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Abstract: Predicting molecular functions of proteins is a fundamental challenge in bioinformatics. Commonly used
algorithms are based on sequence alignments and fail when the training sequences have low percentages of
identity with query proteins, as it is the case for non-model organisms such as land plants. On the other
hand, machine learning-based algorithms offer a good alternative for prediction, but most of them ignore that
molecular functions are conditioned by functional domains instead of global features of the whole sequence.
This work presents a novel application of the Wavelet Transform in order to detect discriminant sub-sequences
(motifs) and use them as input for a pattern recognition classifier. The results show that the continuous wavelet
transform is a suitable tool for the identification and characterization of motifs. Also, the proposed classifi-
cation methodology shows good prediction capabilities for datasets with low percentage of identity among
sequences, outperforming BLAST2GO on about 11,5% and PEPSTATS-SVM on 16,4%. Plus, it offers major
interpretability of the obtained results.

1 INTRODUCTION

Functions of gene products are specified by the
molecular activities they perform. These functions
may include transporting other molecules around,
binding to different compounds or holding molecules
together for fastening reactions. Several computa-
tional methods for protein function prediction use se-
quence alignment tools such as BLASTP (Johnson
et al., 2008), which are designed to transfer functions
from already annotated sequences to the novel ones
based on sequence similarity criteria (Cheng et al.,
2005). In this matter, homologous proteins can be
identified under the assumption that amino acids hav-
ing an important role in protein function and struc-
ture cannot mutate without an important effect on pro-
tein activity. However, those amino acids can change
very slowly in a given protein family during evolu-
tion (Liu et al., 2006) and thus, for a set of sequences
that stretch a great evolutionary distance, it is possible
to highly conserved amino acid regions, even if they
greatly differ from a global perspective. On the other
hand, when the sequence similarity is low, aligned
segments are often short and occur by chance, lead-
ing to unreliable and unusable alignments when the

sequences have less than 40% and 20% similarity, re-
spectively (Cheng et al., 2005).

Recently, a vast number of predictors based on
pattern recognition techniques have been designed in
an effort to find alternative methods that do not rely
solely on alignments. Each one of them computes a
different set of attributes to characterize protein se-
quences, including statistical and physical-chemical
properties of amino acids (Shen and Burger, 2010),
energy concentrations from time-frequency represen-
tations (Gupta et al., 2009), distance measures, word
statistics, Hidden Markov Models, information the-
ory and others (Vinga and Almeida, 2003). However,
most of them only describe global attributes of the
whole protein sequence, ignoring the fact that func-
tional domains may reside in different portions of pro-
teins within the same family. Such recurring patterns
are calledMOTIFS and they can be used to identify
representative regions of the proteins, revealing po-
tential information about their molecular function.

Nevertheless, only a small portion of proteins have
clearly identifiable sorting signals in their sequence
and, since proteins are commonly able to perform sev-
eral molecular functions instead of only one, there
is a strong challenge on how to use those motifs for
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predicting molecular functions with the less possible
amount of false positives and false negatives.

The Wavelet Transform (WT) has been previously
used as a powerful tool for mining information in pro-
teins (Murray et al., 2002). Here, a novel applica-
tion of the WT is developed, extending the represen-
tation scheme to a complete classification methodol-
ogy. First, a protein is decomposed into a set of sub-
sequences by means of the WT. These sub-sequences
are further clustered to build a set of prototype motifs
representing the original protein sequence set. Proto-
type motifs are then used as features in order to build
a representation space, and hence being able to infer
classification rules based on pattern recognition tech-
niques. The properties of the proposed method are:
I) detection of variable length motifs;II ) identifica-
tion of patterns distributed in any position along the
sequences and andIII ) accurate prediction of protein
molecular functions including proteins associated to
multiple functions.

2 MATERIALS AND METHODS

2.1 Experimental Setup

The proposed methodology is depicted in Figure 1. In
step 1, the supervised training set of proteins (molec-
ular function) is preprocessed to extract short sub-
sequences of variable length. These patterns are de-
termined by interactions among adjacent amino acids
represented by wavelet coefficients. In step 2, all the
extracted sub-sequences are clustered to get the pro-
totype motif set. Due to the variable motif length,
the multiple sequence alignment is used to compute
the consensus of all sub-sequences belonging to one
cluster. In step 3, a new protein sequence can be rep-
resented as the minimum distance between the pro-
totypes and its own sequence motifs. Once all pro-
teins are mapped into the set of prototype motifs, a
Support Vector Machine classifier is trained to predict
their molecular function.

