Infrequent, Unexpected, and Contrast Pattern Discovery from Bacterial Genomes by Genome-wide Comparative Analysis

Daisuke Ikeda¹, Osamu Maruyama² and Satoru Kuhara³

¹Dept. of Informatics, Faculty of Information Science and Electrical Engineering, Kyushu Univ., Fukuoka, Japan ²Div. of Applied Mathematics, Institute of Mathematics for Industry, Kyushu Univ., Fukuoka, Japan ³Dept. of Bioscience & Biotechnology, Faculty of Agriculture, Kyushu Univ., Fukuoka, Japan

Keywords: Peculiar Compositions, Long Patterns, Transposon, RNA, Data Sparseness, Z-score.

Abstract: With plenty of sequences, comparative genomics is becoming important. Its basic approach is to find similar subsequences from the sequences of different species and then examine differences in detail among found similar parts. Instead of focusing on similar parts, this paper is devoted to find different parts directly from the whole DNA sequences. It is challenging because the large size prohibits computationally expensive methods and there exits so many differences in case of genome-wide comparison. To cope with this, we exploit the algorithm in (Ikeda and Suzuki, 2009), which finds unexpected, infrequent patterns. But, found patterns was not evaluated from the viewpoint of biology. In this paper, we show that patterns discovered by the algorithm from bacterial genome sequences match well biological features, such as RNA and transposon. Therefore, assuming these features as relevant regions, we compute F-measure values and show that some species achieves about 90%, which is one order of magnitude better than patterns found by an existing method. Thus, we conclude that the algorithm can find these infrequent, but biologically meaningful patterns from genome-wide sequences.

1 INTRODUCTION

Compared to find similar subsequences, it is much more difficult to find different parts from long sequences. In fact, existing comparison methods try to detect some differences by focusing on regions homologous to the sequences, instead of comparing whole unknown sequences. In this case, we can use computationally expensive methods because the size of inputs is limited. The goal of this paper is to develop a methodology for detecting differences of genome-wide sequences directly.

To detect different parts as *patterns* from two input strings, it is natural to find *contrast* patterns. However, contrast patterns are frequent but expected because they are frequent in one of the input strings. On the other hand, existing methods in comparative genomics can detect detailed, and thus infrequent, differences but they require limited parts of the whole sequences as input strings. Therefore, this paper focuses on contrast patterns, which are infrequent and unexpected, directly from genome-wide sequences.

Recently, an algorithm to find exceptional patterns in text data as *peculiar compositions* of frequent sub-

strings is proposed (Ikeda and Suzuki, 2009). In this framework, a background set B of strings is assumed to be given to the algorithm, as well as a target set Tof strings. For two strings x and y, we say that a com*position* $w = x \cdot y$ is *peculiar* if each of x and y is more frequent in *B* than in *T* and conversely w = xy is more frequent in T. From the definition, a discovered xyis exceptional in the sense that the frequency $f_T(xy)$ of xy in T is much larger than $f_B(xy)$ although $f_B(x)$ and $f_B(y)$ are much larger than $f_T(x)$ and $f_T(y)$. In other words, the observed frequency $f_T(xy)$ is much larger than the expected frequency, which is defined by $f_S(x) \cdot f_S(y)$, where x and y are frequent in the background set. We can find peculiar compositions which can not be found by z-score (Ikeda and Suzuki, 2009). However, the significance of found peculiar compositions was not verified from the view point of genome informatics (Ikeda and Suzuki, 2009).

The main contribution of this paper are threefold. Firstly, we show that most of found peculiar compositions appear in specific regions, such as RNA and transposon, given the whole genome sequences of bacteria as the target and background sets. Secondly, we quantitatively evaluate found peculiar com-

308 Ikeda D., Maruyama O. and Kuhara S..

Infrequent, Unexpected, and Contrast Pattern Discovery from Bacterial Genomes by Genome-wide Comparative Analysis DOI: 10.5220/0004241203080311

In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms (BIOINFORMATICS-2013), pages 308-311 ISBN: 978-989-8565-35-8

Copyright © 2013 SCITEPRESS (Science and Technology Publications, Lda.)

