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Abstract: This paper introduces an agent-based approach to analyse the dynamics of accidents and incidents in 
aviation. The approach makes use of agent-based simulation on the one hand, and of formal verification of 
dynamic properties on the other hand. The simulation part enables the analyst to explore various 
hypothetical scenarios under different circumstances, with an emphasis on error related to human factors. 
The formal verification part enables the analyst to identify scenarios involving potential hazards, and to 
relate those hazards (via so-called interlevel relations) to inadequate behaviour on the level of individual 
agents. The approach is illustrated by means of a case study on a runway incursion incident, and a number 
of advantages with respect to the current state-of-the-art are discussed. 

1 INTRODUCTION 

On May 31, 2009, Air France flight 447 disappeared 
somewhere over the Atlantic Ocean, during a route 
from Rio de Janeiro to Paris. The crash was the 
deadliest accident in the history of Air France, 
killing all 228 people on board. Whilst currently still 
under investigation, this accident seems to have been 
the consequence of a rare combination of factors, 
like inconsistent airspeed sensor readings, the disen-
gagement of the autopilot, and the pilot pulling the 
nose of the plane back despite stall warnings1. 

This example illustrates an important problem in 
the analysis of accidents and incidents in aviation: 
even if detailed flight data from the ‘black box’ are 
available, it is usually difficult to come up with a 
clear analysis, because the causes of incidents 
cannot be attributed to a point of failure of one 
individual entity. Instead, most incidents in aviation 
are caused by a complex interplay of processes at 
various levels of the socio-technical system.  

The complexity of these processes (and their 
interplay) poses some difficulties to existing 
approaches for the analysis of aviation indicents. 
Traditionally, such analyses are done via fault and 
event trees, graphical representations of Boolean 
logic relations between success and failure types of 

                                                           
1 http://en.wikipedia.org/wiki/Air_France_Flight_447 

events. However, although widely used, there is an 
increasing awareness that fault and event trees have 
serious limitations, especially when it comes to 
analysing dynamic systems with time-dependent 
interactions (see Everdij (2004) for a more extensive 
argumentation). More recently, alternative 
approaches have been developed, such as FRAM 
(Hollnagel, 2004) and STAMP (Leveson, 2004). 
While these approaches have proved successful in 
various case studies, they still have some drawbacks. 
In particular, FRAM lacks a formal semantics, 
which makes a computational analysis of complex 
non-linear processes impossible. STAMP does have 
a formal basis, but takes an aggregated, 
organisational perspective (based on system 
dynamics), which hinders an analysis at the level of 
individual agents (such as pilots and air traffic 
controllers), and their underlying mental processes. 

As an alternative, the current paper presents an 
approach for analysis of aviation incidents that takes 
a multi-agent perspective, and is based on formal 
methods. The approach is an extension of the 
approach introduced in the work of Bosse and 
Mogles (2012), which was in turn inspired by  Blom, 
Bakker, Blanker, Daams, Everdij and Klompstra 
(2001). Whereas this approach mainly focuses on 
the analysis of existing accidents (also called 
accident analysis), the current paper also addresses 
analysis of potential future accidents (called risk 
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analysis). This is done by means of a multi-agent 
simulation framework that addresses both the 
behaviour of individual agents (operators, pilots) as 
well as their mutual communication, and interaction 
with technical systems. By manipulating various 
parameters in the model, different scenarios can be 
explored. Moreover, by means of automated checks 
of dynamic properties, these scenarios can be 
assessed with respect to their likelihood of the 
occurrence of accidents. The approach is illustrated 
by a case study on a runway incursion incident at a 
large European airport in 1995.  

The remainder of this paper is structured as 
follows. In Section 2, the modelling approach used 
in the paper is presented. In Section 3, the scenario 
used within the case study is described. Section 4 
introduces the agent-based model to simulate this 
(and similar) scenarios, and Section 5 presents the 
simulation results. Section 6 addresses formal 
analysis of the model and its results, and Section 7 
concludes the paper with a discussion. 

2 MODELLING APPROACH 

To model the different aspects of aviation operations 
from an agent perspective, an expressive modelling 
language is needed. On the one hand, qualitative 
aspects have to be addressed, such as observations, 
beliefs, and actions of human operators. On the other 
hand, quantitative aspects have to be addressed, such 
as the locations and speeds of aircraft. Another 
requirement of the chosen modelling language is its 
suitability to express on the one hand the basic 
mechanisms of aviation operations (for the purpose 
of simulation), and on the other hand more global 
properties of these operations (for the purpose of 
logical analysis and verification). For example, basic 
mechanisms of aviation operations involve decision 
functions for individual agents (e.g., an operator 
may decide to give runway clearance, and a pilot to 
abort a take-off procedure in case of an emergency).  
On the other hand, examples of global properties 
address the overall safety of an operation, such as 
“no collisions take place”. 

The predicate-logical Temporal Trace Language 
(TTL) introduced in the work of Bosse, Jonker, van 
der Meij, Sharpanskykh and Treur (2009) fulfils all 
of these desiderata. It integrates qualitative, logical 
aspects and quantitative, numerical aspects. This 
integration allows the modeller to exploit both 
logical and numerical methods for analysis and 
simulation. Moreover it can be used to express 
dynamic properties at different levels of aggregation, 

which makes it well suited both for simulation and 
logical analysis. 

