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Abstract: The availability of cheap imaging sensors makes it possible to increase the robustness of vision-based alarm
systems. This paper explores the benefit of data fusion in the application of fall detection. Falls are a common
source of injury for elderly people and automatic fall detection is, therefore, an important development in
automated home care. We first evaluate a skeleton-based classification method that uses the Microsoft Kinect
as a sensor. Next, we evaluate an overhead camera-based method that looks at bounding ellipse features. Then,
we fuse the data from these two methods by validating the skeleton tracked by the Kinect. Data fusion proves
beneficial, since the data fusion approach outperforms the other methods.

1 INTRODUCTION

The emergence of many new types of sensors on the
consumer market gives rise to many different appli-
cations. Since sensors often provide incomplete or
incorrect data, data fusion methods are being used to
combine data from different sensors to increase ro-
bustness. One application where robustness is a pre-
requisite is the automatic detection of falls of elderly
people. Falls are a major source of injury for elderly
people (Gallagher et al., 2001). In fact, about 30%
of people aged 65 or above fall every year (Gille-
spie, 2004), and for people above 65 years of age,
80% of all injuries can be attributed to falls (Kannus
et al., 1999). Therefore, a lot of research has gone
into automated solutions; i.e. fall detection through
cameras, microphones, accelerometers, pressure sen-
sors or motion sensors. These types of sensors do not
require the fallen person to explicitly call for help,
but can automatically detect catastrophic events and
sound an alarm. Currently, research has been shift-
ing in the direction of ambient methods, especially
camera-based methods. In this research, we focus on
camera-based methods for fall detection.

1.1 Problem Statement

In real applications, the use of computer vision sys-
tems still has its limitations, for example because of
the limited field of view, or errors cause by lighting
changes. In our research we focus on data fusion and

we find a way to combine data from the Kinect and
an RGB overhead camera that performs better than
either method separately. In order for a fall detection
system to be useful in practice, several issues must
be addressed. First of all, the accuracy of a system
must be high. Falls do not occur often, but when they
occur, they must not be missed. The system should
also avoid having too many false alarms, though some
false alarms may be acceptable depending on whether
or not it is possible to remotely verify if a fall took
place. In this research, we focus on improving fall
detection accuracy.

1.2 Related Work

Camera-based fall detection methods have been pre-
sented earlier. (Foroughi et al., 2009) uses a Support
Vector Machine classifier for detecting falls. From
the camera image, several features are extracted: ap-
proximated ellipses of the body shape, projection
histograms representing the vertical and horizontal
distribution of the foreground pixels, and temporal
changes of the head’s position. (Yu et al., 2009) uses a
single RGB camera. First the ellipse that best matches
the body of the subject is found, and the parameters
of this ellipse are used to determine which of the three
states the body is in: standing, bending or lying. A
fall is detected if the subject transitions from stand-
ing to bending to falling in a short period of time. A
similar approach is described in (Liu et al., 2010), but
instead of looking at an ellipse, the silhouette of the
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target is classified into a pose. Again, quick transi-
tions between certain poses indicate a fall. In (Tao
et al., 2005), a similar method is presented, but this
one looks at the change of a bounding volume over
time. Falls are then detected as abrupt changes in the
feature space. A volumetric approach is also used by
(Anderson et al., 2009), in combination with fuzzy
logic rules to determine if a fall took place.

An issue with the approaches described above is
that the amount in which the body shape changes de-
pends on the direction of the fall. This is not an is-
sue in depth cameras, since they measure the absolute
size of the body shape, and not the size of the pro-
jection of the body onto a 2D plane. Several meth-
ods have investigated the use of depth cameras, the
Kinect in particular. For instance, (Rougier et al.,
2011) uses the Kinect depth camera for fall detection.
After foreground segmentation, the target’s 3D cen-
troid is found. The position and velocity of this cen-
troid are monitored, once they reach certain threshold
values they will trigger an alarm. A similar method
that also uses the Kinect is presented in (Mastorakis
and Makris, 2012), in which the change in the bound-
ing box shape is examined, and the target is monitored
for inactivity after a fall. Some successful attempts
were made in combining data from different sensor
types, such as (Töreyin et al., 2005), which com-
bines video and audio data. Additionally, in (Alemdar
et al., 2010) video data is combined with accelerome-
ter data to do classification. However, combining the
data from depth cameras and normal cameras is unex-
plored in the application of fall detection. Therefore,
we want to focus on investigating data fusion between
RGB and depth cameras in this research.