Name	Accession #	Role	GC%	Length (bp)
E. coli	NC_000913	Background	50.8	4,639,675
M. tuberculosis	NC_000962	Train	65.6	4,411,532
B. subtilis	NC_000964	Train	43.6	4,214,630
B. fragilis	NC_003228	Train	43.2	5,205,140
G. metallireducens	NC_007517	Test	59.6	3,997,420
C. welchii	NC_008261	Test	28.4	6,513,368
H. pylori	NC_012973	Test	39.2	1,576,758

V

Table 1: List of DNA sequences used in experiments.

positions by F-measure. F-measure values of peculiar compositions are one order of magnitude larger than those of substrings extracted by z-score criteria. Thirdly, we develop how to set parameters so that the evaluation value becomes high using training data, and then verify these parameters using test data.

2 RELATED WORK

Putting some limitations on the syntax of patterns, contrast pattern finding methods are expected to find infrequent patterns (Beißbarth and Speed, 2004; Huang et al., 2003; Ji et al., 2005). However, some domain specific knowledge is necessary to define such a word properly.

To find infrequent patterns, or under-represented patterns, scores based on statistical testing have also been extensively studied (Apostolico et al., 2000; Horng et al., 2002; Leung et al., 1996; Marschall and Rahmann, 2009; Schbath, 1997; Robin et al., 2005), such as z-score and χ^2 -score. These scores assume a probabilistic model and, to find infrequent patterns, use the deviation of frequencies of candidate patterns from their expected frequencies. However, mining algorithms based on statistical testing suffer from the data sparseness problem, which is an appearance of Zipf's law. Therefore, it is important to decide appropriate lengths of subsequences. However, it is difficult to decide an appropriate length since subtle changes on the length make large difference on the number of candidate patterns.

3 EXPERIMENTS

3.1 Data Sets

The data sets used in our experiments are whole DNA sequences of 7 bacteria (Table 1). We use the whole DNA sequence as input data.

As the common background set for all experiments in this section, we choose *E. coli* since it is a Table 2: Trained parameters achieving highest $F_{1/4}$ values, and corresponding precisions and recalls, for training sequences.

#	θ_B	η	precision	recall	$F_{1/4}$
NC_000964	1.9	8	0.8047	0.1534	0.6438
NC_003228	2.4	6	0.7567	0.1345	0.5949
NC_000962	1.9	7	0.4199	0.0327	0.2476

well-studied species. As a training target data, we use *B. subtilis*, which is another popular bacterium. In addition to that, we use *B. fragilis* and *M. tuberculosis* because we have already found that the length and GC content of a target sequence affect found peculiar compositions from preliminary experiments and, compared to *B. subtilis*, *B. fragilis* has a similar GC content and a longer length while *M. tuberculosis* a larger GC content and a similar length.

3.2 Training Parameters

FPCS requires three parameters θ_T , θ_B and η . We set $\theta_T = 2$, which is the minimum integer greater than 1, because it is shown that the least influential parameter among these parameters is θ_T (Ikeda and Suzuki, 2009). To decide other two parameters, we caluculate

$$F_{\beta} = \frac{(1+\beta^2) \cdot P \cdot R}{\beta^2 \cdot P + R}$$

where P and R denote precision and recall, respectively, and both of them are defined by positions of features on target sequences.

We choose $\beta = 1/4$ for F_{β} which weighs precision four times as much as recall although F-measure typically means F_1 , which puts weight on precision and recall equally. However, our goal is not to find these features but to show that found peculiar compositions match biological features. To this end, precision values are desired to be high while we do not need high recall values.

Table 2 shows trained parameters, where RNAs are considered as relevant features for *B. subtilis* and *B. fragilis*, and transposons for *M. tuberculosis*. From genetic maps, like 1, we find that relevant features are different. This is because GC-content of *M. tuberculosis* is much larger than those of the other sequences.

