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Abstract: This paper introduces a Fuzzy entropy-based method for the problem of feature selection. For the first time 
Fuzzy-Entropy is used to directly link the relative input relevance of a Radial-Basis-Function Neural-Fuzzy 
modelling structure. This embedded feature selection method uses the model performance as a criterion for 
the feature selection. The resulting model maintains its simplicity and transparency in the form of a 
linguistic Fuzzy-Logic rule-base. The proposed methodology is validated using a real biomedical case-
study, which concerns the signature selection for the identification of the stage of bladder cancer. The 
signature selection and predictive modelling results are compared to previous research work on the same 
dataset, and it is shown that the RBF-NF model outperforms the previous modelling attempts by achieving 
high predictive accuracy (>90%). The model is shown to maintain its good performance even when using 
just 10 genes in the gene based signature. 

1 INTRODUCTION 

One of the biggest challenges in cancer research is 
the accurate early classification of tumours. This 
classification can reflect the stage of a tumour and 
may be achieved via a number of information 
sources, including clinical and radiological data and 
potentially, biochemical or molecular tests. 
However, limitations in the accuracy of these data 
have led to the search for more robust biomarkers 
such as gene expression data. One method for high 
throughput, global profiling of gene expression is 
the microarray. In this paper we investigate the 
ability for genetic data stage bladder cancer reliably. 
A reliable predictor capable of accurate 
classification at an early stage of the cancer would 
avoid unnecessary treatment and also save costs.  

In recent years the study of microarrays has 
become more popular. Microarrays are chips that 
contain thousands of probes. These probes mirror 
the RNA or DNA sequence for individual genome 
locations. The expression or content of that 
corresponding genome structure can be measured by 
the abundance of binding to that probe. Microarrays 
have been used in a number of different contexts in 
human cancer. 

Currently one of the most promising roles is as 

disease biomarkers that may be used to predict 
tumour stage and subsequent outcomes. Microarray 
data analysis is challenging due to the large size of 
these datasets(100s to 10,000 of probe values) and 
their imbalance with samples size (most series have 
less than 100 samples). This presents a challenging 
Systems Engineering classification and 
identification problem (high dimensionality, low 
number of samples). If accurate predictive models 
(wrapper methods) are built from the available gene 
data along with results from cancer biopsies and 
other clinical tests, one can then try to understand 
how the various genes and tests relate to cancer, and 
try to develop multi-dimensional patient prognostic 
maps that are capable of mapping cancer malignancy 
based on a minimum amount of data/tests. 

The main challenges in this type of research are: 

 The uncertainty of the data 

 Model generalisation issues 

 Identification of relevant genes/clinical markers 

 Link model-based research findings with medical 
expertise 

To address the problem of high number of input 
features, feature selection algorithms have become 
indispensable components of the learning process.  

Feature selection is the process of detecting the 
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relevant features and discarding the irrelevant ones. 
There are three categories for feature selection: 
filters, wrappers and embedded methods.  

Statistical regression methods perform poorly 
when there are multiple interconnected variables and 
in the presence of contaminating data (Burke, 
Goodman et al., 1997). Filter and wrapper methods 
could be used in combination with Soft Computing 
(SC) techniques (i.e. Fuzzy Logic, Neural-Fuzzy 
Systems) to eliminate irrelevant genes at an early 
stage. The combination of SC with other 
computational techniques offers significant 
advantages in terms of imprecision tolerance and 
systems interpretability, and has proven to be an 
effective method performing equally or better than 
Support Vector Machines (SVM) or ‘K Nearest 
Neighbourhood’, which are very popular methods 
for gene expressions classification (Pal et al., 2007). 