All experiments are carried out on land plants
(embryophyta) proteins, belonging to nine differ-
ent molecular functions, as shown in Table 1. A
dataset of 1008Embryophytaproteins is reported by
UNIPROT (Jain et al., 2009) (file version:24-01-11),
with, at least, one annotation in the ontology
molecular function of Gene Ontology Annotation
Project (Barrell et al., 2009) (file version:22-12-10)
and whose evidence of existence is neither unknown
nor predicted by computational tools. To avoid bias
due to the presence of protein families, the database
does not contain protein sequences with a pair-wise

Figure 1: Main methodology a) The sequences are con-
verted into numerical signals and the CWT is applyed to
obtain two-dimensional representations (position in the x-
axis and amino acid interaction in the y-axis). Detected
motifs are marked with numbers. b) Clustering of detected
motifs and logos representation. c) The distance between a
query protein and the prototype motifs is used to train/test
the classifier.

Table 1: Number of protein sequences per class.

Functions Entire Reduced Functions Entired Reduced

NtBind 109 53 Transp 280 133
TranscFact 160 102 LipBind 38 24
RnaBind 80 52 Kinase 224 103
Nase 33 24 Enzreg 78 46
RecepBind 40 27

similarity superior to 40%. The web server version
of cd-hit (Huang et al., 2010) is used to filter the
dataset by similarity; the remaining number of se-
quences obtained after this process is 564.Classes are
defined according to the GO Slim Classification for
Plants (Swarbreck et al., 2008).

2.2 Extraction of Motifs

Let S = {sssi}, i = 1,2, . . . ,M, be the training set of pro-
tein sequences. Then, a given proteinsssi of lengthni
can be represented as a numerical signalηi(t) that is a
function of its length, by substituting each amino acid
with its equivalent value of a given physical-chemical
propertyI . After all proteins have been converted into
the numerical signal setηηη = {ηi(t)}, they are pro-
jected by the Continuous Wavelet Transform (CWT)
that is defined as the decomposition of a signalηi(t),
as follows:

WWWηi (a,b) =

(

1
√

|a|

) ∞∫

−∞

ηi(t)ϕ
(

t −b
a

)

dt, (1)

whereϕ((t −b)/a) is the basis wavelet function at a
particular scalea and a translationb, with a,b ∈ R,
a≥ 0. This work uses the Gauss mother wavelet due
to its smoothing property (Murray et al., 2002).
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The resulting matrixWWWηi ∈ R
nS×ni , is called

“scalogram”, andnS represents the maximum scale
(or motif length) considered for the decomposition.
It has been empirically fixed to provide an acceptable
trade off between time complexity and maximum mo-
tif length to nS = 64. WWWηi provides the localization
of frequent sub-sequences within a given sequencesssi .
Particularly, for regions with a similar amino acid be-
havior along the sequence, i.e., having high energy
concentrations, it is possible to locate the centroid
point in the scale-position space. Then, this point
grows in the position axis towards both the left and
the right sides until the value of the actual position
becomes less than the minimal value of the region,
and therefore, determines the respective set ofn j mo-
tifs for the sequencesssi , {ξξξi j : j = 1, . . . ,n j}⊂sssi ,. This
process is applied to each sequence inS .

Regarding the physical-chemical propertyI , used
for converting sequences into numerical signals, a
total of 51 indexes was selected from theAAINDEX
database (Kawashima and Kanehisa, 2000). Such in-
dexes involve the six regions of the amino acid prop-
erties, aiming to explore different numerical represen-
tations.

2.3 Dissimilarity Space Representation

In order to obtain representative motifs within thek-
th labeled class, motif subsequences are clustered by
using the well known Iterative Self Organizing Data
Analysis Technique (ISODATA). For the implementa-
tion of the algorithm, the alignment-score distance
d(·, ·) ∈ R

+, between any two motifsξξξ andννν is de-
fined as follows (subscripts are ignored since the orig-
inal sequnece of each motif is irrelevant in this con-
text):

d(ξξξ,ννν) =
(

1− d̃(ξξξ,ννν)
d̃(ξξξ,ξξξ)

)(

1− d̃(ξξξ,ννν)
d̃(ννν,ννν)

)

, (2)

whered̃(·, ·) is the similarity between two sequences
ξξξ andννν computed as:

d̃(ξξξ,ννν) =
nξ

∑
l=1

DDD(ξξξ(l),ννν(l)) (3)

beingnξ the minimal length of both subsequences un-
der consideration, andDDD(ξξξ(l),ννν(l)) the value of the
scoring matrix for the respectivel -th elements ofξξξ
andννν. As scoring matrixDDD, the Point Accepted Mu-
tation (PAM250) is used for the pairwise local align-
ment, as recommended in (Wheeler, 2002).

