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Abstract: Parkinson’s disease (PD) is one of the neurodegenerative diseases with an increased prevalence widely studied
by the scientific community. Understanding the behaviour related to the disease is an added value for diag-
nosis and treatment. Thus the use of an animal model for PD that develops similar symptoms to the human
being allows to the clinic a larger vision over the health of a patient. Zebrafish can be used to study some
human diseases including PD. This work describes the development of an algorithm for the characterization
of behaviour in this specie. The biosensor called Marine On-line Biomonitor System (MOBS) is connected
electrically to chambers where the specimen of zebrafish moves freely providing a signal that is related with
the fish activity. Using the developed algorithm based on signal processing, statistic analysis and machine
learning techniques we present classification of a fish as normal or ill and characterize its behaviour.

1 INTRODUCTION

Biosensors are an essential control and safety tool for
our environmental and health quality and commonly
used in medicine. Many of today’s biosensor applica-
tions use living organisms which respond to toxic sub-
stances or other stressors at a much lower level than
us to warn us of their presence. Under this scope,
the MOBS was developed, an automated system for
recording behavioural responses of marine and fresh
water species. This device has been applied success-
fully in the environmental field, and the next challeng-
ing step is to bring this technology into other research
areas. In particular, by sensing behavioural changes
in organisms as an indication of stress or disease. A
suitable model candidate is the zebrafish, a freshwater
specie which has been used in medical research dur-
ing the past years, e.g in development studies (Lepage
and Bruce, 2008), drug toxicity assessments (Usenko
et al., 2008) and neurodegenerative diseases (Bretaud
et al., 2004).

1.1 PD and Zebrafish

The PD is characterized by tremor, muscle rigidity,
a slowing of physical movement, and can also cause

cognitive and mood disturbances. It results of the
loss of nerve cells in part of the brain known as the
substancia nigra. These cells are called dopaminer-
gic (DA) neurons as they produce the neurotransmit-
ter, dopamine, which is used to send messages to the
parts of the brain that co-ordinate movement (Fish for
Science, 2012). Most insights into human disease are
a result of experiments that would be unethical or un-
feasible to perform on humans. Instead biomedical
research uses models to look at the functions of the
genes involved in maintaining healthy organisms in
order to obtain vital clues about the causes and pro-
gression of human diseases. Zebrafish are an ideal
model organism to bridge the gap between too simple
(yeast) and too complex (mice or rats). They are ver-
tebrates and have similar body plans (and similar tis-
sues and organs) to humans, and they’re much easier
and with reduced cost to breed than mice and rats. Ze-
brafish mutations phenocopy many human disorders
and the genome sequence of zebrafish is near com-
pletion. The DA nervous system in zebrafish is well
characterized in both embryos and adult zebrafish.
Some toxins known to induce DA cell loss in other
animal models have now also been tested in adult ze-
brafish, as for example, the 6-hydroxydopamine (6-
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OHDA) which is a neurotoxin that induces death of
the DA cells. After injecting the neurotoxin via intra-
muscular, locomotor activity and dopamine levels of
the brain decreases (Kalueff and Cachat, 2010; Mc-
Grath, 2012; Breese et al., 2005; Flinn et al., 2008).
Thus the evaluation of swimming behaviour can be
related with the loss of DA cells, and consequently
with the PD. In the work performed by (Correia, Ana
Dulce and Soares, Rui S. and Sousa, Sara and Out-
eiro, Tiago F. and Afonso, Nuno and Willemsen, Rob
and Herma van der Linde, 2012) a new transgenic line
of zebrafish was developed to study the DA neurons,
which were validated with the use of the neurotoxin
6-OHDA and with the behaviour analysis using the
biosensor MOBS. They verified behavioural changes
that were related with the death of the DA neurons.
The algorithm to be developed can be a contribution
for this work: an algorithm that is sensible in the be-
haviour characterizations to allow the responses to be
comparable with the loss of the DA neurons.