θ_B	θ_T	η	precision	recall	$F_{1/4}$	
H	I. pylo	ri				
1.6	2	2	0.5066	0.1133	0.4207	
1.7	2	2	0.5789	0.0936	0.4436	
*1.8	2	2	0.6467	0.0799	0.4563	
1.9	2	2	0.6614	0.0681	0.4372	
2.0	2	2	0.7035	0.0605	0.4330	
C	. welch	ıii				
2.7	2	6	0.9654	0.3685	0.8814	
2.8	2	6	0.9655	0.3663	0.8807	
*2.9	2	6	0.9690	0.3608	0.8816	
3.0	2	6	0.9744	0.3487	0.8814	
3.1	2	6	0.9797	0.3316	0.8787	
G. me	tallired	lucens				
1.5	2	7	0.5020	0.2114	0.4645	
1.6	2	7	0.5350	0.1789	0.4789	16
*1.7	2	7	0.5698	0.1351	0.4791	
1.8	2	7	0.6080	0.1037	0.4727	7
1.9	2	7	0.6187	0.0768	0.4372	
5		INC	E AN	ד סו	ECH	IN
From th	is tahl	e two y	values for f	$\mathbf{h}_{\mathbf{p}}$ are the	same and	d l

Table 3: Evaluation values on parameter sets for test target sequences, where "*" stands for the highest $F_{1/4}$ for each target sequence.

From this table, two values for θ_B are the same and the other value is much larger while all values for η are similar This difference comes from the length of target sequences. In case of *M.tuberculosis*, we have lower values for $F_{1/4}$, compared to other sequences. This may be because transposons moves and thus they are not preserved well compared to RNAs which play important roles commonly in different species.

3.3 Test Tuned Parameters

Table 3 shows evaluation values for some values to the parameters. For *H. pylori*, we choose much smaller values for η since it is much shorter than *B. subtilis* while we choose similar values for θ_B . In the case that the size of the target sequence is too small, the value of η have much more influence on $F_{1/4}$ than θ_B . We choose similar (resp. larger) values than those for *B. subtilis* since *G. metallireducens* (resp. *C. welchii*) is similar (resp. longer) than *B. subtilis*. From GC-contents of target sequences, RNA related features are relevant for *H. pylori* and *C. wlechii*, and transposons for *G. metallireducens*. From the table, we find that findings about size and GC-content are confirmed using test target sequences.

From Figure 1, we see that found peculiar compositions from *C. welchii* (left-hand side) match well to RNA related features (red regions) and those from *G. metallireducens* (right-hand side) to transposons (green ones).

From these test data, we conclude that we can set θ_B and η , according to the size of a target set,

Table 4: $F_{1/4}$ values, where extracted patterns are substrings with length N whose z-scores are less than "threshold" and RNA, transposon, and phage are relevant features.

Data	Ν	threshold	#	$F_{1/4}$
NC_000913	6	-30.0	58	0.0753
NC_000913	6	-33.0	9	0.0182
NC_000913	9	-4.20	177	0.0053
NC_000913	9	-4.29	18	0.0005
NC_000964	6	-30.0	11	0.0329
NC_000964	6	-32.0	2	0.0197
NC_000964	9	-5.0	75	0.0055
NC_000964	9	-5.2	16	0.0011

and found peculiar compositions match RNAs (resp. transposons) if GC-content of the target set is similar to (resp. larger than) that of *B. subtilis*.

3.4 Comparison with *z*-score

In this section, we compare with another criteria to find infrequent, unexpected patterns. As such a criteria, we choose *z*-score, which is usually defined over substrings with fixed length.

