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Abstract: A sensor network is a key factor for successful structural health monitoring (SHM). Although stable sensor 
network system is deployed in the structure for measurement, it is often inevitable to face measurement 
faults. In order to secure the continuous evaluation of targeted structure in cases where the measurement 
faults occur, appropriate techniques to estimate omitted or error data are necessary. In this research, back-
propagation neural network is adopted as a basic estimation method. Then, a concept of post-processing is 
proposed to improve an accuracy of estimation obtained from the neural network. The results of simulation 
to verify performance of estimation are also shown. 

1 INTRODUCTION 

A structural health monitoring (SHM) is gradually 
gathering attention to guarantee safety or 
serviceability in various technical fields including 
civil, mechanical, and aeronautical engineering. 
Most of SHMs are initiated with composition of a 
sensor network designed for its purpose, and then 
progress based on acquired data. Although a stable 
sensor network is the primary element for further 
progression of SHM process, unfortunately many 
cases where acquisition of normal data is impossible 
exist due to malfunction, problem in power supply, 
and(or) obstacles in communication. In these cases, 
normal evaluation on the status of structure, which is 
an ultimate objective of SHM and sensor network, 
becomes difficult until proper maintenance.  

There may be two possible approaches for 
continuous evaluation in case where measurement 
faults occur: 1) evaluaitng a state of structure 
through available data. 2) estimating the values of 
unavailable data which indicates omitted or unusable 
data, and then evaluating a state. This paper deals 
with a proper process for estimating the values of 
error data caused by measurement faults to secure 
continuous SHM. A back-propagation neural 
network (BPNN) which is robustly and successfully 
used among various artificial neural network (ANN) 
methods is adopted as a basic technique into 
estimation. It allows a model-free estimation since it 

only requires data for forming neural network. 
Additionally, post-processing of BPNN leading to 
more accurate estimation will be presented. The 
post-processing is motivated from how to compose 
training sets. Finally, a simulation utilizing finite 
element (FE) program (OpenSees) and its results 
will be discussed in regards to the performance. 

2 APPLICATION OF BPNN 

To achieve a final goal of this research, which is to 
find an effective and model-free estimation 
technique, a concrete idea is established as: to 
discover the direct relationship between two types of 
data sets acquired from stable sensor network in 
advance to the occurrence of measurement faults. 
Herein, first set is obtained from the sensors which 
will face measurement faults and second set is 
obtained from the sensors which will survive from 
the faults. This approach enables model-free 
estimation, and thus enhances applicability. 
However, it is almost impossible to set the 
relationship as a form of function if considering 
complex systems such as building structures, 
whereas ANN is most suitable for such systems. 

An ANN has been widely applied on various 
fields including engineering and business in order to 
find the relation between inputs and outputs for the 

205Lee J., Kim Y., Choi S. and Park H..
A Neural Network and Post-processing for Estimating the Values of Error Data.
DOI: 10.5220/0004207202050208
In Proceedings of the 2nd International Conference on Sensor Networks (SENSORNETS-2013), pages 205-208
ISBN: 978-989-8565-45-7
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



 

 

complex or ambiguous systems. BPNN utilized in 
this study is based on multi-layer perceptron with 
back-propagation algorithm, and is most robustly 
applied among various ANN techniques. The 
references for BPNN are readily available thanks to 
a large number of researches on BPNN and its 
applications being conducted. 
 

 

Figure 1: Typical training sets for neural network. 

3 TRANING SETS 

3.1 Typical Training Sets 

The training sets directly influence the quality of 
neural network. Inputs and outputs for BPNN are 
composed of measured values obtained from stable 
sensor network. Figure 1 illustrates composition of 
training sets which is regarded as a typical case in 
this research. Inputs in typical training sets consist of 
the values from active sensors that will survive after 
malfunction occurrence at *t t and outputs consist 
of the values from unstable sensors that will be 
inactive due to errors in the sensors or network.  

3.2 Self-referential Training Sets 

Second type of training sets has different outputs 
from those of typical training sets, but has identical 
inputs. The outputs include input components as 
shown in figure 2 and this type is named as self-
referential training sets. In case of building structure, 
for example, if measurement faults occur at two 
sensors among three sensors which are deployed in 
close proximity, expected values of data from two 
unavailable sensors can be forecasted within 
acceptable range in consideration with the value 

from one surviving sensor. This characteristic gives 
a possibility that input components in outputs may 
work as a controller to make estimated values more 
acceptable. 

 

Figure 2: Self-referential training sets. 