1.2 Current Approach

The current algorithm used to characterize the be-
haviour of zebrafish consists in the evaluation of a
specific locomotion behaviour, with a series of bursts
in the domain of MOBS corresponding to the tail-
flip activity of zebrafish. Thus the outcome reflects
the number of tail-flips per minute per individual fish
(Correia et al., 2011). The behaviour detection is
based on the derivative peaks resulted from the strong
bursts in the signal. However, these peaks require a
threshold for the behaviour detection, and this is ac-
complished using the standard deviation multiplied by
a factor so that these two parameter, standard devia-
tion and derivative, may be comparable. It’s essential
to confirm if the current algorithm is in fact detecting
the right behaviour, the tail-flips. The first intention
of this research would be to understand and improve
the current algorithm, however it will be proved the
need to create a new one using supervised learning.

1.3 Supervised Learning

By Arthur Samuel (1959), machine learning is the
field of study that gives computers the ability to learn
without being explicitly programmed. There are dif-
ferent types of machine learning algorithms, the main
two types are: unsupervised and supervised learning.

With supervised learning, the scheme operates un-
der supervision by being provided with the actual out-
come for each of the training examples. In this type
of machine learning is included regression problems
that predicts continuous valued outputs and classifi-

cation problems which intends to predict discrete val-
ued outputs (Machine Learning, 2012). For classifica-
tion problems, a known method is the Support Vector
Machine (SVM) which looks for the optimal hiper-
plane between two classes by maximizing the mar-
gin. A non-linear separator is possible by projection
the data points to higher-dimension space to become
linearly separable (projection with kernel techniques)
(Machine Learning, 2012). Also the method Naı̈ve
Bayes which applies Bayes theorem to estimate the
probability with the ”naı̈ve” assumption of indepen-
dence between each feature. For validation, a possi-
ble statistic test is leave one out, which given a dataset
of m instances, only one instance is left out as the val-
idation set (instance) and training uses the m� 1 in-
stances (Witten et al., 2011).

2 METHODS

2.1 MOBS

The main device is controlled via an USB port by ex-
ternal processing software which produces signals in
the digital domain (at 48000 samples/s or 48 kHz).
These are converted by the main device into analogi-
cal electrical signals, power amplified and transmitted
to the independent testing units at which they are con-
ducted into the water by a pair of non-invasive stain-
less steel electrodes. In response to the behavioural
signatures of the organisms as a change in impedance
of the water, the amplitudes of the electrical signals
are modulated and then received by a second pair
of electrodes. In the main device they are amplified
and converted back to the digital domain at 48000
samples/s, before filtered, demodulated and down-
sampled at 100 Hz by the external computer soft-
ware. Upon processing, the system provides a signal
in the frequency band of 0.2 Hz to 40 Hz that is corre-
lated with the fish activity (Cunha et al., 2008). With
MOBS, locomotion can be presented with a series of
bursts in the time domain, and can cover a broad fre-
quency spectrum, at which ventilation is occasionally
present. Typically ventilation generates waves of tri-
angular shape with a higher frequency and smaller
amplitude than the most of the energy located for lo-
comotion. However ventilation will not be studied
with zebrafish given its high level of activity.
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2.2 Experimental Design

2.2.1 Test Animals and 6-OHDA

The zebrafish (D. rerio Hamilton 1822) strain used for
this work was the AB line (Zebrafish Facility, IMM,
Portugal). Animals were maintained under standard
conditions and experiments were approved by the In-
stitutional Animal Care and Use Committee. A mas-
ter stock solution of 6-hydroxydopamine hydrochlo-
ride (6-OHDA, Sigma-Aldrich, USA) was prepared in
0.2% ascorbic acid solution (analytical grade, Sigma)
and stored at -20�C.