The TTL language is based on the assumption 
that dynamics can be described as an evolution of 
states over time. The notion of state as used here is 
characterised on the basis of an ontology defining a 
set of physical and/or mental (state) properties that 
do or do not hold at a certain point in time. These 
properties are often called state properties to 
distinguish them from dynamic properties that relate 
different states over time. A specific state is 
characterised by dividing the set of state properties 
into those that hold, and those that do not hold in the 
state. Examples of state properties are ‘aircraft A 
moves with speed S’, or ‘Air Traffic Controller C 
provides runway clearance to aircraft A’. Real value 
assignments to variables are also considered as 
possible state property descriptions. 

To formalise state properties, ontologies are 
specified in a (many-sorted) first order logical 
format: an ontology is specified as a finite set of 
sorts, constants within these sorts, and relations and 
functions over these sorts (sometimes also called 
signatures). The examples mentioned above then can 
be formalised by n-ary predicates (or proposition 
symbols), such as, moves_with_velocity(A, S) or commu-

nicate_from_to(C, A, runway_clearance). Such predicates 
are called state ground atoms (or atomic state 
properties). For a given ontology Ont, the 
propositional language signature consisting of all 
ground atoms based on Ont is denoted by 
APROP(Ont). One step further, the state properties 
based on ontology Ont are formalised by the 
propositions that can be made (using conjunction, 
negation, disjunction, implication) from the ground 
atoms. Thus, an example of a formalised state 
property is moves_with_velocity(A, S) & communi-

cate_from_to(C, A, runway_clearance). Moreover, a state 
S is an indication of which atomic state properties 
are true and which are false, i.e., a mapping S: 

APROP(Ont)  {true, false}. The set of all possible 
states for ontology Ont is denoted by STATES(Ont). 

To describe dynamic properties of complex 
processes such as in aviation, explicit reference is 
made to time and to traces. A fixed time frame T is 
assumed which is linearly ordered. Depending on 
the application, it may be dense (e.g., the real 
numbers) or discrete (e.g., the set of integers or 
natural numbers or a finite initial segment of the 
natural numbers). Dynamic properties can be 
formulated that relate a state at one point in time to a 
state at another point in time. A simple example is 
the following (informally stated) dynamic property 
about the absence of collisions:  
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For all traces , 
there is no time point t  
on which a collision takes place.   
 

A trace  over an ontology Ont and time frame T 
is a mapping  : T  STATES(Ont), i.e., a sequence of 
states t (t  T) in STATES(Ont). The temporal trace 
language TTL is built on atoms referring to, e.g., 
traces, time and state properties. For example, ‘in 
trace  at time t property p holds’ is formalised by 
state(, t) |= p. Here |= is a predicate symbol in the 
language, usually used in infix notation, which is 
comparable to the Holds-predicate in situation 
calculus. Dynamic properties are expressed by 
temporal statements built using the usual first-order 
logical connectives (such as , , , ) and 
quantification ( and ; for example, over traces, 
time and state properties). For example, the 
informally stated dynamic property introduced 
above is formally expressed as follows: 

 

:TRACES t:TIME 
state(, t) |= collision 
 

In addition, language abstractions by introducing 
new predicates as abbreviations for complex 
expressions are supported.  

To be able to perform (pseudo-)experiments, 
only part of the expressivity of TTL is needed. To 
this end, the executable LEADSTO language 
described by Bosse, Jonker, van der Meij  and Treur 
(2007) has been defined as a sublanguage of TTL, 
with the specific purpose to develop simulation 
models in a declarative manner. In LEADSTO, 
direct temporal dependencies between two state 
properties in successive states are modelled by 
executable dynamic properties. The LEADSTO 
format is defined as follows. Let  and  be state 
properties as defined above. Then,  e, f, g, h  
means: 

 

If state property  holds for a certain time interval with 
duration g, 
then after some delay between e and f 
state property  will hold for a certain time interval with 
duration h. 
 

Based on TTL and LEADSTO, two dedicated 
pieces of software have recently been developed. 
First, the LEADSTO Simulation Environment 
(Bosse, Jonker, van der Meij  and Treur, 2007) takes 
a specification of executable dynamic properties as 
input, and uses this to generate simulation traces. 
Second, to automatically analyse the resulting 
simulation traces, the TTL Checker tool (Bosse et 
al., 2009) has been developed. This tool takes as 
input a formula expressed in TTL and a set of traces, 

and verifies automatically whether the formula holds 
for the traces. 

3 CASE STUDY 

Based on the modelling languages TTL and 
LEADSTO, our model for flight operations will be 
introduced in Section 4. Although this is a generic 
model, it will be illustrated (in Section 5) by 
applying it to a specific case study. To this end, a 
simple scenario is used in the context of a runway 
incursion incident that occurred in 1995 (Bosse and 
Mogles, 2012). This scenario was obtained by 
performing a semi-structured interview with an 
available expert, a two years retired pilot of a 
European civil aviation company. 