In this paper, a new embedded SC feature 
selection method is introduced based on Fuzzy 
Logic (FL) and a Radial-Basis-Function (RBF) 
Neural-Fuzzy (NF) computational structure. The 
presented methodology offers a feature selection that 
takes place during the model-training phase, whilst 
maintaining the system simplicity and 
interpretability. This is achieved by taking advantage 
of the Fuzzy Entropy measure (Al-Sharhan et al., 
2001). Hybrid Neural-Fuzzy Logic models combine 
the learning ability of Neural Systems and the 
interpretability of Fuzzy Systems, they can 
automatically generate and adjust the membership 
functions and linguistic rules directly from the data. 
The presented method is a combination of Fuzzy C-
Means and RBF-NF function; it is an embedded 
method as it trains the model while it performs the 
input selection. As a pre-input selection the t-test 
statistical method was used to reduce the large initial 
dataset. This is a popular pre-processing step in 
microarray gene selection, aiming at removing the 
irrelevant to the process genes. The proposed 
methodology, uses a variant of the the Levenberg-
Marquardt algorithm for the model’s parametric 
optimisation. The method is suitable for handling 
large datasets, and because of the ‘IF-THEN’ 
linguistic rules it helps the clinicians to understand 
how the model behaves. 

The remainder of the paper is organised in four 
more sections as follows: 2. Radial Basis Function 
Neural-Fuzzy System: in this section a description of 
the modelling and data-mining structure is 
presented. 3. Fuzzy Entropy-Based Feature 
Selection: this is a detailed description of the new 
feature selection method 4. Gene Signature 
Selection: the new method is successfully applied to 

a bladder cancer literature dataset to predict the 
stage of the cancer, and finally, section 5: 
Conclusion and Future work. 

2 RADIAL BASIS FUNCTION 
NEURAL-FUZZY SYSTEM  

2.1 Clustering 

The data-mining workflow consists of three stages, 
the first of which is Fuzzy C-means (FCM) 
clustering for the creation of the initial rule-base. 
This rule-base is then ‘translated’ into a Radial-
Basis-Function Neural-Fuzzy structure, and is 
finally parametrically optimised via the Levenberg-
Marquardt function-minimisation algorithm. The 
FCM method (Dunn, 1973) is frequently used in 
pattern recognition but the main reason to use it is 
because after Fuzzy C-Means is applied to a data it 
can be used directly as initial values of an RBF 
Model. FCM is based on minimisation of the 
following objective function: 
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Where m is any real number greater than 1, uij is the 
degree of membership of xi in the cluster j, xi is the 
ith of d-dimensional measured data, cj is the d-
dimension centre of the cluster, and ||*|| is any norm 
expressing the similarity between any measured data 
and the centre. 

2.2 RBF-Based Neural-fuzzy System 

 

Figure 1: RBF Layers of NF model. 

The second stage consists of applying the method 
proposed in (Panoutsos and Mahfouf, 2010). This 
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method uses an RBF function to describe a Neural-
Fuzzy system. Figure 1 show the structure of the 
RBF-NF model, where the input, rule-base (hidden 
layer) and output layers can be identified. The 
presented system can then be parametrically 
optimised via a suitable function minimisation 
algorithm. 

2.3 Levenberg-Marquardt 
Optimisation 

The Levenberg-Marquardt (LM) algorithm is an 
iterative technique that locates the minimum of a 
multivariate function that is expressed as the sum of 
squares of non-linear real-valued functions 
(Levenberg, 1944). In this paper the RMSE between 
the training data and the model predicted data is 
used as the cost function to be minimised. The 
presented data-mining workflow provides an 
efficient and fast method for capturing numerical 
data-based information and converting it to a 
linguistic knowledge-base with a predictive 
capability. 

The next section describes how the RBF-NF 
structure is exploited along with Fuzzy-|Entropy 
measures to identify relevant to the process features. 

