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Abstract: We study causal dynamic smoothing of discrete time processes via approximation by band-limited discrete
time processes. More precisely, a part of the historical path of the underlying process is approximated in Eu-
clidean norm by the trace of a band-limited process. We analyze related optimization problem and obtain some
conditions of solvability and uniqueness. An unique extrapolation to future times of the optimal approximating
band-limited process can be interpreted as an optimal forecast.

1 INTRODUCTION

We study causal dynamic smoothing of discrete time
processes via approximation by band-limited discrete
time processes. More precisely, a part of the historical
path of the underlying process is approximated in Eu-
clidean norm by the trace of a band-limited discrete
time process. Since an unique extrapolation to fu-
ture times of the optimal approximating band-limited
process can be interpreted as an optimal forecast, this
task has many practical applications. It is well known
that it is not possible to find an ideal low-pass causal
linear time-invariant filter. In continuous time setting,
it is known that the distance of the set of ideal low-
pass filters from the set of all causal filters is positive
(Almira and Romero, 2008) and that the optimal ap-
proximation of the ideal low-pass filter is not possible
(Dokuchaev, 2012c). Our goal is to substitute the so-
lution of these unsolvable problems by solution of an
easier problem in discrete time setting such that the
filter is not necessary time invariant. Our motivation
is that, for some problems, the absence of time in-
variancy for a filter can be tolerated. For example,
a typical approach to forecasting in finance is to ap-
proximate the known path of the stock price process
by a process allowing an unique extrapolation that can
be used as a forecast. This has to be done at current
time; at future times, forecasting rule can be amended
according to new data collected.

We suggest to approximate discrete time pro-
cesses by the discrete time band-limited processes.
More precisely, we suggest to approximate the known
historical path of the process by the trace of a band-

limited process. The approximating sequence does
not necessary match the underlying process at sam-
pling points. This is different from classical sampling
approach; see, e.g., (Jerry, 1977). Our approach is
close to the approach from (Ferreira, 1995b) and (Fer-
reira, 1995a), where the estimate of the error norm is
given. The difference is that, in our setting, it is guar-
anteed that the approximation generates the error of
the minimal Euclidean norm.

We obtain analyze existence and uniqueness of an
optimal approximation. The optimal process is de-
rived in time domain in a form of sinc series.The ap-
proximating band-limited process can be interpreted
as a causal and linear filter that is not time invari-
ant. The filter obtained is not time invariant; as a
consequence, the coefficients of these series and have
to be changed dynamically, to accommodate the cur-
rent flow of observations. An unique extrapolation
to future times of the optimal approximating band-
limited process can be interpreted as an optimal fore-
cast at any given time. This paper develops further the
approach suggested in (Dokuchaev, 2011) where the
continuous time setting was considered. We extend
now this approach on discrete time processes. Some
related results can be found in (Dokuchaev, 2012b)
and (Dokuchaev, 2012d) for discrete time processes
that are band-limited or close to band-limited.

2 DEFINITIONS

For a Hilbert spaceH, we denote by(·, ·)H the cor-
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responding inner product. We use notation sinc(x) =
sin(x)/x.

Let Z be the set of all integers, and letZ+ be the
set of all positive integers. We denote byℓr the set
of all sequencesx= {x(t)}t∈Z ⊂ R, such that‖x‖ℓr =(
∑∞

t=−∞ |x(t)|r
)1/r

<+∞ for r ∈ [1,∞) or for r =+∞.
Let ℓ+r be the set of all sequencesx∈ ℓr such that

x(t) = 0 for t =−1,−2,−3, ....
For x ∈ ℓ1 or x ∈ ℓ2, we denote byX = Z x the

Z-transform

X(z) =
∞

∑
t=−∞

x(t)z−t , z∈ C.

Respectively, the inverse Z-transformx= Z −1X is de-
fined as

x(t) =
1
2π

∫ π

−π
X
(
eiω)eiωtdω, t = 0,±1,±2, ....

If x ∈ ℓ2, then X|T is defined as an element of
L2(T).

Let θ,τ ∈ Z ∪ {+∞} and θ < τ. We de-
note by ℓ2(θ,τ) the Hilbert space of complex
valued sequences{x(t)}τ

t=θ such that‖x‖ℓ2(θ,τ) =(
∑τ

t=θ |x(t)|
2
)1/2

<+∞.
Let UΩ,∞ be the set of all mappingsX : T → C

such thatX
(
eiω) ∈ L2(−π,π) and X

(
eiω) = 0 for

|ω| > Ω. Note that the corresponding processesx =
Z −1X are said to be band-limited.

