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Abstract: We investigate the use of biosignals (blood volume pressure and electrodermal activity) for person-independent
profiling of arousal responses to complex, long-term stimuli. We report the design of a user study with 14
subjects to elicitate affective responses with films of different genres. We present a detailed analysis of the
recorded signals and show that it is possible extract information on the differences between films and within
each film from biosignals. We use this information to automatically discriminate four film classes in a person-
independent fashion with an accuracy of up to 97.8%.

1 INTRODUCTION

In human interaction, humans sense a large variety of
signals of the persons we are interacting with and try
to infere information about their cognitive and affec-
tive mental state. The term affective computing was
coined by Rosalind Picard (Picard, 2000) to describe
computer systems which can estimate and react to the
user’s affective state. This state can for example be
assessed based on biophysiological signals continu-
ously emitted by the human body. Today, researchers
widely agree that the perception of a human state in a
particular situation is of central interest for intelligent
systems to enhance system performance to achieve a
better user experience. Since the beginning of affec-
tive computing, a large number of studies and systems
has been published on the estimation of affect from
biosignals ((Picard et al., 2001), (Lichtenstein et al.,
2008), (Soleymani et al., 2008)). Arousal is one of the
most important aspects of affect. It is related to infor-
mation evaluation and task performance. This paper
contributes to this area a detailed analysis of arousal
profiles (i.e. the degree of arousal or its correlates over
time) as response to longer-lasting, complex stimuli
in form of complete films of different genres. In HCI,
this is highly relevant as most interaction sessions, es-
pecially in the entertainment domain, consist of a long
sequence of interacting affective stimuli. We investi-
gate the possibility of extracting information on the
arousal profile from biosignals and using this infor-
mation for automatic discrimination of films and film
segments.

2 EXPERIMENTAL SETUP

To collect data of multiple persons covering differ-
ent long-lasting dynamic affective states, we designed
an experiment using full short films for affect elicita-
tion. During the presentation, we recorded physiolog-
ical responses to those films. For our study, we se-
lected three films of different genres: The first one is
a zombie horror film with socially critical undertone
(AKUMI). It starts with a slow exposition, than in-
troduces horror elements and culminates into a show-
down battle. The second film is a slow, silent stop-
motion arthouse-film with a constantly low suspense
curve (FLOWERS). The third one is a humorous an-
imation film riddled with slapstick jokes (LIFTED)
about alien driving school. Before each film, we in-
cluded a relaxation phase (RELAX) of approximately
two minutes to bring participants back to a neutral,
calm state. A relaxation phase consisted of a sequence
of nature stills with meditative music. To counter or-
dering effects, we randomly assigned participants to
two different permutations of the films. This ensures
that for every pair of two films, there are recordings
for both possible orderings. After each film, partici-
pants filled out a film related questionnaire to classify
its genre and to indicate their emotional response to
it using a Self Assessment Manikin (SAM, (Bradley
and Lang, 1994)). During each film or relaxation
phase, we recorded EDA and blood volume pressure
using plethysmography (PPG). We showed the films
in a dimmed, windowless and empty room to avoid as
much distraction as possible. Participants sat in a fix-
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a fixed position in front of a large projection screen
on which we showed the films to create an intense
impression. Biosignals were recorded using a wire-
less biosignal monitor by PLUX1 with a sampling rate
of 1000Hz. In total, we recorded about 23 minutes
of biosignals for each participant. 14 participants at-
tended our study. All of them were students or visitors
at the KIT between 14 and 30 years. Four partici-
pants were female. We ensured by analyzing content-
related questionnaires that participants perceived the
three presented films as sufficiently different.

For self-assessment of emotions experienced dur-
ing the film, a subscale of the SAM technique is used
to measure arousal. Arousal is comparable for the en-
gaging films AKUMI and LIFTED (3:29 and 3:23)
and significantly lower for the slow paced FLOWERS
(2:53). As we expected people to experience a variety
of emotional states during the course of each film, we
combined the SAM-technique with a time axis: Af-
ter watching each film, participants state their arousal
continously over course of the whole film by draw-
ing a curve from the beginning of the film to the end.
To give orientation for the participants, we presented
stills of the film from every minute as reminders of the
film flow. For analysis, we sample each curve at every
full minute to derive a self-assessed arousal profile.
The average range of arousal values over the course
of a film is as high as 1:72, which is higher than the
differences between averages for different films. This
indicates that even a short film with a clear affective
tendency (e.g. a horror film) has a dramaturgy that re-
sults in both low and high arousal values and which
should also be reflected in the biosignal recordings.
This also indicates that we cannot simply use an aver-
age arousal score to label the complete corresponding
biosignal stream but that we have to take a more de-
tailed look at the dramaturgic structure.

