentication. The response to this mes-
sage returns only the number of bytes to expect. In 
Step 2, the interrogator retrieves the data fragments 
by chaining further Authenticate commands and 
responses. Once the interrogator has fetched the en-
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tire authentication record it is able to authenticate 
the tag. 

If the tag receives a message that is not formatted 
as described in the following section it shall respond 
with an error code and transition to ‘Init’ state. 

2.5.3 Authentication Command 

The authentication is performed in two distinct 
steps. In step 1 of the Authenticate command the 
interrogator sends a 10 byte random challenge to the 
tag as indicated in the specification of the cipher. 

As the tag cannot process the authentication 
within the response timeout, it answers with a mes-
sage indicating the expected size of the Ramon-
Montgomery encrypted cipher test. The tag assumes 
state TAM1.1 and begins the calculation of the ci-
pher. 

In order to fetch the result, the interrogator issues 
step 2 of the Authenticate command after some 
time. The tag assumes state TAM1.2 and responds 
with the first fragment of the resulting message, to-
gether with an indication of the number of bytes 
missing. The size of the fragment returned is deter-
mined by the progress of message calculation and 
the maximum which can be transferred in a single 
message. 

If there are message bytes remaining in the tag, 
the interrogator waits a while and then repeats Au-
thenticate for step 2 until the response from the tag 
indicates that the message is complete and that no 
more data is available from the tag. Now the interro-
gator begins with message processing. 

2.6 Tag Life Cycle and Key 
 Management 

We will now briefly discuss aspects of the tag’s life 
cycle, the key management, and the roles involved. 
In figure 6 we can see the System Integrator and the 
Tag Issuer shown as different roles. In this scenario 
the System Integrator owns the asymmetric key pair 
KE, KD (the RAMON encryption and decryption 
keys), marked with blue and red colour, respectively 
(in b/w print these keys show up as grey and dark 
grey). The System Integrator hands over the public 
key KE to the Tag Issuer. 

Now the Tag Issuer produces a couple of tags 
with uniquely generated tag IDs and signs them with 
its private signature key KS. The signature key pair 
is marked with light yellow colour (or light grey). 
Note that the generation of tag ID signatures is op-
tional. In each tag the Tag Issuer stores the (signed) 
tag ID and the Ramon encryption key KE. No secret 
key needs to be stored in the tag. 

In addition the Tag Issuer gives the signature 
verification key KV and a list of (signed) tag IDs to 
the System Integrator. Now the System Integrator 
can verify the authenticity of this ID list. 

The System Integrator sets up Interrogator sites 
with a secure store containing the tag IDs and the 
private RAMON decryption key KD. Thus the Inter-
rogator can decrypt the RAMON messages, identify 
the tag and eventually authenticate it if the signature 
matches.  
  

 

Figure 6: Tag Life Cycle and Key Management. 
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3 PRELIMINARY PROTOTYPE 

The authentication protocol specified so far requires 
modified tags which support the secure authentica-
tion procedure, but it also requires UHF interroga-
tors which implement the Authenticate command 
that is still in the standardisation process. However, 
such an interrogator is currently not available. 

For that reason it is necessary to emulate the be-
haviour of the secure UHF tag on hardware which is 
compatible with the current ISO/IEC 18000-6 Type 
C standard and use commands which are available in 
this standard. 

In order to achieve maximum flexibility in the 
implementation of cryptographic functions we de-
cided to extend a standard state machine controlled 
UHF tag with a microprocessor. Both units are 
closely coupled with shared volatile memory which 
permits the microcontroller to receive messages via 
the UHF channel and to return responses. 

3.1 Hardware Description 

In order to provide a smooth migration path we 
started with an already existing standard UHF tag. 
This device, when mounted on a PCB, can com-
municate its digital data stream to an external device 
and can backscatter the data received from that de-
vice. Thus the function of the former UHF tag is 
reduced to an analogue front end (AFE). 