A *z*-score for a substring *w* is defined as z(w) = (f(w) - E(w))/N(w), where f(w) is the observed frequency of *w* in a given data, E(w) its expected value of *w* under an assumed probabilistic model, and N(w) a normalization factor of *ws* (Parida, 2007). Now we assume the Bernoulli model, that is, each letters occurs independently, and probabilities of four letters are estimated from the target set.

We use all of RNA, transposon, and phage as relevant features to evaluate $F_{1/4}$ values (see Table 4). Among all of the substrings with length *N*, it is necessary to extract some substrings whose *z*-score values are small. As a threshold value for the extraction is given in "#" column, and the next column is the number of substrings obtained by the threshold value. From this table, we see that $F_{1/4}$ values by *z*-score criteria are one order of magnitude lower than those by FPCS.

4 CONCLUSIONS

We have confirmed that most of found substrings found by FPCS (Ikeda and Suzuki, 2009) match RNAs and transposons very well. Unlike many existing methods to find regulatory regions, we just give two DNA sequences to FPCS. The only thing we have to do is to set three parameters, and we have developed how to set them, according to the size of give input sequences.

It is a challenging and important future work

Infrequent, Unexpected, and Contrast Pattern Discovery from Bacterial Genomes by Genome-wide Comparative Analysis

· · · · · · · · · · · · · · · · · · ·	
· · · · · ·	
· · ·	
h	the state of the s

Figure 1: Gennetic maps of the whole DNA sequences of C. welchii (left-hand side) and G. metallireducens (right-hand side) with two tracks, where RNAs, transposon, and phage are colored in blue, green and yellow, respectively, on the above track, and found peculiar compositions are colored in red on the below track.

to conduct experiments on other species. Peculiar compositions found in bacterial DNA sequences are densely-located even when they are not included in known biological features. We believe that such regions are worth investigating and thus this is also an Parida, L. (2007). Pattern Discovery in Bioinformatics:

ACKNOWLEDGEMENTS

This work was supported by JSPS KAKENHI Grant Number 24300059.

REFERENCES

- Apostolico, A., Bock, M. E., Lonardi, S., and Xu, X. (2000). Efficient Detection of Unusual Words. J. of Comput. Biol., 7(1/2):71-94.
- Beißbarth, T. and Speed, T. P. (2004). GOstat: Find Statistically Overrepresented Gene Ontologies within a Group of Genes. Bioinformatics, 20(9):1464-1465.
- Horng, J.-T., Huang, H.-D., Huang, S.-L., Yang, U.-C., and Chang, Y.-C. (2002). Mining Putative Regulatory Elements in Promoter Regions of Saccharomyces Cerevisiae. In Silico Biology, 2(3):263-273.
- Huang, H.-D., Chang, H.-L., Tsou, T.-S., Liu, B.-J., Kao, C.-Y., and Horng, J.-T. (2003). A Data Mining Method to Predict Transcriptional Regulatory Sites Based on Differentially Expressed Genes in Human Genome. J. of Info. Sci. and Eng., 19(6):923-942.
- Ikeda, D. and Suzuki, E. (2009). Mining Peculiar Compositions of Frequent Substrings from Sparse Text Data Using Background Texts. In Proc. of ECML PKDD, pages 596-611.
- Ji, X., Bailey, J., and Dong, G. (2005). Mining Minimal Distinguishing Subsequence Patterns with Gap Constraints. In Proc. of ICDM, pages 194-201.

- Leung, M.-Y., Marsh, G. M., and Speed, T. P. (1996). Overand Underrepresentation of Short DNA Words in Herpesvirus Genomes. J. of Comput. Biol., 3(3):345-360.
- Marschall, T. and Rahmann, S. (2009). Efficient Exact Mo-
- Theory & Algorithms. Chapman & Hall/CRC.
- Robin, S., Rodolphe, F., and Schbath, S. (2005). DNA, Words and Models: Statistics of Exceptional Words. Cambridge University Press.
- Schbath, S. (1997). An Efficient Statistic to Detect Overand Under-represented Words in DNA Sequences. J. of Comput. Biol., 4(2):189-192.