3 SIGNAL ANALYSIS

In the next step, we analyze the variation of the
recorded biosignals in relation to the dramaturgic
structure of a film. Starting with an overall compari-
son of the different films, we see a significant differ-
ence (p < 0:05) in mean EDA signal amplitude be-
tween FLOWERS and AKUMI and between FLOW-
ERS and LIFTED. However, as we already saw that
the arousal profile to a film varies strongly over time,
we now look at temporal patterns in the recorded
biosignals. In order to trace the affect changes that
were elicited through different types of films and

1http://www.plux.info

within each film, we look at the EDA signal because
a change in skin conductivity occurs quickly as a re-
sponse to an increased level of arousal and can be in-
terpreted in the time domain.

As each individual EDA curve contains a lot of
session specific effects which cannot easily be at-
tributed to events in the film, we generate an averaged
EDA curve for each film from the data of all partic-
ipants. For each participant, the EDA signal is nor-
malized and lowpass filtered at 0.5 Hz. Afterwards,
we calculate the averaged EDA signal. It is corre-
spondingly scaled and illustrated in Figure 1 for the
films AKUMI and FLOWERS2. When we compare
both curves, we notice a number of differences: The
averaged EDA signal for AKUMI shows strong tem-
poral variation while the signal for FLOWERS is rel-
atively smooth. This is caused by a larger number of
sharp rises of the EDA signal for AKUMI as a respose
to unexpected, surprising or exciting events (Ekman
et al., 1985) in the individual signals. We call these
rises startles. The lack of startles for FLOWERS also
causes the monotonic decreasing trend of the curve.
Taking the connection between arousal and EDA ac-
tivity into account, we can draw the conclusion that
certain events in the horror film AKUMI in general
cause a higher arousal than the slowly paced arthouse
film FLOWERS. We also see that the averaged EDA
signals roughly match the trend of the averaged dis-
cretized arousal curves we extracted from the SAM
(with a time delay of ca. 1 minute).

Figure 1: Top: Averaged EDA curve for the film AKUMI
with indices for marked scenes; Bottom: Averaged EDA
curve for the film FLOWERS.

Still, the EDA signal for AKUMI is not station-
ary across the whole film. Can we determine which
effects cause the observed peaks and level changes?
Comparing the EDA signal to the arousal curve, we

2The plots are generated by averaging individually z-
normalized EDA curves and are therefore unit-free.
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only see a very rough match. However, when review-
ing the film material directly, we get a more precise
picture: We can identify certain scenes which drasti-
cally change the dramaturgy of the film. These scenes
are marked by vertical lines in Figure 1. The strong
EDA rises at the second and third marker correspond
to climatic scenes of the film while the valley between
seconds 60 and 240 corresponds to a slow-paced and
monolog-driven part of the film. We can quantify this
effect by automatically measuring the tempo of the
film as number of scene changes in a sliding time win-
dow. The resulting graph in Figure 2 (top) shows that
a rising tempo around second 240 corresponds very
well to the lasting rise of the EDA curve and indicates
a strong general affective response to this change in
dramaturgy. This type of analysis is not possible
for FLOWERS because of the employed stop-motion
technique. To explain the course of the EDA curve
for this film, we instead compare it to one generated
from the corresponding RELAX sections (see Fig-
ure 2 (bottom)) and see a very similar monotonous
trend in the signal after a short rise at the start of each
phase. Only the begin of the final credits (which are
missing for RELAX) marks the onset of a slow rise.
This indicates that the arousal profile for the slow
paced FLOWERS is comparable to the one for RE-
LAX. In summary, we see significant differences in
the EDA-derived arousal profiles in response to films
of different genre and style and also to different sec-
tions within one film.

Figure 2: Top: Comparison of EDA curve with number of
scene changes for AKUMI; Bottom: Averaged EDA curve
for a RELAX phase.

4 MOVIE CLASSIFICATION

We will now use those observed characteristic,
biosignal-based arousal profiles as features for auto-
matic classification of films and film segments. We
start by investigating the classification of the recorded

biosignals into four classes: the three different films
as one class each and all relaxation phases combined
as another one. We design a person-independent setup
to investigate the ability of differentiating films based
on their arousal profiles.