4 A POST-PROCESSING 

A neural network trained by self-referential sets 
takes inputs and then reversely gives those estimated 
values. Note that outputs include input components. 
Nonetheless, estimated inputs and real inputs are not 
identical since training of the network progresses 
toward the direction of minimum error on total 
estimation, but not on input components. Instead, 
this point implies the opportunity to improve an 
accuracy of the estimation through appropriate 
adjustment processe which makes the values of 
estimated and real inputs same. Thus, post-
processing of BPNN trained by self-referential sets 
can be expected to improve overall accuracy of 
estimation. 

A concept of the post-processing is illustrated in 
Figure 3. The post-processing is basically based on 
the neural network trained by self-referential sets. 
First work is numbering the outputs in accordance 
with a rule that the smaller difference between data 
numbers means the stronger correlation between 
data. For instance, displacements of every story 
show simple serial topology of correlation as shown 
in Figure 3. Then, in accordance with correlation 
topology, the intervals are determined by setting k 
number of input components as nodes of intervals. 
The key concept of post-processing is that the data 
being closer to the centre of interval means the 
bigger change occurs. This concept corresponds with 
the expectation that extent of the correlation between 
dead and surviving data will be stronger as distance 
being closer each other. Regarding serial topology of 
correlation, adjustment function  jg i  for i data in j 
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interval is derived as Equation (1) and illustrated in 
Figure 4. 

 

Figure 3: A concept of post-processing. 
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with 
 

 1 20, , ,..., kJ I I I  (2)

 1 20, , ,..., k     (3)

   
1 1j jj J J j jd D D  
      (4)

 

where, I is an index vector consisting of numbers of 
the available data and i  is i-th estimated value by 

neural network. Finally, adjusted estimation data iD  

in j-th interval are given by: 

1for a -th interval : j jj J i J    
 

   ji i j j JD D g i D     (5)

5 SIMULATION 

To verify a performance of estimation, a simulation 
was conducted. The simulation will yield two 
findings: 1) accuracy of estimation by only BPNN 
and 2) performance of post-processing. OpenSees, 

which is FE program, and MATLAB® were utilized 
for simulation. Figure 5 displays the properties of 
targeted structure. In this simulation, relative 
horizontal story displacements at every story are set 
as measurands. A scenario was designed as follows; 
relative displacements of every story were being 
stably obtained and then measurement faults 
occurred at every story except 6, 12, 18, 24, 30, 36, 
42, and 48 stories. In order to make a time history of 
the structural response, vertical loads were 
stochastically determined in each iteration according 
to the uniform distribution. Thus, training sets could 
be acquired by setting number of iteration as time. 
This variable loads were also applied on a structure 
after occurrence of measurement faults. In addition, 
locations of nodes were randomly determined in 
every iteration within limit range. Since real 
structures show an uncertain and non-theoretical 
behaviour, random dimensions were intentionally 
used to reflect the uncertainty of structural behaviour. 
An example of estimations is shown in Figure 6. 
 

 

Figure 4: Adjustment function for serial topology of 
correlation. 

Figure 7 shows accuracies of 500 estimations 
through BPNN trained by 200 typical sets. Root 
mean square (RMS) of real displacements at every 
story and root mean square error (RMSE) of 
estimated displacements are used to show the 
applicability of BPNN to estimation.  

Meanwhile, Figure 8 expresses the performance 
of post-processing compared to other cases where 
the post-processing is not applied. A dashed and thin 
solid lines indicate the normalized RMSE of 
estimated displacements in prior to and after post-
processing, respectively. Normalized RMSE 
(N.RMSE) is defined as: 

 

befor or after post-processing 
.

in case of typical training

RMSE
N RMSE

RMSE
  (6)

 

If a value of N.RMSE after post-processing is one, it 
means that the extent of reduced error is zero. 
Estimation was executed for 500 times. 
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Figure 5: The framed structure in simulation. 

 

Figure 6: An example of estimations. 

 

Figure 7: Accuracies of estimated displacements through 
BPNN trained by 200 typical sets. 

 

Figure 8: Performance of post-processing. 

6 CONCLUSIONS 

In this paper, a technique for estimating the values 
of error data was dealt with in order for the stable 
SHM to continue. BPNN was selected as basic tool 
for model-free estimation. An efficient post-
processing of BPNN was then developed. After 
neural network trained by typical sets gives first 
estimated values of error data, the adjustment 
process, which is a post-processing, makes those 
values more accurate. Finally, the performances of 
BPNN and its post-processing were verified by 
conducting the FE simulation. 

From the results of simulation, the estimation 
through only BPNN had a stable RMSE with small 
variation whatever measurand is large or not. The 
presented post-processing was able to increase an 
accuracy of estimation about 20% when compared 
the case where BPNN is only used. 
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