The runway incursion incident took place during 
the departure of an Airbus A310 of a civil aviation 
company from one large airport in Europe. Although 
the details of the interview and the case study are not 
shown here (see Bosse and Mogles (2012) for this 
purpose), a summary of the scenario is provided 
below. A schematic overview of the situation is 
provided in Figure 1. 

 

The Airbus was preparing for the departure: the pilot-in-
command was sitting on the left and the co-pilot on the right 
seat in the cockpit and they were ready to start taxiing. They 
were supposed to taxi to runway 03 in the north-east 
direction. The Airbus received permission to taxi and started 
taxiing to its runway. Approximately at the same time, a 
military Hercules aircraft that was ready for the departure as 
well received permission to taxi in the north-west direction 
from its parking gate. The Hercules was supposed to take off 
from runway 36 that crossed with runway 03 that was 
designated for the Airbus. Both aircraft were taxiing to their 
runways. During the taxiing, the Airbus received its flight 
route from the air traffic controllers. Some time tater, when 
the Airbus was near the runway designated for taking off, it 
switched from the taxiing radio frequency to the frequency of 
the Tower and received permission to line up on the assigned 
runway. The Hercules was still at the taxiing radio frequency 
and also received permission to line up, while at the same 
time the Airbus received permission to take off at the radio 
frequency of the Tower. However, due to unknown reasons2, 
the Hercules pilot interpreted his permission for lining up as 
permission for taking off and started taking off on runway 36. 
As a result of this mistake of the pilot of the Hercules, two 
aircraft were taking off simultaneously on crossing runways, 
and none of the crews were aware of that. The air traffic 
controllers in the Tower observed the conflicting situation 
and communicated a ’STOP’ signal to the pilot-in-command 
of the Airbus, while the Airbus was still on the ground (but at 
high speed). The pilot had to make a quick decision about the 

                                                           
2  This misinterpretation might be explained by the fact that the pilot of 

the Hercules got used to the routine procedure of taxiing from the same 
military parking place at this airport and perhaps also of taking off 
from the same runway. And in many past cases, the line up procedure 
was often immediately followed by taking off, as permissions for 
lining up and taking off were sometimes given simultaneously. 
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termination of the take-off as there is a point in this process 
that one cannot safely do this anymore. After having analysed 
the situation, the pilot-in-command of the Airbus gave a 
command to the co-pilot (who controlled the aircraft) to 
abort the take-off and start braking on the runway. During 
braking, the crew of the Airbus saw the Hercules flying close 
in the air above their own aircraft at a distance of about 5 
meters. A serious collision was prevented. 

 

Figure 1: Schematic overview of the case study. 

4 AGENT-BASED MODEL 

The following subsections describe, respectively, the 
formal ontology for the case study, the executable 
dynamic properties (or rules) used to model the 
scenario, and some simulation results.  

4.1 Formal Ontology 

As the first step towards the formalisation of the 
incident identified during the interview, formal 
domain ontology was developed in TTL. In Table 1 
and 2, an overview of the ontology elements is 
shown, including the relevant sorts and subsorts 
relations, elements (constants) of sorts, and logical 
predicates over sorts. 

Table 1: Domain ontology: sorts and elements. 

SORT ELEMENTS 

AGENT 
{tower 

sub-sorts: PILOT, AIRCRAFT} 
PILOT {airbus_pilot,   hercules_pilot} 

AIRCRAFT {hercules, airbus} 

ROADWAY 
sub-sorts: RUNWAY, TAXIWAY, 

STARTINGPOINT, 
CROSSINGPOINT 

RUNWAY {runway_03, runway_36} 
TAXIWAY {taxiway_1, taxiway_2} 

STARTINGPOINT {startingpoint_1, startingpoint_2} 

CROSSINGPOINT 
{crossing_point(runway_03), 
crossing_point(runway_36)} 

ACTION 
{start_taxiing, start_line_up, start_take_off, 

take_off_from, stop_take_off} 
VELOCITY {low, high, very_high} 

As shown in the first three rows of Table 1, the 
model consists of five active agents that play a role 
in the scenario (see also Figure 1): Tower, Airbus 
Aircraft, Hercules Aircraft, Airbus Pilot and 

Hercules Pilot. In addition, there are elements of the 
environment that influence the agents’ behaviour in 
the model, such as runways, taxiways and other 
locations.  

Table 2: Domain ontology: logical predicates. 