1.3 Research Question

The question we answer in this research is the fol-
lowing: Can we improve classification accuracy by
fusing data from the Kinect and an overhead camera?
An overhead camera is used because it gives a dif-
ferent angle of the room, which can help when the
tracking target is occluded from certain angles. In our
study we implemente a classification method that uses
the Kinect, and a different classification method that
uses the overhead camera. We then evaluate the per-
formance of these methods. Next, we combine the
data from these two methods, and compare the perfor-
mance of this data fusion method to the performance
of the separate methods.

1.4 Overview of Methods

We have designed a skeleton-based classification

method that classifies a sequence of joint positions
into a fall or a non-fall. We do this by compressing
a high-dimensional sequence of joint positions using
PCA, and then classifying on this low-dimensional
data using an SVM classifier. The second method we
implemented was the bounding ellipse method. For
this method we look at the shape of the foreground
of the overhead camera image. The parameters of
this shape are then used in SVM classification. This
is a method much like those described in (Tao et al.,
2005), (Yu et al., 2009) and (Liu et al., 2010), though
these methods use a heuristic rule to determine if a
fall took place, whereas we use an SVM classifier.
We chose to use an SVM classifier in order to com-
pare this method fairly with our own methods, which
also use SVM classifiers. Additionally, the SVM does
not require adapting the heuristic classification rules
to our particular dataset, thus avoiding biasing the re-
sults in favor of our method. The third and fourth
approaches use data fusion to improve classification.
Our third method takes the features from both classi-
fiers and does classification on this larger feature vec-
tor. In our fourth method, we estimate the reliability
of the skeleton tracked by the Kinect, and use this as
extra features for our classifier. A more elaborate de-
scription of these methods is given in the next section.
We evaluate these methods by classifying a dataset of
40 fall samples and 40 non-fall samples, as described
in 3. These experiments are described in Section 4.

2 METHODS

2.1 Skeleton-based Classification
Method

As seen in Figure 1, we take the skeleton joint data
from the Kinect. An example of the skeleton tracked
is shown in Figure 2. For each period of one second
in the skeleton joint data, k skeleton tracking results
are sampled and concatenated as one observation in
our training data. For each skeleton pose, each of
the 20 joints is described by X,Y and Z coordinates,
which means we have k�60 dimensions per observa-
tion. The joints are represented in skeleton space co-
ordinates, which are measured in meters with respect
to the Kinect’s position. Considering the high dimen-
sionality of this vector, we would need a lot of training
data to train our classifier. We can avoid this by using
Principal Component Analysis. We chose to use 10
principal components in our feature vectors, because
after experimentation we found that the first 10 prin-
cipal components explain 96% of the variance in the
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Figure 1: Overview of skeleton-based classification
method.

Figure 2: The tracked skeleton in the depth image.

Figure 3: Overview of bounding ellipse classification
method.

data. For classification, we use an Support Vector Ma-
chine (SVM) classifier with a Radial Basis Function
(RBF) kernel. We chose this kernel because it allows
non-linearities in our data.

2.2 Bounding Ellipse Classification
Method

For our second method (Figure 3) we use an over-
head RGB camera. The first step in this method
is foreground segmentation. Our approach models
the background by constructing a set of eigenback-
grounds(Oliver et al., 2000) using Principal Compo-
nent Analysis (PCA). Applying PCA to a diverse set
of background images results in the mean background
image µ and a set E of k eigenbackgrounds. The back-
ground of a new sample x is reconstructed by pro-
jecting the sample onto the k eigenbackground and
projecting back into image space. Then, we create a
probabilistic model of the background. Given an im-
age x, this model will give us the probability for each
pixel that it belongs to the background. We model
each HSV component of each pixel i with a Gaussian
distribution, taking the reconstructed background b as
a mean:

pb;i(x) = N (xi;bi;s
2) (1)

The variance s was calculated from the training data.
For the H and S components, we found a variance of
0.08 and for V a variance of 0.05. We decide a pixel

Figure 4: Example of an ellipse fit to the target.
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Figure 5: The ellipse major/minor axis ratio during a fall.
Fall occurs between frames 40 and 60 (frame rate is 15 fps).

belongs to the foreground if pb;i(x)< 0:5. This gives
us a foreground mask, on which we perform morpho-
logical operations to remove noise and find the largest
blob. After obtaining a silhouette using foreground
segmentation, we fit an ellipse to the silhouette and
use its parameters as features. An example of an el-
lipse fitted to a target can be seen in Figure 4. For this
ellipse, we are interested in the ratio r of major axis
to minor axis. In Figure 5, we plot the value of this
ratio over time, showing that it is a good indicator of a
fall. To make the features location invariant, we also
add the distance d from the bounding ellipse to the
center of the image to our feature vector. We use the
same classification method as in our skeleton-based
fall detection method; an SVM classifier with an RBF
kernel.