Let UΩ,N be the set of allX ∈ UΩ,∞ such that
there exists a sequence{yk}

N
k=−N ∈ C2N+1 such that

X
(
eiω) = ∑N

k=−N ykeikω/Ω
I{|ω|≤Ω}, whereI is the in-

dicator function.
We assume that we are givenΩ ∈ (π/2,π), N ∈

Z
+, s ∈ Z and q ∈ Z, such thatq < s and s− q ≥

2N+1.
Let T = {t ∈ Z : q≤ t ≤ s}.
Let ZN be the set of all integersk such that|k| ≤N.
Let YN be the Hilbert space of sequences

{yk}
N
k=−N ⊂C provided with the Euclidean norm, i.e.,

such that‖y‖YN =
(
∑k∈ZN

|yk|
2
)1/2

.
Consider the Hilbert spaces of sequencesX = ℓ2

andX− = ℓ2(q,s).
Let XΩ,N be the subset ofX− consisting of se-

quences{x(t)}|t∈T , wherex∈ X are such thatx(t) =
(Z −1X)(t) for t ∈ T for someX

(
eiω) ∈ UΩ,N.

Up to the end of this paper, we assume that the
following condition is satisfied.

Condition 2.1. The matrix{sinc(kπ+Ωm)}N
k,m=−N

is nondegenerate.

Lemma 1. Let Ω0 ∈ (π/2,π) be selected such that
there exists p∈ (0,1) such that

min
k∈ZN

|sinc(πk−Ωk)| ≥ p,

max
k,m∈ZN, t 6=−k

|sinc(πk+Ωm)|<
p

2N

for all Ω ∈ [Ω0,π). (1)

Then the matrix{sinc(kπ + Ωm)}N
k,m=−N is nonde-

generate for allΩ ∈ [Ω0,π).
Clearly, (1) holds for anyΩ0 that is close enough

to π, since sinc(x)→ 1 asx→ 0 and sinc(x) → 0 as
x → πm, wherem∈ Z, m 6= 0. Therefore, Condition
2.1 can be satisfied with selection ofΩ being close
enough toπ.

Lemma 2. For any any x∈ XΩ,N, there exists an
unique X∈ UΩ,N such that x(t) = (Z −1X)(t).

By Lemma 2, the future of even more ”smooth”
processes fromXΩ,N is uniquely defined by a finite set
of historical values that has at least 2N+1 elements
for anyN <+∞ andΩ ∈ [Ω0,π).

3 APPROXIMATION RESULTS

3.1 The Optimization Problem in the
Time Domain

Let x∈ X be a process. We assume that the sequence
{x(t)}t∈T represents available historical data. Let
Hermitian formF : XΩ,N ×X− → R be defined as

F(x̂,x) =
s

∑
t=q

|x̂(t)− x(t)|2.

Theorem 1. (i) There exists an optimal solution̂x of
the minimization problem

Minimize F(x̂,x) over x̂∈ XΩ,N. (2)

(ii) If s−q≥ 2N+1, then the corresponding optimal
procesŝx is uniquely defined.

Remark 1. By Proposition 2, there exists an unique
extrapolation of the band-limited solution̂x of prob-
lem (2) on the future times t> s, under the assump-
tions of Theorem 1. It can be interpreted as the opti-
mal forecast (optimal givenΩ and N).

3.2 The Optimization Problem for
Fourier Coefficients

To solve problem (2) numerically, it is convenient
to expandZ-transformX

(
eiω) on the unit circle via

Fourier series.
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Consider the mappingQ : YN → XΩ,N such that
x̂ = Q y is such that̂x(t) = (Z −1X̂)(t) for t ∈ (q,s],
where

X̂
(
eiω)= ∑

k∈ZN

yke
ikω/Ω

I{|ω|≤Ω}. (3)

Clearly, this mapping is linear and continuous.
Let Hermitian formG : YN × X− → R be defined

as

G(y,x) = F(Q y,x) =
s

∑
t=q

|x̂(t)− x(t)|2,

x̂= Q y. (4)

Corollary 1. There exists an unique solution y of the
minimization problem

Minimize G(y,x) over y∈ YN. (5)

Problem (2) can be solved via problem (5); its so-
lution can be found numerically.