PREDICATE DESCRIPTION 
Communication 

communicate_from_to(A:Agent, 
B: Agent, C:Action, 

R:Roadway) 

agent A communicates 
permission for action C on 

roadway R to agent B 
incoming_communication(A: 
Agent, C:Action,  R:Roadway) 

agent A receives permission 
for action C on roadway R 

Internal states of agents 

observation(A:Agent, I:Info_El) 
agent A observes information 

element I from the world 

belief(A:Agent, I:Info_El) 
agent A believes that 

information element I is true 
in the world 

expectation(A:Agent, C:Action) 
agent A has expectation for 

action C 
Actions of agents 

move_from_to(R1: Roadway, R2: 
Roadway) 

action of moving from 
roadway R1 to roadway R2 

performed(A:Agent, C:Action) agent A performs action C 
set_velocity(A:Aircraft, V:Velocity) aircraft A acquires velocity V 

take_off_from(R:Runway) 
take-off is performed from 

runway R 

stop_take_off(R:Runway) 
take-off from runway R is 

aborted 
Positions of agents 

is_at_position(A:Agent, 
R:Roadway) 

agent A is on  roadway R 

is_adjacent_to(R1:Roadway, 
R2:Roadway) 

roadway R1 is adjacent to 
roadway R2 

crossing_ways(R1:Roadway, 
R2:Roadway 

roadways R1 and R2 cross 

is_half_way(A:Agent,R:Roadway)) 
agent A is half way on 

roadway R 
in_air(A:Aircraft) aircraft A is in air 
Other information elements used within predicates 

is_available(R:Roadway)) roadway R is available 
is_pilot_of(A:Agent, B:Aircraft)) agent A is a pilot of aircraft B 

has_role(A:Agent) an agent has role A 
start_taxiing start taxiing 
start_line_up permission to line up 
start_take_off permission to take off 

velocity(A:Aircraft, V:Velocity) aircraft A has velocity V 
has_priority_over(A:Aircraft, 

B:Aircraft) 
aircraft A has priority over 

aircraft B 
not_in_conflict(A1:Agent, A2: 

Agent) 
agent A1 is not in conflict 

with agent A2 

similarity(A1:Action, A2:Action) 
action A1 is similar to action 

A2 
velocity(A:Aircraft, V:Velocity) aircraft A has velocity V 

collision(A:Aircraft, B:Aircraft ) 
aircraft A collides with 

Aircraft B 

4.2 Executable Dynamic Properties 

The dynamic relations between the agents are 
modelled by means of executable dynamic 
properties (EPs) in LEADSTO. These properties can 
be subdivided into four different categories, namely 
properties related to 1) belief formation, 2) 
communicative action generation, 3) physical action 
generation, and 4) transfer. 
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Below some examples of properties in formal 
LEADSTO notation per category are given (for 
simplicity, the time parameters have been left out). 
Note that most properties are applied to all agents. 
Only some of the properties (e.g., EP2, EP6 and 
EP16) are specific to a particular agent role (e.g., 
Tower or Pilot).  

4.2.1 Belief Formation 

Belief formation properties specify how agents 
create beliefs about the world on the basis of the 
observations or communications they receive. For 
instance, EP1 states that, if an agent observes no 
other agents at a certain roadway, it concludes that 
this roadway is available.  

Belief formation properties may also represent 
erroneous behaviour, e.g. related to cognitive biases 
such as the expectation bias (see: 
http://www.skybrary.aero/index.php/ATC_Expectati
on_Bias). For example, EP5 states that, if an agent 
receives an instruction I1, while it has a strong 
expectation to receive a similar, but slightly different 
instruction I2, it will believe that it actually did 
receive I2. This property can be used to model the 
fact that the Hercules pilot interpreted his permission 
for lining up as permission for taking off. 
 

EP1 - Belief Formation on Roadway Availability 
observation(A:Agent,  

not_at_position(B:Agent, R:Roadway)) 
 belief(A:Agent, is_available(R:Roadway)) 
 

EP5 - Communication Misinterpretation 
incoming_communication(A:Agent, I1:Action, R:Roadway)   
& belief(A:Agent, similarity(I1: Action, I2: Action)) 
& I1 ≠ I2 
& expectation(A:Agent, I2:Action)  
 belief(A:Agent, I2:Action, R:Roadway)   

4.2.2 Communicative Action Generation 

These properties specify how agents derive actions 
to communicate to other agents, based on the beliefs 
they possess. For instance, EP2 determines when the 
Tower agent communicates a permission to start 
taxiing to the different aircraft, whereas EP16 when 
the Tower communicates a request to abort take-off.  
 

EP2 - Tower: Taxiing request communication  
belief(A:Agent, is_at_position(B:Aircraft, S: Startingpoint)) 
& belief(A:Agent,  

is_adjacent_to(T:Taxiway, S: Startingpoint)) 
& belief(A:Agent, is_available(T:Taxiway)) 
& belief(A:Agent, has_role(tower)) 
 communicate_from_to(A:Agent, B:Aircraft,  

 start_taxiing(T:Taxiway))   
 

EP16 - Tower: Take-off Abort Request 
Communication 

belief(tower, is_half_way(A:Aircraft, R1: Runway)) 
& belief(tower, is_half_way(B:Aircraft, R2: Roadway)) 
& belief(tower, crossing_ways(R1:Runway, R2:Roadway)) 
& belief(tower, velocity(B:Aircraft, high)) 
& not collision(A:Aircraft,  B:Aircraft) 
& B ≠ A 
 communicate_from_to(tower, B:Aircraft,  

 stop_take_off, R1:Runway)   

4.2.3 Physical Action Generation 

In addition to communicative actions, agents may 
also derive physical actions. An example of this is 
represented by property EP6, which determines that 
pilot agents may start taxiing when they believe this 
is appropriate.  
 

