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Abstract: Four crackle detection algorithms were implemented based on selected techniques proposed in the literature. 
The algorithms were tested on a set of lung sounds and their performance was assessed in terms of 
sensitivity (SE), accuracy (PPV) and their harmonic mean (F index). The reference annotation data for 
calculating these indices were obtained through agreement by majority between independent annotations 
made by three health professionals on the same set of lung sounds. Agreement by majority of the four 
algorithms afforded more than 7% performance improvement over the best individual algorithm. 

1 INTRODUCTION 

Millions of people worldwide suffer from respiratory 
pathologies, making it vitally important to develop 
simple, reliable diagnosis techniques. Traditional 
lung sound auscultation (stethoscopy) is non-
invasive and inexpensive, but obviously restricted to 
the human audible frequency range and inherently 
subjective. Because of these limitations, it must 
often be complemented by medical radiography 
means, which involve high levels of ionising 
radiation and are incomparably more expensive. 

In recent years, the progress in computing and 
signal processing technologies has paved the way to 
digital stethoscopy and automated analysis of lung 
sounds. Research efforts have been directed to the 
development of algorithms for automatic detection 
and classification of the signal artefacts normally 
regarded as lung condition symptoms, called 
adventitious lung sounds (ALS). 

Two main categories of ALS can be 
distinguished: wheezes (continuous or stationary 
sounds) and crackles (discontinuous or non-
stationary sounds) (Pasterkamp et al., 1997). 
Wheezes have relatively long duration (over 100ms) 
and pitch above 100 Hz. They can be monophonic or 
polyphonic, depending on the number of frequency 
components. 

Crackles, whose automatic detection is the object 

of this paper, can be described as explosive, short-
duration (<20ms) transient sounds, with a frequency 
range normally between 100 and 2000 Hz, 
occasionally even wider (Sovijärvi et al., 2000). 
Their waveform is characterised by a steep initial 
deflection and gradually more widely interspaced 
peaks. Based on time-domain parameters such as the 
two-cycle duration (2CD), initial deflection width 
(IDW) and largest deflection width (LDW), crackles 
are usually classified into two types: fine and coarse. 

The development of computer algorithms for 
crackle detection and classification systems is a 
complex task for various reasons: 

 The energy ratio of crackles to normal 
respiratory sound (‘signal-to-noise’ ratio) is 
low; the resulting distortion of crackle 
waveforms makes it difficult to work out 
temporal parameters like IDW, 2CD or LDW. 

 The magnitude, duration and frequency content 
of a crackle can vary widely. 

 Crackle waveforms may overlap. 

To tackle this task, numerous signal processing 
techniques have been proposed in the literature, 
including digital filters (Ono et al., 1989), 
spectrogram analysis (Kaisla et al., 1991), time-
domain analysis (Vannuccini et al., 1998), auto-
regressive models (Hadjileontiadis, 1996), wavelet 
and wavelet-packet transform methods (Kahya et al., 
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2001); (Hadjileontiadis, 2005); (Lu and Bahoura, 
2008), fuzzy filters (Mastorocostas et al., 2000), 
empirical mode decomposition (EMD) (Charleston-
Villalobos et al., 2007); (Hadjileontiadis, 2007), 
Hilbert transform (Li and Du, 2005) and fractal 
dimension (FD) filtering (Hadjileontiadis and 
Rekanos, 2003). 

This paper explores the combination of multiple 
algorithms to improve crackle detection. Following a 
review on performance evaluation metrics and 
methods (Section 2), including a description of the 
annotated respiratory sound data repository used for 
pilot testing, the algorithms and their individual 
performance are briefly presented in Section 3.   

Section 4 presents the rationale behind the 
proposed multi-algorithm technique, its most 
relevant details and the performance improvement 
observed in pilot tests. Future work ideas are 
discussed in the concluding section. 

2 DETECTION PERFORMANCE 
EVALUATION 

Sensitivity (SE) and precision (also referred to as 
positive predictive value - PPV) are the typical 
performance indices of automatic crackle detection 
algorithms (Fawcett, 2004). 

Sensitivity is the ratio between correctly detected 
(true positive – TP) crackles and the total number of 
crackles, including undetected (false negative – FN): 

 
(1)

Precision is the ratio between TP and the total 
number of detections, including incorrect (false 
positive – FP): 

 
(2)

These parameters are normally expressed as 
percentages. Since it is obviously desirable that both 
be as high as possible, their mean value provides a 
useful figure of merit. Various formulations can be 
used; the harmonic mean (F index), a combination of 
the arithmetic mean (A) and the geometric mean 
(G), will be adopted here (Sheng, 2009): 

 
(3)

Performance evaluation using the parameters just 
defined implies the availability of gold standards. 