2.2.2 Behaviour Assay

Before the experiments, small groups of female fish
(24 animals, body weight 0.5 � 1 g) were acclima-
tized to the experimental testing conditions (temper-
ature 22 �C � 1 �C, 10 h:12 h light-dark cycle) in
17 litre glass aquaria under static conditions and for
a minimum of one week. Food was not provided 24
h before or during the experiments. The behaviour
analysis was divided in two groups: non-treated (12
fish) and for that considered as normal fish in which
no injection was administered, and treated (12 fish)
also considered as ill or less active where 5µL of 6-
OHDA (33 mg/kg) was injected via intramuscular.
During the injection they were in a medium-to deep-
plane level of anaesthesia (tricaine 50 mg/L) and had
lost their reflex responses and muscular control. Af-
terwards they returned to their original test chambers
and allowed 30 min to recover from the anaesthesia.
On the day of experiments, either the treated or non-
treated groups of fish were placed individually in the
test chambers (22 �C � 1 �C) and acclimated for 30
min. Then individual baseline responses were mon-
itored using MOBS and recorded using video (prop-
erty of 25 frames per second) for five minutes between
10 and 12 a.m. After behavioural recording, treated
fish were sacrificed with tricaine.

2.3 Synchronism

The signal in the time domain is delayed in relation
to the instant of acquisition start. This delay is caused
by the main device, which makes it difficult to com-
pare a video where the fish movements are present,
with its respective signal from MOBS. The Open Sig-
nals is a platform designed and programmed by PLUX
- Wireless Biosignals. Using this platform, synchro-
nism is possible with a visible stimulus in the signal
and video. This stimulus must be sufficient to not be
confused with the fish activity in the signal. A touch

in the chamber is a possible stimulus and to not cor-
rupt the signal from the fish activity for further analy-
sis the stimulus should be produced at the end of the
recording.

2.3.1 Visual Analysis

To verify what the algorithm is detecting a detailed
analysis using Open Signals was necessary after syn-
chronism. This analysis using the video frame by
frame consisted in the detection of the behaviour tail-
flip. The tail-flip is characterized as an abrupt and
fast change of direction implying a strong burst in the
tail. The visual analysis will consist in counting the
number of tail-flips detected and divide it by the total
time in minutes. Since the visual analysis is a long
process, 24 study cases were made, 12 of them were
non-treated and the rest were submitted to the drug
6-OHDA. Each visual analysis consisted in 3 minutes
of the video. Since the visual analysis depends of the
user that is interpreting the data, it’s important to test
other user and compare the results. A visual test us-
ing a different user was made. The test consisted in
a precise analysis frame by frame using a signal with
30 seconds, and for this time both users detected 46
abrupt tail-flips. After the User 1 detect the abrupt
tail-flip it was considered an interval of 0.25 seconds
in which the User 2 had also to detect the same abrupt
tail-flip to be a valid success.

2.4 Current Algorithm Evaluation

In this subsection is intended to compare the visual
analysis with the algorithm result using linear regres-
sion for each group (treated and non-treated) and esti-
mate the relative error with the leave one out method.
This was chosen because the number of points anal-
ysed is small. Also in consideration is the correlation
coefficient which is a numerical value that indicates
the degree and direction of relationship between two
variables (O’Toole, 2006). The relative error obtained
will show the need to improve the algorithm.

The multiplicative factor in the current algorithm
is used so that the derivative can be comparable to
the standard deviation thus allowing to detect the be-
haviour abrupt tail-flips. Given that, to improve the al-
gorithm the multiplicative factor should be analysed.
The value used so far has been 0:1. To understand
which is the best factor value, it was decided to vary
the factor according to the outcome of the algorithm,
and with the visual analysis choose the factor that was
closer to reality. A unique study case isn’t sufficient
to choose the ideal factor, thus with all data analysed
for each group it’s estimated the average relative error
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from the current algorithm result with the visual anal-
ysis. In the end we chose the factor that minimizes
the relative error.

2.5 New Algorithm

2.5.1 Behaviour Characterization

To characterize the behaviour in number of tail-flips
per minutes it was necessary to use the parameter zero
crossing rate. The zero crossing rate it is defined as
the number of time-domain zero crossings within a
defined region of signal, divided by the number of
samples of that region (Gouyon et al., 2000). Each
data was divided by its standard deviation, so that all
data is at the same scale to be comparable and be-
cause the signal is centred at zero, it wasn’t necessary
to subtract the average. Also the signal was smoothed
using a Hanning window of 0.05 seconds. To vali-
date this parameter it was used the statistic analysis
leave one out. This was chosen because the number
of points analysed is small. This study also consid-
ered the correlation coefficient.