EP6 - Pilot: Taxiing Initiation  
belief(P:Pilot, start_taxiing(T:Taxiway)  
& is_a _pilot_of(P:Pilot, A:Aircraft) 
& belief(P:Pilot, is_available(T:Taxiway)) 
& is_at_position(A:Aircraft, S:Startingpoint) 
& belief(P:Pilot, is_adjacent_to(T:Taxiway, S:Startingpoint)) 
 performed(P:Pilot,  

move_from_to(S:Startingpoint, T:Taxiway)) 
& performed(P:Pilot, set_velocity(A:Aircraft, low)) 

4.2.4 Transfer 

Finally, transfer properties represent correct transfer 
of information. For instance, EP3 states that 
information that is communicated from agent A to 
agent B is also received as such by agent B (of by 
the pilot of agent B, if agent B is an aircraft). 
 

EP3 - Communication Transfer  
communicate_from_to(A:Agent, B:Agent, I:Action,  
  R:Roadway) 
& is_pilot_of(P:Pilot, B:Aircraft) 
 incoming_communication(P:Pilot, I:Action, R:Roadway) 
 

Due to space limitations, only a number of the 
executable properties per category have been listed. 
However, the full specification (using the notation of 
the LEADSTO simulation tool) can be found at 
http://www.cs.vu.nl/~tbosse/aviation. 

5 SIMULATION RESULTS 

This section describes simulation results of the case 
study across three different scenarios. The first 
scenario represents the real situation as described in 
Section 3, and the other two scenarios simulate two 
hypothetical situations that would occur when the 
perceptions and the actions of the agents involved 
would slightly differ from the real case. These 
hypothetical situations were created by making 
small changes in some of the relevant parameters. 
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In the simulation traces depicted in Figures 2-4, a 
time line is represented on the horizontal axis and 
the states that hold in the world are represented on 
the vertical axis. The dark lines on the right indicate 
time intervals within which the given states are true. 
For the sake of transparency, the atoms that 
represent observations and beliefs of the agents are 
not depicted in the traces.  

5.1 Scenario 1: Interference of Tower 

The simulation trace of scenario 1 is shown in 
Figure 2. This scenario simulates the real events of 
the case study. It represents the situation that the 
pilot of the Hercules aircraft misinterprets the 
information that is communicated to him by 
controllers in the Tower because of an incorrect 
expectation (see atom expectation(hercules_pilot 
 

 

Figure 2: Simulation results of Scenario 1 - Interference of 
Tower prevents severe collision. 

start_take_off) at the top of the trace that is true during 
the whole simulation), and consequently initiates 
take-off without take-off clearance (see atom 

performed(hercules_pilot, take_off_from(runway_36)) that 
is true from time point 15-21). 

There is no atom that states that take-off 
clearance from the Tower is communicated to the 
Hercules.  At the same time, the clearance for take-
off is given to the Airbus aircraft that almost 
simultaneously initiates take-off from the crossing 
runway at time point 20; see atom perfor-

med(airbus_pilot, take_off_from(runway_03)). Luckily, 
the Tower observes the conflict situation (this atom 
is not depicted in the trace) and communicates a 
“STOP” signal to the Airbus at time point 24. As a 
result, the pilot of the Airbus aborts the take-off at 
time point 27 and a severe collision is prevented by 
this action. This scenario is an example of a case 
when a hazardous situation created by the wrong 
decision and action of one agent can be corrected by 
appropriate intervention of other agents. 

5.2 Scenario 2: Nominal Behaviour 

The simulation trace of scenario 2 is shown in 
Figure. 3. This trace represents an ideal scenario 
where all agents behave properly. In the initial 
settings of this hypothetical scenario the pilot of the 
Hercules has no erroneous expectation about the 
take-off clearance as in scenario 1. As a result, he 
performs line-up correctly and does not initiate any 
take-off, as shown in Fig. 3. After both aircraft have 
performed line-up on their runways at time point 14, 
permission to take off is communicated only to the 
Airbus (see atom communicate_from_to(tower, airbus, 

start_take_off, runway_03))). Hence, in this scenario all 
agents behave according to the nominal 
prescriptions of the agent system. Consequently, no 
collision or hazardous situation occurs. 

5.3 Scenario 3: Collision 

The simulation of scenario 3 is shown in Figure 4. 
This scenario represents a situation when the pilot of 
the Hercules aircraft has erroneous expectations 
about the take-off clearance and initiates take-off 
while he should not (like in scenario 1). However, in 
this case the controllers in the 
Tower observe the conflict situation rather late, and 
therefore they do not have the time to interfere. As a 
result, both aircraft collide; see atom 
collision(hercules, airbus) at the end of the trace.  

In this scenario the time parameters of the rule 
that generates the action to take off have been 
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Figure 3: Simulation results of Scenario 2 - Hercules pilot 
does not make interpretation error. 

modified in such a way that this action is performed 
more quickly. This has important consequences for 
the opportunity of the Tower to interfere and prevent 
the collision. As can be seen in Fig. 4, the short 
duration of the take-off procedure leads to severe 
consequences as both aircraft perform take-off 
almost simultaneously on crossing runways. 