The switch from autonomous mode of the tag to 
AFE mode is made by means of a command se-
quence sent to the tag’s state machine from the at-
tached device via an I²C bus specially provided for  

that purpose. 
The attached device is represented by a Spartan 6 

FPGA which is located on a suitable evaluation 
board where the connections to the external world 
are provided. The whole setup is shown in figure 7. 

Within the FPGA the state machine for an 
ISO/IEC 18000-6 Type C compliant tag is replicat-
ed, but with some modifications which facilitate the 
implementation of the secure functions presented in 
this paper 

In the FPGA prototype all memory is provided as 
non-persistent RAM. 

3.2 Add-ons for Security Functions 

The additional processing elements represented in 
the FPGA comprise a Texas Instruments MSP430X 
compatible CPU together with a couple of periph-
erals which are also compatible with the original 
peripherals to some extent. The most important one 
of these peripherals for our purpose is a hardware 
multiplier capable of calculating a 32 bit result of a 
1616 bit integer multiplication within one clock 
cycle. By using the multiply-add mode of this multi-
plication unit it is possible to implement the long 
integer arithmetic functions required for Public Key 
cryptography in a very efficient way. 

Another valuable peripheral for strong cryptog-
raphy is an AES coprocessor capable of supporting 
all the three standardised key sizes, i.e. 128, 129, 
and 256 bits. 

Other peripherals comprise a timer and a couple 
of free programmable port bits. One of these bits is 
used to generate serial output which can be dis 

 

Figure 7: FPGA board and analogue front end. 
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played in a terminal window on the controlling PC. 
The microprocessor itself is controlled through a 

special USB-to-I²C interface from a debugger run-
ning on the PC. 

The MSP430X currently runs at a clock rate of 
1,25 MHz which is significantly below the maxi-
mum speed for this processor architecture. The 
speed was chosen to achieve command execution 
performance close to that when a final tag design has 
to operate in a power-limited environment. 

3.3 Tag-CPU Communication 

The tag (i.e. the part within the FPGA which is 
based on the ISO/IEC 18000-6 Type C state ma-
chine) and the CPU are loosely coupled by means of 
a common memory buffer of 128 16-bit words 
which is within the address space of the tag’s state 
machine. Specifically, it is located within the TID 
(tag ID) memory bank. 

The CPU can access (read and write) all the tag 
memory by means of a special peripheral memory 
access controller which also solves the task of arbi-
tration in case of conflicting access attempts. The 
access rules are simple: 

 After the CPU posted a request for a specific 
address, it has to wait for an interrupt which 
signals the access grant. 

 If the tag tries to access the memory while the 
CPU has access, it is delayed until the CPU is 
done. This may sometimes lead to a timeout 
on the tag’s air interface. 

 In all other cases the tag state machine and the 
CPU may run independently. 

Whenever the tag writes to a specific address in-
to the TID bank, a specific interrupt is generated for 
the CPU to signal that a command message was re-
ceived over the air interface. This mechanism facili-
tates the CPU to stay in a power-save sleep state 
most of the time until it has to respond to an external 
request. 

3.4 Over the Air Data Transfer 

As we saw above any data from outside the CPU has 
to be passed across the communication buffer in the 
TID bank. The ISO/IEC 18000-6 Type C standard 
defines (sometimes optional) commands to serve 
this purpose. 

 For reading data from the communication buff-
er the Read and BlockRead commands are 
available. The first reads a single 16 bit word 
from a specific address while the latter trans-

fers a specified number of such words from 
adjacent locations. 

 For writing data from outside into the commu-
nication buffer the commands Write and 
BlockWrite are provided in the standard. 

There is an issue with BlockWrite though: as any 
ISO/IEC 18000-6 Type C command has to be com-
pleted within 20 ms, this may be too short for writ-
ing to an extended number of E²PROM cells within 
a single command. As standard tags normally use 
this memory type, they often do not support Block-
Write, or only with a length of just a single word. 
This situation is completely different for a RAM 
buffer. 

Our prototype is currently confined to use 
BlockRead for reading from the tag and repeated 
Write for writing to the tag. 