The only way to obtain these is by human expert 
annotation of a statistically significant set of 
respiratory sound files. Given the inevitable 
subjectivity of the annotation process, the gold 
standard must result from the application of 
statistical agreement criteria to multiple independent 
annotations obtained for each file. So far, this work 
front has received insufficient attention from 
researchers. In the absence of publicly available 
databases of annotated respiratory sound files, a 
small repository for pilot testing was created using 
ten 10-second respiratory sound files, five of them 
from cystic fibrosis patients and the remainder from 
pneumonia patients. Three health professionals 
carried out independent annotations using a 
specifically developed application (Dinis et al., 
2012). A simple script then generated a reference 
annotation for each file, through agreement by 
majority among the respective set of annotations. 

Figure 1 illustrates the annotation process; 
crackle locations are specified as time intervals.  

 

 

 

Figure 1: Example of (agreeing) crackle annotations by 
three health professionals. 

Clearly, only by chance will endpoints coincide 
in different annotations, even when these agree. The 
script generating reference annotations avoids this 
difficulty by detecting the absolute peak value 
location of each crackle and using it, rather than the 
endpoints, to assess agreement. Figure 2 shows how 
this peak coincidence criterion reveals total 
agreement in the previous example. 
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Figure 2: Annotations of Figure 1 overlaid to highlight 
peak coincidence in spite of endpoint mismatch. 

3 AUTOMATIC CRACKLE 
DETECTION 

The work presented here started by an exploration of 
crackle detection techniques found in the literature, 
which led to the implementation of four algorithms, 
labelled A, B, C and D. The first (A) is an adaptation 
of the time-domain waveform identification 
approach of Vannuccini, Rossi et al. (1998). 
Algorithm B essentially replicates the FD filtering 
technique presented by Hadjileontiadis and Rekanos 
(2003). The other algorithms (C and D) are also FD-
based, but incorporate variations, mainly inspired by 
the work of Lu and Bahoura (2008). 

In these algorithms, as usual, the sensitivity is 
adjustable by means of numeric parameters akin to 
detection thresholds. A high sensitivity (SE) is 
obviously desirable, but as the FN count is 
decreased, the FP count is likely to increase, which 
may adversely affect precision (PPV). Therefore, the 
goal in adjusting these algorithm parameters is to 
optimise the compromise between SE and PPV, 
which implies maximising the performance index 
(F). 

The useful range of each algorithm adjustment 
parameter was established empirically by analysing, 
on a very wide range, SE, PPV and F curves 
obtained for sound files selected from the pilot 
repository. 

The performance of the four algorithms was then 
exhaustively tested on the pilot repository. Every file 
was annotated ten times by each algorithm, using a 
set of ten parameter values uniformly spaced within 
the corresponding useful range. This produced 400 
annotations in total (100 per algorithm). Taking 
algorithm A, for instance, Figure 3 shows the 
resulting SE, PPV and F curves for each file, along 
with the mean value curves across the repository, 
calculated as follows (NS =10 being the number of 
sound files in the repository): 
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Figure 3: SE, PPV and F curves for algorithm A. 

In this instance, the useful range of the parameter 
(T) was [1.5 3.75], and the average performance 
across the repository is shown to be maximised for 
T=3 (see Table 1). At this point, <SE>=87.5%, 
<PPV>=71.6% and <F>=77.4%. Note that the 
maximum performance of the algorithm for 
individual files may occur for different values of the 
parameter T, as shown in Table 2; obviously, an 
average of the performance indices across these 
points would result in higher values (respectively 
88.2%, 75.5% and 80.5% in this case) than at the 
optimal performance point.  

Table 3 presents a summary of the average 
performance indices obtained with the four 
algorithms at their respective optimal performance 
points. 
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Table 1: Optimal performance results for Algorithm A. 

File 
True 
count 

T 
Alg. 
count 

TP FP FN 
SE 
(%) 

PPV 
(%) 

F 
(%) 

1 51 3 64 51 13 0 100 79.7 88.7
2 81 3 109 74 35 8 90.2 67.9 77.5 
3 75 3 97 70 27 5 93.3 72.2 81.4
4 131 3 80 68 12 63 51.9 85 64.4
5 49 3 76 47 29 2 95.9 61.8 75.2 
6 46 3 42 37 5 9 80.4 88.1 84.1
7 38 3 56 32 24 6 84.2 57.1 68.1
8 47 3 58 39 19 8 83.0 67.2 74.3 
9 14 3 23 14 9 0 100 60.9 75.7

10 23 3 29 22 7 1 95.7 75.9 84.6

Table 2: Maximum performance points of Algorithm A. 

File 
True 
count 

T 
Alg. 
coun

t 
TP FP FN 

SE 
(%) 

PPV 
(%) 

F 
(%) 

1 51 2 50 47 3 4 92.2 94 93.1
2 81 2.75 108 76 32 8 90.5 70.4 79.2
3 75 3.25 99 72 27 3 96 72.7 82.8 
4 131 3.75 108 89 19 42 67.9 82.4 74.5
5 49 1.5 52 45 7 4 91.8 86.5 89.1
6 46 3 42 37 5 9 80.4 88.1 84.1 
7 38 3 56 32 24 6 84.2 57.1 68.1
8 47 3 58 39 19 8 83.0 67.2 74.3
9 14 3 23 14 9 0 100 60.9 75.7 

10 23 3 29 22 7 1 95.7 75.9 84.6

Table 3: Optimal performance <SE>, <PPV> and <F> 
indices. 