2.5.2 Classification

The Orange is a software suitable for machine learn-
ing. It is a free software and open source. It allows
to use data mining through visual programming and
Python scripting (Curk et al., 2005). The classifier
was studied with the methods SVM and Naı̈ve Bayes.
The validation used the statistic analysis leave one out
to provide the accuracy for each method used (SVM
or Naive Bayes) which is the proportion of correctly
classified examples (Curk et al., 2005). Thus varying
the number of parameters obtained from the data we
choose the ones that give higher accuracy for the re-
spective method. The parameters extracted from each
data were the zero crossing rate, the standard devia-
tion, the maximum power using the periodogram, the
maximum number of occurrences using the histogram
and the current algorithm output. Also the optimal
values for the SVM, namely the Cost parameter and
the gamma value for the kernel function were chosen
by the Orange software which uses the LIBVSM li-
brary. Since the classifier doesn’t require the visual
analysis as output, which is a long process, instead
of using the data obtained so far (24 study cases), it
was used data from a previous work to provide more
points to the classifier (108 study cases with equal
number for each class). This work developed at the
Instituto de Medicina Molecular provides data with
non-treated and treated fish (submitted to the drug 6-
OHDA).

3 RESULTS AND DISCUSSION

3.1 Synchronism

3.1.1 Visual Analysis

In 46 detections between both users, 44 were ac-
cepted, leading to an error of 4:35%. The agreement
between the users characterizing the behaviour, leads
that the visual result can be a valid information to be
compared with the current algorithm or with future
works.

3.2 Current Algorithm Evaluation

We can now compare the algorithm output with the
visual analysis. The results are shown in figure 1. It
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Figure 1: Comparison between the visual analysis and the
algorithm result.

is visible that there is no direct relation between the
visual analysis and the algorithm output as it would
be expected both for treated and non-treated fish. Af-
ter applying linear regression in each group it was es-
timated the relative error with the method leave one
out which resulted in an error of 17:29% for the non-
treated and 25:31% for treated. Also the correlation
coefficient obtained was 0.20 and 0.76 for the non-
treated and treated respectively which can be con-
sidered as a poor relation between the visual anal-
ysis with the algorithm output. These errors imply
an improvement in the algorithm, more specifically
in the multiplicative factor. To choose the best fac-
tor it was decided to study the error associated with
the visual analyse. Figure 2 indicates the minimum
error accepted as well as the error used with the ac-
tual factor for the treated and non-treated fish. The
error using the actual factor is 55:26% and 68:79%
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Figure 2: Relative error in percentage. Black dotted lines:
Actual multiplicative factor (0.1); Red dotted lines: Best
multiplicative factor for treated; Blue dotted lines: Best
multiplicative factor for non-treated.

for non-treated and treated respectively, and even im-
proving the factor, the minimal error accepted would
be 53:20% for non-treated which leads to a best fac-
tor of 0.11 and 44:53% for treated with a best factor of
0.13. To be able to choose the best factor these errors
obtained should be as close to zero as possible which
indicates that even with these improvements the best
multiplicative factor cannot be certain. Therefore, and
considering that the visual analysis is a valid measure,
it is suggested the development of a new algorithm.

3.3 New Algorithm

With the visual analysis it will be possible to study
new parameters using supervised learning, more pre-
cisely, regression models.