3 FUZZY ENTROPY-BASED 
FEATURE SELECTION 

The presented method is based on two Fuzzy Logic 
features: The Fuzzy Entropy and the Tagaki-
Sugeno-Kang (TSK) type (Takagi and Sugeno, 
1985) of output layer for a NF system. Fuzzy-
Entropy is a measure of ‘fuzziness’, it allows the 
quantification of how ‘fuzzy’ a value is when the 
Fuzzy Inference System (FIS) is used.The TSK 
output layer of an RBF-NF model is a linear 
combination of its inputs (polynomial).The 
hypothesis is that during model training, the values 
of the output weights wi, for each rule, will increase 
(absolute value) for the inputs (genes) that are more 
‘influential’ in (contribute to) the model predictions. 
One could analyse how the output weights change 
on every training iteration, hence determine the 
relevance of the corresponding inputs. This 
relationship in terms of entropy strength is relative 
to the genes, is measurable, and may be used to rank 
the genes for a particular rule in the rule-base. In the 
algorithmic process proposed here, the model is 
trained for ‘N’ iterations, while at ‘n’ iterations 

(n<N) the training can be ‘paused’ and the model 
can be reviewed in terms of the gene ranking order.  

Not all the rules in the rule-base contribute with 
the same amount to the FIS. This is subject to the 
‘input space’ of a particular gene. Therefore, the 
ranking order that may be established as a result of 
examining a single TSK rule is only relevant if the 
corresponding rule has a high contribution to the 
overall rule-base. This contribution can be 
established via the use of Fuzzy-Entropy (FE), as a 
measure of ‘fuzziness’. The FE is calculated for each 
individual rule, and then a numerical ‘index’ is 
developed to ‘adjust’ the significance of the ranking 
of each individual rule. Finally, the overall ranking 
of the genes is calculated by using the FE-adjusted 
gene output weights. 

In terms of the algorithmic process, Figure 2 
summarises the gene feature selection. The first step 
is to rank the output weights by rule in descending 
order. The top ‘n’ genes are then selected and this 
information is passed on to the following step (this 
numerical threshold is process specific). The Fuzzy-
Entropy is then calculated for each model prediction. 
The fuzzy entropy is defined using the concept of 
membership function. In 1972, De Luca and Termini 
defined Fuzzy Entropy Based on Shannon’s 
functions and they introduced a set of properties for 
which Fuzzy Entropy should satisfy them (Al-
Sharhan et al., 2001). 
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Once the entropy is calculated, Eq. 3 is applied.  
The ‘B’ index reflects the significance of a gene 

within a certain rule. The value of B is obtained for 
each gene in all the rules.   
 

ܤ ൌ ሺߤ/ܪሻ ∗ (3) ݐ݄ܹ݃݅݁	ݐݑݐݑ
 

The output weight is adjusted by the significance of 
a particular rule (proportional to the membership 
degree, inversely proportional to the ‘fuzziness’). 
After the rule-adjusted significance per gene is 
calculated a new ranking order is then compiled. 

The work presented in this paper is the first 
report, to our knowledge, of a Fuzzy-Entropy 
scheme applied to a RBF-NF modelling structure.  

The resulting ranking of the genes directly 
relates to their performance in the modelling 
structure, is an iterative procedure – that can be 
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repeated a number of times as required – and 
provides a fast workflow to establish gene signatures 
from microarray data.  

The dataset consists in 22,283 genes and 90 
samples from the analysis of the Affymetrix Chip 
U133A Human Gene-chip. This study aims at 
predicting the ‘Cancer Stage’. 

4 GENE SIGNATURE 
SELECTION 

The case-study presented in this paper is focused on 
the prediction of Bladder Cancer Stage using a 
dataset from a previous study made by Sanchez-
Carbayo (Sanchez-Carbayo et al., 2006). 

Table 1: Cancer stages. 

Value Stage 
0 PTA,PT1 
1 PT2, PT3A, PT3B, PT4, PT4A 

 

A common staging system uses numbers to 
indicate the stage of the cancer as shown in Table 1.  

The cancer Stage values were ‘encoded’ to 0 and 
1 according to Table 1. Stages encoded as ‘0’ are 
often referred to as ‘Non-Aggressive’, and the ones 
encodes as ‘1’ as ‘Aggressive’.  