2.3 Data Fusion Method A

Figure 6 shows data fusion method A. For both data
fusion methods, we used synchronized data so that
we can relate a measurement taken with the Kinect
directly to a measurement taken with the overhead
camera. The process of synchronizing the cameras is
described in section 3.1. Data fusion method A takes
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Figure 6: Overview of data fusion classification method A.

Figure 7: Overview of data fusion classification method B.

the features from the bounding ellipse and skeleton-
based methods, and appends these features into one
feature vector. This vector is used for classification.

2.4 Data Fusion Method B

In data fusion method B (Figure 7), we use the over-
head camera to validate the skeleton tracked by the
Kinect. The idea is that the skeleton not being tracked
properly will result in false alarms in fall detection.
Incorrectly tracked skeletons are unstable, and may
change erratically between measurements, causing
motions that are interpreted as falls. If we can mea-
sure how well the skeleton is being tracked, we can
quantify how much weight we can give to the skeleton
data. For validating the skeleton, we see how well its
reprojection into the overhead camera image matches
the foreground. Figure 8 shows the skeleton repro-
jected into the overhead camera image. In order to
better model the shape of the human body, we expand
each joint using a cylinder, the result of which can be
seen in Figure 8 on the right. After foreground seg-
mentation and skeleton reprojection, we have two bi-
nary images F and S. We define our measure of how
well the skeleton matches the foreground as follows:

m =
jF \Sj
jF [Sj

(2)

The higher the value of m, the better the match be-
tween the two image masks. For each pair of mea-
surements (skeleton and foreground segmentation)
we calculate a match score m. These match scores,
along with features from the bounding ellipse and
skeleton classification methods, are appended into a
feature vector, on which SVM classification is done.

3 LAB & DATA SET
DESCRIPTION

3.1 Lab Setup & Synchronization

The data for our experiments was recorded in a sim-
ulated living room using two cameras: a Microsoft
Kinect and a Vivotek FD7131 overhead camera. The
Kinect is connected to the recording laptop by a USB
cable, sending data to the Microsoft Kinect SDK (ver-
sion 1.0), which analyzed the depth image to track the
user’s skeleton at a frame rate of 10 to 30 fps. The
overhead camera is connected through the network,
sending data over the network compressed using the
MPEG-4 video codec. Data is sent at a rate of 15
fps at a resolution of 640x480. The overhead camera
has tangential distortion, which we corrected using
the model by (Brown, 1971). Data was recorded dur-
ing different periods of the day, with different light-
ing conditions. In some samples, the scene was illu-
minated only by sunlight, in other samples, artificial
light was used. To synchronize the data from the two
data sources with sub-second precision, we displayed
a timer on the television screen in the room. Then,
we can get a time stamp from network camera image
with sufficient accuracy and correlate it to the Kinect
data. While this is not a viable solution in a real-life
scenario, there are many ways to deal with this issue
depending on the available hardware.

3.2 Data Set & Preprocessing

The recorded falls all take place in an area of roughly
3x3 meters, and the direction of the fall is varied. In
total, 40 fragments of about 5 minutes were recorded.
Each fragment contains mostly general activity with a
fall at the end. These falls were manually annotated.
For SVM classification, we need all samples to have
the same length, which means that they need to have
the same amount of temporal data. Since the Kinect’s
frame rate is not consistent, we use linear interpola-
tion to get the sample data at regular intervals. We
apply interpolation to both the skeleton joints and the
bounding ellipse features. From our data set we deter-
mined that we only need to look at the first second of
data to capture the complete falling motion. The final
dataset that we test each method on contains measure-
ments taken during the first second of a fall, for each
of the 40 falls. 8 measurements are used for every fall,
with uniform spacing between measurements. Simi-
larly, 40 samples were chosen from general activity
footage. These contained samples of the target per-
forming general activity.
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Figure 8: The skeleton reprojected into the overhead camera image. Next to it is the expanded skeleton reprojected into the
same camera image.