3.3.1 Behaviour Characterization

Figure 3 shows visually that there is a linear ten-
dency between the zero crossing rate results with the
visual analysis both for treated and non-treated fish.
Considering first the normal fish for validation, it was
used the statistic analysis leave one out. The result
leaded to a error of 2:55%. The relative error of
2:55% compared with the 17:29% from the previous
algorithm can be considered as an excellent improve-
ment. The user test from the previous section showed
an error of 4:35%. Given that, the reason why this
parameter shows a smaller error (2:55%) it’s because
it suits the user that performed this analysis. If User
2 had also performed this analysis, it should be ex-
pected a bigger error. The correlation coefficient ob-
tained in this case was 0:99, indicating that there is a
very good positive relation between the zero crossing
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Figure 3: Comparison between the zero crossing rate with
the visual analysis for normal and ill fish with a window of
180 seconds.

rate and the visual analysis. Finally using all points
for a window of 180 seconds, linear regression can be
applied to define our hypothesis:

hq(x) = 15:42+26:43x (1)

To characterize the behaviour for ill fish, Figure 3
shows that this group presents an inverse linear ten-
dency between the zero crossing rate and visual analy-
sis, which means that the higher the number of counts
per second the less active the fish is. Again it was used
the leave one out method to validate this parameter.
The relative error obtained was 5:75% which can be
a good estimative even thought it’s higher than the er-
ror obtained to characterize normal fish (2:55%). This
error in comparative to the 25:31% from the previ-
ous algorithm can also be considered as an excellent
improvement. The correlation coefficient was �0:99,
meaning there is a very good inverse relation between
the visual analysis and zero crossing rate.

Using all points for a window of 180 seconds lin-
ear regression can be applied to define our hypothesis:

hq(x) = 47:45�11:65x (2)

The value of 47:45 tail-flips per minute limits the fish
activity, which means that ill fish won’t show a higher
value of activity than 47:45 tail-flips per minute. Also
for a fish that doesn’t present any activity (0 tail-
flips per minute) it should be expected a value of
4:07 counts per second. Since both groups use differ-
ent equations to characterize the behaviour, to know
which equation to use for the development of this al-
gorithm a classifier is needed to distinguish between
normal or ill fish.
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3.3.2 Classification

Now our output is defined by two classes: normal and
ill fish. The parameters used that leaded to a higher
accuracy for the SVM were the zero crossing rate, the
standard deviation, the maximum power using the pe-
riodogram, the maximum number of occurrences us-
ing the histogram, and the previous algorithm output.
The learning options used were for the kernel func-
tion the Sigmoid function (tanh(8 � x:y)), a Cost of
2:0 (Model Complexity - penalty parameter) and a
numeric precision of 0:001. The accuracy obtained
using leave one out for the SVM method was 100%,
meaning that all cases analysed were correctly clas-
sified. On the other hand, the Naive Bayes method
based on the relative frequency presented a maximum
accuracy of 67:59% using the parameters standard de-
viation, the maximum power using the periodogram
and the previous algorithm output.

As we want to choose the classifier that predicts
the classes with a higher accuracy value we choose
the method SVM to build our final classifier. Because
the Orange program is open source, with the access to
the functions that build the classifier SVM we can use
them to construct the final algorithm in python.

3.3.3 Final Algorithm

Now it’s possible to built the final algorithm. First we
prepare the data with the removal of the initial peak
from the main device, the application of a filter to ex-
clude possible noise, the normalization of the data and
the smooth of the signal using a Hanning window of
0.05 seconds. Then we use the classifier to predict if
the fish is normal or ill. Consequently, according to
the classification it’s possible to characterize the be-
haviour in number of tail-flips per minute using the
corresponding hypothesis that consists in the use of
the parameter zero crossing rate. The final result will
present the classification, the probability for that clas-
sification, and the number of tail-flips per minute.

4 CONCLUSIONS

A new algorithm was developed to classify and char-
acterize the behaviour of zebrafish. To facilitate its
use, the algorithm should be integrated in the plat-
form Open Signals. The fact that this algorithm uses
classification can be an advantage as it may bring an
efficient separation between a healthy fish from one
that has been genetically modified to have PD. Also,
the algorithm should be applied in a case study as ex-
ecuted by (Correia, Ana Dulce and Soares, Rui S. and

Sousa, Sara and Outeiro, Tiago F. and Afonso, Nuno
and Willemsen, Rob and Herma van der Linde, 2012),
to verify that the responses are in agreement with the
fish behaviour and literature. This algorithm may be
useful for further studies not only related with PD, but
any other that uses zebrafish behaviour as an end point
to study human diseases.
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