4.1 Data Pre-processing 

Prior to any modelling work the dataset is 
normalised in order to eliminate the high variances 
between the gene’s intensities (quantile 
normalisation). After normalisation, the student’s 
distribution t-test is used as an initial gene-filter. 

Based on the p-values the genes from the 
Sanchez-Carbayo dataset were reduced from the 
original 22243 genes down to a set of 500 genes. 

4.2 Radial-Basis-Function Linguistic 
Modelling 

The RBF-NF model was then developed as 
described in Section 2. The methodology was 
applied to the Sanchez-Carbayo Dataset, to reduce 
the number of genes. As previously discussed the 
Sanchez-Carbayo dataset consists of 90 patients and 
22283 genes. A pre-selection of the genes was made 
using the top 500 genes as selected with the t-test. 
After this preliminary gene selection (pre-filtering) 
the entropy (ܪሻ (Eq, 2) is calculated based on the 
membership function (ߤሻ. The median of the ߤ and 

the ܪ is calculated, a second threshold is 
established for both parameters (for ߤ>.5 and for 
 <.4) then the Eq. 3 is applied. The first geneܪ
signature was developed with 250 genes. This 
number of genes was selected to compare the 
resulting modelling performance to the Sanchez-
Carbayo results.  The results are shown in Table 2.   

The classification functions of Specificity, 
Sensitivity and Accuracy are used as measures of 
performance (Braga-Neto and Dougherty, 2004). 
The resulting model consisted of 10 rules only.  

 

Figure 2: RBF-NF fuzzy entropy feature selection. 

Table 2: RBF input selection 250 genes. 

Training Testing 

Specificity 100% 100% 

Sensitivity 100% 93% 

Accuracy 100% 96% 

 
The data samples were randomly separated into 

‘Training’ and ‘Testing’ datasets. The training set is 
only used to train the model. The testing dataset is 
only used after the model training is finished in 
order to test the generalisation performance of the 
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model (i.e. on ‘unseen’ by the model data), as a form 
of cross-validation. 

The study from Sanchez-Carbayo on the same 
data-set used the popular (for microarray data 
analysis) method of support vector machines (SVM) 
to predict the tumour stage with 250 genes. 

Table 3: Results Sanchez-Carbayo and RBF. 

Sanchez-Carbayo RBF Input Selection 

Accuracy 89% 96% 

The results show that the two resulting models 
have a similar level of performance, using the exact 
same number of genes; however the RBF-NF 
method shows a slightly improved accuracy (+7%) 
as compared to the SVM model. On the second 
modelling attempt, in order to further examine the 
presented methodology, the RBF-NF model was 
compared to the Martin Lauss publication (Lauss et 
al., 2010). They used 201 genes for the prediction of 
the stage of cancer, based on a different dataset. 
Tables 4 and 5 summarise the RBF-NF modelling 
results and the Lauss results (SVM).  

Table 4: 201 Genes – RBF-NF. 

Training Testing 

Specificity 90% 100% 

Sensitivity 100% 100% 

Accuracy 98% 100% 

Table 5: Results comparison: Lauss vs. RBF-NF. 

Martin Lauss RBF Input Selection 

Accuracy 87% 100% 

 

A third and final model was created, with just 10 
genes, to investigate the generalisation performance 
of the methodology with a very low number of 
genres. Table 6 summarises the resulting model. 

Table 6: RBF-NF input selection: 10 Genes. 