Let X̂ be defined by (3), where{yk} ∈ YN. Let
x̂= Z −1X̂. We have that

x̂(t) =
1
2π

∫ Ω

−Ω

(

∑
k∈ZN

yke
ikωπ/Ω

)
eiωtdω

=
1
2π ∑

k∈ZN

yk

∫ Ω

−Ω
eikωπ/Ω+iωtdω

=
1
2π ∑

k∈ZN

yk
eikπ+iΩt −e−ikπ−iΩt

ikπ/Ω+ it

=
Ω
π ∑

k∈ZN

yksinc(kπ+Ωt).

Hence

G(y,x) =
s

∑
t=q

|x̂(t)− x(t)|2

=
s

∑
t=q

∣∣∣∣∣
Ω
π ∑

k∈ZN

yksinc(kπ+Ωt)− x(t)

∣∣∣∣∣

2

= (y,Ry)YN −2Re(y, rx)X− +(ρx,x)X− . (6)

HereR : YN × YN → YN is a linear bounded Hermi-
tian operator,r : X− → YN is a bounded linear opera-
tor, ρ : X−×X− → X− is a linear bounded Hermitian
operator.

It follows from the definitions that the operator
R is non-negatively defined (it suffices to substitute
x(t)≡ 0 into the Hermitian form).

3.3 The Explicit Solution of the
Optimization Problem

Since the spaceYN is finite dimensional, the opera-
tor R can be represented via a matrixR= {Rkm} ∈

C2N+1,2N+1, where Rkm = Rmk. In this setting,
(Ry)k = ∑N

k=−N Rkmym.

Theorem 2. (i) The operator R is positively defined.
(ii) Problem (5) has a unique solution̂y= R−1rx.

(iii) The components of the matrix R can be found from
the equality

Rkm=
Ω2

π2

s

∑
t=q

sinc(mπ+Ωt)sinc(kπ+Ωt). (7)

(iv) The components of the vector rx= {(rx)k}
N
k=−N

can be found from the equality

(rx)k =
Ω
π

s

∑
t=q

sinc(kπ+Ωt)x(t). (8)

Corollary 2. Let ŷ be the vector calculated as in The-
orem 2,ŷ= {ŷk}

N
k=−N. The process

x̂(t) = x̂(t,q,s) =
Ω
π ∑

k∈ZN

yksinc(kπ+Ωt)

represents the output of a causal filter that is linear
but not time invariant.

The proofs of results given above can be found in
the working paper (Dokuchaev, 2012a).

4 NUMERICAL EXPERIMENTS

In the numerical experiments described below, we
have used MATLAB.

The experiments show that some eigenvalues ofR
are quite close to zero despite the fact that, by The-
orem 2,R> 0. Respectively, the error for the MAT-
LAB solution of the equationRŷ= rx does not vanish.
Further, in our experiments, we found that the errorE
can be decreased by the replacingR in the equation
x̂= R−1rx by Rε = R+ εI , whereI is the unit matrix
and whereε > 0 is small. We have usedε = 0.001.

Figures 2 show examples of processesx(t) and
the corresponding band-limited processesx̂(t) with
approximating x(t) with N = 15 at times t ∈
{−25, ...,15} (i.e., withq=−25,s= 15). The values
of x̂(t) for t > 15 were calculated using{x(s)}s≤15
and can be considered as an optimal forecast ofx(t).
Figure 2 shows the result forΩ = 0.2; Figure ??
shows the result forΩ = 0.9.

We have verified numerically that the matrix
{sinc(kπ + Ωm)}N

k,m=−N is nondegenerate. There-
fore, Condition 2.1 is satisfied. In fact, we found that
this matrix was nondegenerate in all experiments for
all kinds ofΩ andN.

By Remark 1, the extrapolation of the processx̂∈
XΩ,N to the future timest > scan be interpreted as the
optimal forecast (optimal givenΩ andN).
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APPENDIX
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Figure 1: Example ofx(t) and band-limited procesŝx(t)
approximatingx(t) for t ∈ {−25, ..,15}, with Ω = 0.2, and
N = 15.
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Figure 2: Example ofx(t) and band-limited procesŝx(t)
approximatingx(t) for t ∈ {−25, ..,15}, with Ω = 0.9, and
N = 15.
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