TheISODATA algorithm produces a set ofnk
C clus-

ters for each class. Then, as stated in (Schnei-
der, 2002), one prototype motifζζζk

r , r = 1, . . . ,nk
C, is

generated as the consensus sequence of each cluster.
Given the profile matrixPPPk

r with elementsPPPk
r (i, j) =

f k(i, j)/‖Ck
r ‖, where f k(i, j) represents the cardinal

of amino acid j at position i of the multiple sub-
sequence alignmentCk

r , then, each component of the
consensus sequence is computed:

ζζζk
r ( j) = max

∀i
{PPPk

r (i, j)}, (4)

Once the set of prototype motifs{ζζζk
r} has been

computed, a query proteinzzz can be represented by
the minimum alignment-score distances between such
prototype motifs and its own motifsξξξi . The scalar-
valuedr-th component of the feature space represen-
tation is computed as:

δr = min
∀ξξξi∈zzz

{d(ξξξi ,ζζζr)} , r = 1,2, . . . ,nC (5)

wherenC = ∑k nk
C. Conceptually, quantityδr ∈ R

+ is
a measure of the extent at which the prototype motif
ζζζr is present in the sequencezzz.

2.4 Classification Methodology

The entire database is divided into modeling and
classification sets in which, the 60% of the se-
quences are selected to compute the prototype motifs,
whereas 40% are left for testing purposes. The Fast
Correlation-Based Filter (FCBF), described in (Yu
and Liu, 2003), is used for feature selection. Since
basic SVM are designed only for two-class prob-
lems, classification is implemented following the one-
against-all strategy, which produces a strong class im-
balance. So, the Synthetic Minority Over-sampling
Technique is employed (Chawla et al., 2002). Param-
eters of the SVM are tuned with a Particle Swarm Op-
timization algorithm. Validation of the results is ob-
tained by 10-fold cross-validation over the testing set
(40%). Sensitivity (Sn), specificity (Sp), and geomet-
ric mean (Gm) are used as classification performance
measures:

Sn =
nTP

nTP+nFN
Sp =

nTN
nFP+nTN

Gm =
√

SnSp

where nTP,nFP,nTN, and nFN denote true positive,
false positive, true negative and false negative, respec-
tively.

2.5 Comparison with other Methods

Blast2GO: is a research tool designed with the main
purpose of enabling Gene Ontology (GO) based data
mining on sequence data for which the GO an-
notations are not available. Annotation based on
Blast2GO is carried out by three sequential stages,
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Figure 2: 1) classification performance (geometric mean) for several amino acid properties. 2) selected properties andperfor-
mance of the ensemble prototype motifs.

Blasting, mapping and annotation. For Blasting
the BLASTP algoritm is trained and tested over the
same database, holding the same validation method-
ology described in section 2.4. For this purpose,
the Blast+ version 2.2.26 software is used (pa-
rameters: blosum 62, e-value 10, wordsize>= 2 -
outfmt 5). In themappingstage, BLAST results are
loaded to BLAST2GO module (-E-Value-Hit-Filter
10 -Annotation CutOff 10 to improve the false posi-
tive rate) in order to map these results to b2gjun11
database. Finally, in theannotationstage the test-
ing sequences are labeled using the evidence code
weights proposed byBlast2GO (Conesa and Götz,
2008).

Pepstats-SVM: is a pattern recognition approach
that uses 37 global features proposed inPepstats
(Saraç, 2010). The same classification framework
used in section 2.4 is applyed for comparisson pur-
poses. The goal of this comparisson is to show that,
under the same conditions, the prototype motif based
method overpasses the performance of methods based
on global features.

3 RESULTS AND DISCUSSION

Figure 2 depicts the prediction performance using 51
amino acid properties fromAAINDEX database. Lipid
binding proteins are diverse in sequence, structure,
and function (Lin et al., 2006), so,Lipid binding
proved to be the molecular function that showed the
highest performance within the whole set amino acid
properties.

Receptor binding proteins interact selectively
with one or more specific sites on a receptor
molecule (Lodish et al., 1995). Protein receptors
are transmembranal proteins whose conformation is
given byα, β structures, and some specific domains
(DNA-binding domains, hormone-binding domain,
transmembrane subunits among others). A clear in-
fluence between structure of the receptor proteins and

β-turn andα-helix properties was evinced.
Nucleasesare enzymes that participate in nucleic

acid catabolism and play roles in DNA replication,
cutting DNA molecules into small fragments (en-
donuclease activity) and DNA repair by proofreading
(exonuclease activity) (Lodish et al., 1995). The ac-
cessible residues property showed the best character-
ization, after molecular weight, for nuclease activity
function.

Disease-resistance genes are important in the cells
for the detection of pathogens and induction of de-
fense responses (Bai et al., 2002). These genes
code for proteins that interact selectively and non-
covalently with a nucleotide or any compound by
nucleotide binding sites (NBS). The NBS can affect
the disease resistance (R) protein function through
nucleotide binding (NtBind) or hydrolysis (Martin
et al., 2003). As shown incoiled coil, parallel
β− strand, totalβ− strand andα helix are the best
amino acid properties that represent this NtBind func-
tion. This can be explained by the fact that some
proteins contain a coiled coil domain, and the struc-
tural conformation of the NBS domain according to
the SCOP classification areα andβ subunits (Wilson
et al., 2009).