Training Testing 

Specificity 90% 93% 

Sensitivity 96% 93% 

Accuracy 95% 93% 

 

As suggested by this table, a performance drop is 
observed, as compared to the 201 and 250 gene 
models, however one can say that the performance 
of the model did not decrease significantly and it 
still outperforms the previously developed more 
complex models presented in (Sanchez-Carbayo et 

al., 2006); (Lauss et al., 2010). Apart from the gene 
signature identification (10 genes) the modelling 
structure presented in this paper maintains a 
transparent Fuzzy Logic-type linguistic rule-base. 
Figure 3 shows a sample of the rule-base describing 
the behaviour of the model. For simplicity, just two 
rules are shown (one for ‘low stage’ and one for 
‘high stage’) for five out of the 10 genes in the gene 
signature. Two of the linguistic IF-THEN rules that 
describe the model are shown below to demonstrate 
the transparency (interpretability) of the modelling 
method.  

Rule 9: 

IF: Gene RPS6 is Medium and 
Gene PHB is Medium and 
Gene LRP1 is Medium and 
Gene CCND2 is Medium and 
Gene SERP1 is Medium 

THEN the Cancer Stage is Non-Aggressive 
 

Rule 5: 

IF: Gene RPS6 is Medium-High and 
Gene PHB is Medium-High and 
Gene LRP1 is Medium-High and 
Gene CCND2 is Medium-High and 
Gene SERP1 is Medium-High 

THEN the Cancer Stage is Aggressive 
 

 

Figure 3: Neural-fuzzy rules. 

Table 8 shows the 10 top ranked genes. The 10-
gene signature has been confirmed from clinicians 
that is medically relevant; for example, genes 
RAPIB, CCND2 and SERP1 are known to be linked 
to bladder cancer. The corresponding numerical 
values of the linguistic hedges ‘high’, ‘medium’ etc. 
are determined by the optimisation algorithm via the 
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training data-set. The linguistic interpretation of the 
normalised gene intensity is shown in Table 7. 

Table 7: Gene range. 

Gene Intensity Range 

Very Low -1 to -0.72 

Low -0.71 to -0.44 

Low Medium -0.43 to -0.16 

Medium -0.15 to 0.12 

Medium High 0.13 to 0.4 

High 0.5 to 0.68 

Very High 0.69 to 1 

Table 8: 10-Gene signature. 

Gene Symbol Gene Title 

RPL34 ribosomal protein L34 

RPS6 ribosomal protein S6 

PRKAR1A 
protein kinase, cAMP-dependent, regulatory, type 

I, alpha (tissue specific extinguisher 1) 

CSRP1 cysteine and glycine-rich protein 1 

PHB prohibitin 

LRP1 
low density lipoprotein 

receptor-related protein 1 

DAZAP2 DAZ associated protein 2 

RAP1B RAP1B, member of RAS oncogene family 

CCND2 cyclin D2 

SERP1 stress-associated endoplasmic reticulum protein 1

5 CONCLUSIONS 

This paper introduces a feature selection algorithm 
based on Fuzzy entropy and a RBF Neural-Fuzzy 
structure that links directly the fuzzy entropy to the 
relative significance of the inputs of the model. This 
significance measure is used to rank the inputs of the 
model via an iterative algorithm. The proposed 
methodology has successfully been applied to the 
case study of bladder cancer prediction with respect 
to the ‘stage’ of the tumour.  Compared to previous 
modelling attempts (Sanchez-Carbayo et al., 2006); 
(Lauss et al., 2010) based on SVM, the RBF-NF 
input selection method shows improved performance 
in the same datasets. The attractiveness of this 
method is on the transparency that the rule-base 
exhibits and the good generalisation performance 
(even with just 10 genes) as compared to previous 
modelling attempts on the same dataset (250 and 

201 genes). The rule-base’s transparency and 
interpretability, can aid the clinicians to directly 
interrogate the resulting model (human-centric 
system) and examine how the model uses individual 
genes and their intensity to provide predictions on 
the stage of bladder cancer. Further work should 
focus on predicting other cancer-related markers 
towards a more comprehensive predictive model. 
The biggest challenge though is presented in the 
generalisation ability of such data-driven models as 
identified by other research results too. Models that 
are trained based on a specific patient cohort should 
be tested against data from other cohorts to establish 
the developed models’ generalisation performance 
and predictive robustness. 
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