3.5 The Transport Protocol 

In the proposed preliminary setup any messages be-
tween the interrogator and the tag’s CPU have to be 
passed through the shared memory. In order to fa-
cilitate this transfer the transport protocol T=1 which 
is widely used in the smart card environment was 
chosen. 

Although this protocol introduces some over-
head, it provides a couple of useful features, like 
consistency checking with repetition of messages if 
necessary, buffer size negotiation, chaining of long 
messages, and others. 

3.6 The Application Protocol 

The application protocol layer is also taken from the 
smart card domain as specified in ISO/IEC 7816. In 
this standard an application protocol data unit 
(APDU) comprises a class byte, an instruction byte, 
two parameter bytes, an optional length specification 
followed by the indicated number of data bytes, and 
eventually an optional specification of the expected 
response size. This makes up a command message. 

Response messages comprise the response data, 
if any, followed by a two-byte status word. 

In the ISO/IEC 7816 paradigm the smart card or 
secure token or, in our case, the secure UHF tag al-
ways takes the role of a server while the interroga-
tor, or rather the device which controls the interroga-
tor, takes the role of a client. Thus, during a message 
sequence, the secure UHF tag receives a command 
APDU, processes the command, and eventually re-
turns a response APDU. 
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3.7 Secure Messaging 

Within the authentication method as proposed for WD 
29167-1 in a previous section, the confidential and 
authentic exchange of arbitrary data is not envisaged. 

However, in some applications it is desirable to 
communicate in a secure manner which is known as 
secure messaging. Basically there are two stages of 
secure messaging which can be applied separately or 
combined. 
 Message Authentication: this ensures the in-

tegrity of a message, No one other than the 
originator can generate or alter such a message 
after a message authentication code (“MAC”) 
is attached to the message, nor can the origina-
tor deny his authorship. The MAC is calculat-
ed over that part of the message which is to be 
secured. 

 Message Encryption; this ensures the confi-
dentiality of a message. Only the originator 
and the receiver of the message can see its 
clear content. 

As mentioned, both security mechanisms can be 
combined. In that case the state of the art requires 
applying the encryption first and message authenti-
cation afterwards. 

For both security mechanisms a number of cryp-
tographic algorithms are available. In our prototype 
we used AES-CBC-128 for the encryption and AES-
CMAC- 128 for message authentication. This choice 
was based on the availability of coprocessor support 
for the AES crypto-primitive. 

4 RESULTS 

With the FPGA setup we were able to execute a se-
cure authentication test suite comprising a Rabin-
Montgomery authentication of the tag, followed by 
an AES based mutual authentication, writing a data 
record with secure messaging (encrypted and au-
thenticated), and then securely reading back the data 
just written. 

With the microprocessor running at a clock rate 
of 1.25 MHz we obtained satisfactory results. 
Thanks to the integrated multiplication unit the Rab-
in-Montgomery authentication with a modulus of 
1024 bit size was performed within 134 ms. This 
does not include the time required to transmit the 
result to the interrogator which takes more than 
330 ms. The buffer determines if the components 
involved require the authentication message to be 
split into at least two fragments, which adds to the 

communication times. However, we do not expect to 
have buffers big enough to transfer the whole mes-
sage within a single block. 

The performance of the secure messaging tests 
was less satisfactory. This was due to the fact that a 
BlockWrite command with sufficient data length 
was neither supported by our AFE nor by the UHF 
reader firmware. Therefore, we had to fall back to an 
appropriate number of Write commands which im-
posed a considerable time overhead. Thanks to the 
AES coprocessor, the AES-based encryptions were 
calculated with considerable performance as ex-
pected,. However, overall execution times were 
dominated by the communication. 

5 CONCLUSIONS 

As we expect the standardisation to take some time 
we will continue to experiment with setups based on 
the shared memory approach taken with the FPGA.  
For further evaluations and estimations on power 
consumption and operating range the FPGA should 
be replaced with an ASIC implementing basically 
the same functionality. 

After the completion of ISO/IEC WD 29167 as a 
standard and the availability of compatible readers we 
will continue to implement this technology in order to 
enhance the performance of secure UHF tags. 
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