6 FORMAL ANALYSIS 

This section addresses formal analysis of the 
simulated traces. Section 6.1 addresses specification 
of (global) dynamic properties, Section 6.2 address 
specification of interlevel relations between dynamic 
properties at different aggregation levels, and 
Section 6.3 discusses some results of verification of 
properties against traces. 

6.1 Global Dynamic Properties 

Various dynamic properties for the aviation domain 
have been formalised in TTL, a number of which are 
introduced below. All of these properties are related 
in some way to the occurrence of collisions. More 
specifically, Section 6.1.1 addresses properties that 
relate to the fact that ‘there are never two 

 

 

Figure 4: Simulation results of Scenario 3 - Interpretation 
error by Hercules results in severe collision. 

simultaneous take-offs at crossing runways’. Section 
6.1.2 addresses properties that relate to the fact that 
‘IF any of such simultaneous take-offs occur, THEN 
they will be corrected on time because one of the 
aircraft aborts its take-off’. It is easy to see that 
either one of these cases is sufficient to guarantee 
that no runway incursions will occur (assuming for 
simplicity that simultaneous take-offs are the only 
ways in which runway incursions can possibly 
occur). All properties in Section 6.1.1 are presented 
both in semi-formal and in formal (TTL) notation; to 
enhance readability, the properties in Section 6.1.2 
are presented only in semi-formal notation. 

Note that the properties presented below address 
processes at different aggregation levels, thereby 
distinguishing global properties about the entire 
scenario (indicated by GP), intermediate properties 
about input and output states of individual agents 
(indicated by IP), and local properties about mental 
processes of agents or about information/commu-
nication transfer between agents (indicated by LP). 
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6.1.1 Absence of Simultaneous Take-Offs 

GP1 - No Simultaneous Take-offs at Crossing Runways 
There are no trace m, time points t1 and t2, agents a1 and a2, and 
runway r1 and r2 such that 
agent a1 performs a take-off on runway r1 at time t1 
and agent a2 performs a take-off on runway r2 at time t2 
and runway r1 and r2 are crossing runways 
and the difference between t1 and t2 is smaller than or equal to d3. 
 

 [m:TRACE t1,t2:TIME a1,a2:AGENT r1,r2:RUNWAY 
      state(m, t1) |= performed(a1, take_off_from(r1)) & 
      state(m, t2) |= performed(a2, take_off_from(r2)) & 
      state(m, t1) |= world_state(crossing_ways(r1, r2)) & 
      | t1 - t2 |  d ] 

 

IP1 - No Simultaneous Permissions to Take off at 
Crossing Runways 
There are no trace m, time points t1 and t2, agents a1 and a2, and 
runway r1 and r2 such that 
the tower gives agent a1 permission for take-off on runway r1 at 
time t1 
the tower gives agent a2 permission for take-off on runway r2 at 
time t2 
and runway r1 and r2 are crossing runways 
and the difference between t1 and t2 is smaller than or equal to d. 
 

 [m:TRACE t1,t2:TIME a1,a2:AGENT r1,r2:RUNWAY 
      state(m, t1) |=  
      communicate_from_to(tower, a1, start_take_off(r1)) & 
      state(m, t2) |=  
      communicate_from_to(tower, a2, start_take_off(r2)) & 
      state(m, t1) |= world_state(crossing_ways(r1, r2)) & 
      | t1 - t2 |  d ] 

 

IP2 - Each Take-off is Preceded by a Corresponding 
Permission 
For all traces m, time points t1, agents a, and runways r 
if agent a performs a take-off on runway r at time t 
then there was a time point t2 with t1-d  t2  t1 on which 
the tower gave agent a permission for take-off on runway r. 
 

m:TRACE t:TIME a:AGENT r:RUNWAY 
state(m, t1) |= performed(a, take_off_from(r))  
[ t2:TIME state(m, t2) |=  
 communicate_from_to(tower, a, start_take_off(r)) & 
 t1-d  t2  t1 ] 

 

LP1 - Each Take-off is Preceded by a Corresponding 
Belief 
For all traces m, time points t1, agents a, and runways r 
if agent a performs a take-off on runway r at time t 
then there was a time point t2 with t1-d  t2  t1 on which 
agent a believed that it had permission for take-off on runway r. 
 

m:TRACE t:TIME a:AGENT r:RUNWAY 
state(m, t1) |= performed(a, take_off_from(r))  
[ t2:TIME state(m, t2) |= belief(a, start_take_off(r)) & 
t1-d  t2  t1 ] 

 

LP2 - Each Belief about Permissions is Preceded by a 
Corresponding Communication 
For all traces m, time points t1, agents a, and runways r 
if agent a believes that it has permission for take-off on runway r 
at time t 
then there was a time point t2 with t1-d  t2  t1 on which 
the tower gave agent a permission for take-off on runway r. 

                                                           
3 Many of the properties given in this section contain some parameters d and e. These 

should be seen as constants, of which the value can be filled in by the modeller. 