The first step of the classification process is a z-
normalization of the raw data for each subject to level
different signal baselines. We segment the data into
windows of 20 seconds lengths with an overlap of
10 seconds. On each window, we extract tentative
features: For the PPG signal, we extract the mean
heart rate and its variation by applying peak detec-
tion on the bandpass filtered signal. For the EDA
signal, the number of startles is determined automati-
cally using peak detection after low-pass filtering. We
then extract the mean EDA value and the number of
startles. We now derive the final features which de-
scribe the complete arousal profile of one film based
on the whole signal stream. Those features consist of
statistics on the window-based features for each film:
mean, maximum and mimimum value, standard de-
viation, relative peak position, peak width and rela-
tive centroid. Final features are independent of the
film length to avoid leakage of this information to the
classification process. This results in a feature vector
of 28 dimensions. After feature extraction, we train
and evaluate a Naive Bayes classifier using leave-one-
person-out cross-validation. Within each iteration of
the cross-validation, we use Sequential Forward Fea-
ture Selection (SFFS) on the training set of the re-
spective fold to select the best features. To evaluate
features during this selection process, an inner cross-
validation within each fold is performed using strat-
ified sampling. Using this setup, we achieve a very
high average accuracy of 97.8% with a minimum pre-
cision of 88.24% and a minimum recall of 93.3% over
all classes. The standard deviation between folds is
8.3%, which indicates relative stability in the face of
small changes of test and training data.

To investigate the generalization abilities and the
feature stability, we calculated a histogram on the se-
lected features. On average, the feature selection re-
sulted in a feature set of size 2.45 (median: 2). The
left part of Table 1 gives an overview of the most
frequently selected features over all cross-validation
folds. It indicates that there are some stable features
which are regularly picked over others; Only 8 of 28
features are ever selected. This result indicates that
those features generalize well across persons. When
training a model using the features from Table 1 in-
stead of using SFFS for each fold, we still achieve
an average recognition rate of 95.56%, indicating that
the original recognition accuracy was not the result
of over-specialization. To investigate the predic-
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Table 1: Left: Most frequently selected features over all
cross-validation folds. Table shows the selection frequency
in percent for features derived from mean heart rate (MHR),
variance of heart rate (VHR), mean EDA (EDA) and num-
ber of startles (STA): Peak Width (PW), Relative Peak In-
dex (RPI), Average (AVG), Standard Deviation (SD), Max-
imum (Max), Minimum (Min). Right: Same information
for feature selection without peak width, peak position and
centroid.

full feature set restricted feature set
Signal Feat. Freq. Signal Feat. Freq.
MHR PW 53.3 EDA SD 100.0
EDA PW 46.7 MHR Avg 73.3
MHR SD 33.3 MHR SD 73.3
MHR Avg 13.3 MSC Avg 66.7
MHR Min 13.3 VHR Min 40.0
STA PW 13.3 EDA Min 33.3
STA SD 6.7 STA Avg 33.3
VHR RPI 6.7 MHR Max 26.7

MSC Max 26.7
VHR Avg 26.7

Table 2: Average accuracies in percent for pairwise classi-
fication of windows from different minutes (1 = 0s to 60s, 2
= 60s to 120s, . . . ) of the film AKUMI.

Min. 2 3 4 5 6 7 8
1 61 54 67 64 75 70 56
2 52 58 59 72 70 67
3 64 63 77 73 63
4 58 72 70 66
5 70 67 61
6 59 67
7 58

tive power of both modalities separately, we see sim-
ilar recognition rates if we restrict the feature set to
only EDA-based features (97.8%) or only PPG-based
features (96.67%). We conclude that both modalities
carry information on the arousal profile and depend-
ing on the application it may be possible to reduce the
number of required sensors.

Note that some of the employed features (e.g. rel-
ative centroid position) encode information specific
to the dramaturgy of the films. Therefore, the trained
model will not be applicable to different films without
loss of recognition accuracy (albeit, films of similar
dramaturgical structure could work). We therefore re-
peat evaluation after removing the features encoding
relative peak position, relative centroid position and
peak width. As expected, the accuracy drops signifi-
cantly to 73.3%. The merit of this model is that it still
provides reasonable recognition accuracy using much
more generic features which promise generalizability
to different films. The selected features are given in
the right part of Table 1. Again, we identify a number
of features which is repeatedly selected across folds.

As documented in Section 3, significant differ-

ences cannot only be noted between different films
but also during the course of one film. To investigate
the possibility of identifying different parts of the film
based on biosignals, we classify the window-based
features extracted for the process described above for
the movie AKUMI. To each window, we assign a la-
bel based on its position within the film, using one
label for each full minute. Classification is performed
pairwise for each combination of two labels to investi-
gate similarity effects. In this setup, we do not expect
high classification accuracy for each pair of segments.
Instead, we can interprete the recognition accuracy as
a measure of distance between two segments based
on the arousal profile. Table 2 presents the results of
leave-one-person-out cross-validation. As expected,
performance reaches levels of up to 77% for sections
which are dramaturgically very different. For sections
which are similar in this regard (e.g. both from the
fast-paced ending), accuracy drops. This result is in
strong accordance with the observations on Figure 1
and shows that, even given the difficulty induced by
fuzzy class transitions, automatic affective profiling
of a film is possible.
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