Table 1: Classification results of classification. Numbers are mean/variance of the True Positive Rate and True Negative Rate
of 5-fold cross-validation over 25 classification experiments.

TPR mean TPR variance TNR mean TNR variance
Skeleton-Based 0.969 0.007 0.926 0.003
Bounding ellipse 0.907 0.009 1 0.000
Data Fusion A 0.921 0.029 0.92 0.021
Data Fusion B 0.984 0.037 0.987 0.017

4 EXPERIMENTS

In our first two experiments, we look at classifica-
tion performance for the skeleton-based classifica-
tion method and the bounding ellipse classification
method. We then evaluate our data fusion methods on
the same dataset and show that classification results
are improved for data fusion method B. For evaluating
each of our classifiers, we use 5-fold crossvalidation
for classification on our dataset. Each classification
method is tested on the same 40 samples of falls and
40 samples of non-falls. Since there is some random-
ness in the selection of the folds, we repeat this cross
validation experiment 25 times. The results are shown
in Table 1. True Positives (TP) are falls classified as
falls, while False Negatives (FN) are falls classified
as non-falls. Similarly, False Positives and True Neg-
atives represent false alarms and correctly classified
non-falls, respectively. We see that the skeleton-based
classifier performs quite well, with the scores indi-
cating on average about 3 false positives and about 1
false negative. The false negatives were caused by the
target falling near the edge of the screen, and a large
part of the joints being (incorrectly) inferred. The
false positives were fragments where the target was
sitting or lying on the couch and the skeleton changed
erratically between frames due to high uncertainty in
the skeleton tracker. The bounding ellipse method has
a relatively high number of false negatives compared
to the skeleton-based classification method. These

were falls where the shape of the bounding ellipse did
not change enough due to the position of the person
and the direction of the fall. Data Fusion Method A
does not perform very well. It has a relatively high
number of false negatives and false positives, so it
seems this approach for data fusion is not very effec-
tive. There is a good explanation for this: the classi-
fier has no information on which feature set is more
reliable, which would be useful information for falls
in which the skeleton is not tracked properly. On the
other hand, data fusion method B shows a low num-
ber of false positives and a low number of false neg-
atives, outperforming the other methods in terms of
absolute numbers of misclassifications. This is due to
our data fusion approach: the classifier has informa-
tion on when the skeleton is not being tracked prop-
erly, and will attribute more weight to other features.

5 DISCUSSION

The question we wanted to answer in this research
was: can we improve classification accuracy by fus-
ing data from the Kinect and an overhead camera?
When simply classifying on concatenated features,
performance did not improve. However, using the
skeleton match score resulted in high classification
scores with only one false negative on average. Since
this false negative is the same false negative that orig-
inally occurred in both the skeleton-based classifi-
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cation method and the bounding ellipse method, it
seems that the fusion parameter worked exactly as
intended; indicating when the Kinect skeleton is re-
liable. If the skeleton match score is low, then the
bounding ellipse has more influence on the classifica-
tion result, and fewer misclassification are made. Our
conclusion is that classification results are indeed im-
proved by data fusion.

We were able to compare the skeleton-based clas-
sification method to an existing bounding ellipse
method. Comparing to other state-of-the-art methods
is more difficult, however, since a lot of these meth-
ods use a specialized sensor setup. Additionally, not
all papers report the full confusion matrix in their re-
sults, or they have non-binary classifiers. This makes
it hard to compare our results quantitavely to other
state-of-the-art methods.

5.1 Future Work

Before a fall detection system is used in practice, it
will have to be able to deal with the challenges of ob-
serving day-to-day life. For example, pets or TVs can
make tracking a person more difficult. The Kinect
proved quite useful for fall detection, but it needs to
be better at tracking targets that sit down or lie on a
couch for the Kinect to be truly reliable in a stand-
alone setup. The limited range and field of view of
the Kinect also make it difficult to apply in Kinect in
some situations. Testing the method on real-life data
instead of simulated falls should also be done; young
people do not fall in the same way as elderly peo-
ple. Unfortunately, not many real-life falls have been
recorded.

5.2 Conclusions

In this research, we have evaluated four fall detection
methods. The first two methods had a high number of
either false positives or false negatives. To combine
data from both methods, we implemented two data
fusion methods. The results show that our data fusion
method B outperforms the other methods, by using
a match score that estimates the reliability of tracked
skeleton. With this we have shown that data fusion
between sensors of different modalities is beneficial
for fall detection.
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