 

m:TRACE t:TIME a:AGENT r:RUNWAY 
state(m, t1) |= belief(a, start_take_off(r))  
[ t2:TIME state(m, t2) |=  
 communicate_from_to(tower, a, start_take_off(r)) & 
 t1-d  t2  t1 ] 

6.1.2 Correction of Simultaneous Take-Offs 

GP2 - All Simultaneous Take-offs are Corrected on 
Time 
For all traces m, time points t1 and t2, agents a1 and a2, and 
runways r1 and r2, 
if agent a1 performs a take-off on runway r1 at time t1 
and agent a2 performs a take-off on runway r2 at time t2 
and runway r1 and r2 are crossing runways 
and the difference between t1 and t2 is smaller than or equal to d 
then there is a time point t3 with t1  t3  t1+e and t2  t3  t2+e 
on which either agent a1 or agent a2 aborts take-off. 
 

IP3 – For all Simultaneous Take-offs that are 
Observed an Abort Request is Communicated 
For all traces m, time points t1 and t2, agents a1 and a2, and 
runways r1 and r2, 
if at time t1the tower observes that agent a1 performs a take-off 
on runway r1 
and at time t2 the tower observes that agent a2 performs a take-off 
on runway r2 
and runway r1 and r2 are crossing runways 
and the difference between t1 and t2 is smaller than or equal to d 
then there is a time point t3 with t1  t3  t1+e and t2  t3  t2+e 
on which the tower communicates either to agent a1 or to agent 
a2 a request to abort take-off. 

 

IP4 - All Received Abort Requests are Followed 
For all traces m, time points t1, agents a1 and a2, and runways r1, 
if at time t1agent a1 receives from agent a2 a request to abort 
take-off from runway r1 
then there is a time point t2 with t1  t2  t1+d on which agent a1 
indeed aborts take-off from r1. 

 

LP3 - All Simultaneous Take-offs are Observed 
For all traces m, time points t1 and t2, agents a1 and a2, and 
runways r1 and r2, 
if agent a1 performs a take-off on runway r1 at time t1 
and agent a2 performs a take-off on runway r2 at time t2 
and runway r1 and r2 are crossing runways 
and the difference between t1 and t2 is smaller than or equal to d 
then there are two time points t3 and t4 with t1  t3  t1+e and t2 
 t4  t2+e on which the tower observes both take-offs. 

 

LP4 - All communicated Abort Requests are Received 
For all traces m, time points t1, agents a1 and a2, and runways r1, 
if at time t1agent a1 communicates to agent a2 a request to abort 
take-off from runway r1 
then there is a time point t2 with t1  t2  t1+d on which this 
request is received from a1 by 2. 

 

LP5 - All Observed Take-offs are Converted into 
Corresponding Beliefs 
For all traces m, time points t1, agents a1, and runways r1, 
if at time t1 the tower observes that agent a1 performs a take-off 
on runway r1 
then there is a time point t2 with t1  t2  t1+d on which the 
tower believes that agent a1 performs a take-off on runway r1. 
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LP6 – For all Beliefs on Simultaneous Take-offs an 
Abort Request is Communicated 
For all traces m, time points t1 and t2, agents a1 and a2, and 
runways r1 and r2, 
if at time t1the tower believes that agent a1 performs a take-off on 
runway r1 
and at time t2 the tower believes that agent a2 performs a take-off 
on runway r2 
and runway r1 and r2 are crossing runways 
and the difference between t1 and t2 is smaller than or equal to d 
then there is a time point t3 with t1  t3  t1+e and t2  t3  t2+e 
on which the tower communicates either to agent a1 or to agent 
a2 a request to abort take-off. 

 

LP7 - All Received Requests are Converted into 
Corresponding Beliefs 
For all traces m, time points t1, agents a1 and a2, and runways r1, 
if at time t1agent a1 receives from agent a2 a request to abort 
take-off from runway r1 
then there is a time point t2 with t1  t2  t1+d on which agent a1 
believes that it should abort take-off from r1. 
 

LP8 - All Believed Requests are Followed 
For all traces m, time points t1, agents a1, and runways r1, 
if at time t1agent a1 believes that it should abort take-off from 
runway r1 
then there is a time point t2 with t1  t2  t1+d on which agent a1 
indeed aborts take-off from r1. 

6.2 Interlevel Relations 

A number of logical relationships have been 
identified between properties at different 
aggregation levels. An overview of all identified 
logical relationships relevant for GP1 is depicted as 
an AND-tree in Figure 5. 

 

Figure 5: AND-tree of interlevel relations between 
dynamic properties related to GP1. 

The relationships depicted in this figure should 
be interpreted as semantic entailment relationships. 
For example, the relationship at the highest level 
expresses that the implication IP1 & IP2 => GP1 
holds, whereas the relationship at the lower level 
expresses that LP1 & LP2 => IP2 holds. A sketch of 
the proof for the first implication is as follows (for 
simplicity reasons abstracting from time constrains): 

 

Suppose that IP1 and IP2 hold. Then, according to IP1, no 
two permissions to take off at crossing runways will be 
communicated simultaneously. Moreover, since take-offs 
are only performed immediately after a corresponding 
permission has been communicated (as guaranteed by 

IP2), no simultaneous take-offs are performed at crossing 
runways. This confirms GP1. 