Proteins with sequence-specific DNA binding
transcription factor activity (TranscFact) func-
tion interacts selectively and non-covalently with a
specific DNA sequence in order to modulate the
transcription of genetic information from DNA to
mRNA (Barrell et al., 2009). The amino acid com-
position and molecular weight are the properties that
best represented this function. The TranscFact class
is the function with the highest number of preserved
motifs (Figure 3). Two conserved prototype motifs
are analyzed using the web toolScanProsite. Prosite
consists of documentation entries describing protein
domains, families and functional sites (Gattiker et al.,
2002).

The prototype motif 1 belongs to the WRKY do-
main that is an amino acid region defined by the con-
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Table 2: Sensitivity, Specificity and Geometric mean valuesover 9 funcional classes.

Function Blast2GO Wavelet Pepstats-SVM

Sn Sp Gm Sn Sp Gm Sn Sp Gm

NtBind 0.609 0.67 0.639 0.864 0.739 0.799 0.423 0.705 0.546
TranscFact 0.854 0.771 0.811 0.756 0.731 0.744 0.619 0.837 0.72
RnaBind 0.571 0.809 0.68 0.810 0.756 0.782 0.545 0.755 0.642
Nase 0.545 0.866 0.69 1.000 0.772 0.878 0.545 0.698 0.617
RecepBind 0.818 0.928 0.871 1.000 0.86240.929 0.636 0.9092 0.758
Transp 0.741 0.729 0.735 0.741 0.754 0.748 0.618 0.643 0.63
LipBind 0.3 0.886 0.515 0.900 0.794 0.845 0.455 0.688 0.559
Kinase 0.884 0.633 0.748 0.691 0.794 0.740 0.533 0.702 0.612
EnzReg 0.316 0.93 0.542 0.778 0.817 0.797 0.636 0.784 0.706

0.626 0.802 0.692 0.838 0.780 0.807 0.557 0.746 0.643

Figure 3: Logos of conserved prototype motifs for Transc-
Fact molecular function. The motifs 1 and 2 correspond to
plant transcription factors WRKY and AP2/ERF domains,
respectively.

served amino acid sequenceWRKYGQKand binds to
a specifically DNA sequence motif. The prototype
motif 2 is found in the AP2/ERF domain. The struc-
ture of this domain integrates a three-strandedβ-sheet
and severalα helices almost parallel to theβ-sheets.
It contacts DNA via Arg and Trp residues located in
theβ-sheet (Gattiker et al., 2002).

Having analyzed the prediction performances, an
ensemble of classifiers was trained with the best fea-
tures for each class. Those features are marked with
circles in Figure 2.

By comparing the achieved results shown in Ta-
ble 2, where the highest performances per class are
highlighted in bold, it is possible to infer that the pro-
posed wavelet-based method outperforms the other
methods in seven out of nine classes. The classifi-
cation results of the proposed method are lower than
the results ofBlast2GO in only two cases, namely
TransFact andKinase. Moreover, it can be seen that
the proposed method is the most sensitive of the three
methods shown, decreasing the achieved number of
false negatives. Geometric mean between sensitivity
and specificity is computed as a global performance
measure, showing that the wavelet based method-
ology overpasses the performance ofBlast2GO on
about 11.5% in average andPepstats-SVM in a
16.4%.

4 CONCLUSIONS

In this paper a methodology to molecular function
prediction in plants is proposed. The approach ex-
plores the distribution of the proteins computing a
set of prototype motifs. Thus, this motifs are used
to train a classifier an make a prediction to improve
the performance of the two novel explored methods
Pepstats and Blast2GO. For this purpose an en-
hanced version of the previous work (Arango-Argoty
et al., 2011) was used, whose main feature is the
use of the continuous wavelet transform to identify
and characterize protein motifs. This transform can
provide accurate information about the structure of
a protein and hence the structures/motifs related to
each molecular function. Due to the protein database
contains sequences with a low identity (< 40%), the
prototype motifs showed to be discriminative and
representative. Thus, the classification performance
based on wavelet-motif detection improves the results
achieved by 1) a method based on global features of
the proteins (Pepstats), showing that a simple peptide
statistics are not enough to classify GO terms and 2) a
method based on similituds (Blast2GO) due to it ap-
proach lose sensitivity when the identity among se-
quences is low. At last, the proposed methodology
offers a more complete interpretation of the obtained
results since: a) the method is able to distinguish the
most representative properties of the amino acids for
each class and b) it identifies the motifs associated
with each molecular function. A possible direction
of research could be the use of robust methods for
clustering and computation of prototype motif such
as hidden Markov models.
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