Such logical relationships between dynamic 
properties can be very useful in the analysis of (both 
simulated as well as empirical) scenarios, especially 
when used in combination with the TTL Checker 
Tool mentioned earlier. For example, for simulation 
trace 1, checking GP1 pointed out that this property 
was not satisfied. As a result, by a refutation process 
(following the tree in Figure 5 top-down) it could be 
concluded that either IP1 or IP2 failed (or a 
combination of them). When, after further checking, 
IP2 was found to be the cause of the failure, the 
analysis could proceed by focusing on LP1 and LP2. 
Eventually, LP1 was found satisfied, whereas LP2 
failed. Thus, (part of) the source of the incident 
could be reduced to failure of LP2, i.e., there was an 
agent (namely the pilot of the Hercules) that 
believed to have the permission to take off, whilst 
this was not communicated by the tower. One level 
deeper, such local properties can even be related to 
executable properties. For instance, the failure of 
LP2 can be explained because the Hercules pilot 
applied property EP5. A full connection of local 
properties to executable properties is beyond the 
scope of this paper, but a detailed discussion can be 
found in Jonker and Treur (2002). 

Similar to Figure 5, an AND-tree representing all 
identified logical relationships relevant for GP2 is 
shown in Figure 6. 

Figure 6: AND-tree of interlevel relations between 
dynamic properties related to GP2. 

6.3 Checking Results 

Using the TTL Checker, all dynamic properties 
introduced in Section 6.1 have been checked against 
the three simulation traces discussed in Section 5. 
The results are shown in Table 3 (where ‘X’ denotes 
‘satisfied’).  

As can be seen from the table, scenario 2 is 
indeed a nominal case in which all expected 
properties hold. In contrast, in scenario 1, two 
simultaneous take-offs at crossing runways occur 
(since GP1 fails), which can eventually be related to 
an incorrectly derived belief of permission for take-
off (failure of LP2). 

 

LP2LP1

GP1

IP1 IP2

GP2

LP6LP5 LP8LP7 

IP3 LP4 LP3 IP4 
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Table 3: Checking dynamic properties against traces. 

property scenario 1 scenario 2 scenario 3 
GP1 - X - 
IP1 X X X 
IP2 - X - 
LP1 X X X 
LP2 - X - 
GP2 X X - 
IP3 X X - 
IP4 X X X 
LP3 X X +/- 
LP4 X X X 
LP5 X X X 
LP6 X X - 
LP7 X X X 
LP8 X X X 

However, since the situation is corrected on time 
(GP2 succeeds), no collision occurs in this scenario. 
In scenario 3, GP1 also fails, but in addition GP2 
fails, which can be related partly to failure of LP3 
(the simultaneous take-offs are observed, but too 
late) and to failure of LP6 (once the tower believes 
that there are simultaneous take-offs, it is too late to 
communicate an abort request). As a result, the 
collision is not prevented. 

7 DISCUSSION 

For the analysis of accidents and incidents in 
aviation, roughly two streams can be distinguished 
in the literature, namely accident analysis and risk 
analysis. Whilst the former has the goal to determine 
the cause of an accident that actually took place, the 
latter aims to assess the likelihood of the occurrence 
of future accidents. Hence, although both streams 
have similar purposes, a main difference is that 
accident analysis attempts to identify one specific 
combination of hazardous factors, whereas risk 
analysis basically explores a whole range of such 
factors, and the associated risks.  

The approach introduced in the current paper in 
principle addressed both types of analysis. An agent-
based method for simulation and analysis of aviation 
incidents was introduced, and based on a case study 
on a runway incursion incident it was demonstrated 
how the approach can be applied both for 
accident/incident analysis (to examine the causes of 
the scenario that took place in reality) and for 
qualitative risk analysis (to determine potential risks 
for various hypothetical scenarios).  

For a more quantitative type of dynamic risk 
analysis, often Monte Carlo methods are applied; see 
e.g. the work of Blom et al. (2001); or Stroeve, 
Blom and Bakker (2004). These methods are very 
useful for quantitative collision risk estimations, but 

one of their disadvantages is lack of transparency 
due to the complex stochastic relations between the 
elements of the agent-based models that are used. In 
contrast, the approach presented in this paper is 
highly transparent; it provides a visible trace of risk 
related events that can be analysed manually or 
automatically with the help of special tools. 
Moreover, the roles of the agents involved in risk 
creation and reduction (as well as their underlying 
cognitive processes, like the influence of biased 
reasoning) are clear from the trace, while in dynamic 
quantitative risk models used for Monte Carlo 
simulations this is usually not the case. The 
complexity of Monte Carlo methods makes it also 
difficult for the non-specialist to understand the 
implications of actions and thus makes a public 
debate of issues a problem. However, a disadvantage 
of the method proposed in this paper is that it cannot 
provide a precise risk estimation as is provided by 
Monte Carlo methods. In follow-up research, we 
therefore intend to explore the possibilities to 
combine our approach with elements from Monte 
Carlo methods. 
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