Algorithm  <SE> (%) <PPV> (%) <F> (%) 

A 87,5 71,6 77,4 

B 91,4 74,5 81 

C 91,5 72,1 79,4 

D 89,6 71,9 78,7 

4 MULTI-ALGORITHM 
AGREEMENT METHOD 

4.1 Rationale 

The new technique proposed here was inspired by 
the method of generating gold standards from health 
professional annotations, discussed in Section 2. The 
idea is to apply exactly the same procedure and 
statistical agreement criteria to combine annotations 
generated by the chosen computer algorithms. 

The idealised diagrams of Figures 4 and 5 
illustrate the concept of agreement by majority and 
the basic factors influencing its performance 
(sensitivity adjustment and algorithm similarity). 
The central square in the diagrams represents the 
gold standard annotation; the overlapping rectangles 
on the upper diagrams represent the annotations of 
three different algorithms. The corresponding multi-
algorithm agreement annotations are represented on 
the lower diagrams. The performance indices are

 worked out in Table 4 for each situation. 

 

Figure 4: Majority agreement (below) between three 
strongly correlated algorithms (above) at low (left) and 
high (right) sensitivity levels. 

 

Figure 5: Majority agreement (below) between three 
weakly correlated algorithms (above) at low (left) and 
high (right) sensitivity levels. 

Table 4: Performance indices for the agreement scenarios 
of Figures 4 and 5. 

SE PPV F SE PPV F
A 25,0% 50,0% 33,3% A 75,0% 37,5% 50,0%
B 25,0% 50,0% 33,3% B 100,0% 50,0% 66,7%
C 25,0% 50,0% 33,3% C 75,0% 37,5% 50,0%

majority
{A, B, C} 25,0% 50,0% 33,3%

majority
{A, B, C} 100,0% 50,0% 66,7%

SE PPV F SE PPV F
A' 25,0% 50,0% 33,3% A' 100,0% 50,0% 66,7%
B' 25,0% 50,0% 33,3% B' 100,0% 50,0% 66,7%
C' 25,0% 50,0% 33,3% C' 100,0% 50,0% 66,7%

majority
{A', B', C'} 12,5% 100,0% 22,2%

majority
{A', B', C'} 100% 100% 100,0%

low sensitivity settings high sensitivity settings

strong 
algorithm 
correlation

weak 
algorithm 
correlation

 

Note how the agreement performance benefits 
from high sensitivity settings; in the low sensitivity 
scenario, there is no improvement (there is even a 
deterioration in the example with weakly correlated 
algorithms). Dissimilar (weakly correlated) 
algorithms are also desirable, as their individual FP 
counts tend to cancel out, but this only produces 
benefits if the sensitivity levels are enough to ensure 
significant intersection between the TP counts. 

A’B’
C’

A 

B 

C 
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4.2 Procedures and Results 

The individual algorithm performance tests, 
described in Section 3, involved 400 annotations. 
Implementing and testing the proposed multi-
algorithm majority agreement method took the 
following additional steps: 
1. Obtaining four-algorithm agreement annotations 

for every possible parameter combination. With 
10 parameter values per algorithm, this yielded 
104 annotations for each sound file (105 in total). 
In spite of their high number, the computational 
cost of these annotations was relatively low, since 
they could be derived from the original 400 using 
a simple agreement script, with no need for 
additional detection algorithm runs. 

2. Calculating the SE, PPV and F indices for each 
of the 105 annotations and the corresponding 
averages across the repository: <SE>, <PPV> and 
<F>. To facilitate 3D-chart visualisation (see 
Figure 6), the parameters of algorithms A and B 
were represented on the xx axis and those of 
algorithms C and D on the yy axis, their sequence 
being arranged so that only one varied between 
consecutive array elements along axial directions. 
The average values <SE>, <PPV> and <F> were 
stored in three 100-by-100 arrays organised 
accordingly. 

3. Determining the point of optimal performance 
i.e. of peak average index <F> – see Table 5. 

 

Figure 6: <F> curve using multi-algorithm agreement. 

Table 5: Optimal multi-algorithm performance results. 
Parameter settings: 3.5(A), 0.024(B), 0.84(C) and 0.66(D). 

File 
True 
count 

Alg. 
count 

TP FP FN 
SE 
(%) 

PPV 
(%) 

F 
(%) 

1 51 58 51 7 0 100 88.0 93.6
2 81 83 71 12 10 87.7 85.5 86.6 
3 75 89 70 19 5 93.3 78.7 85.4
4 131 107 102 5 29 77.9 95.3 85.7
5 49 56 49 7 0 100 87.5 93.3 
6 46 43 39 4 7 84.8 90.7 87.6
7 38 51 34 17 4 89.5 66.7 76.4
8 47 54 42 12 5 89.4 77.8 83.2 
9 14 21 14 7 0 100 66.7 80

10 23 21 21 0 2 91.3 100 95.5
Average - - - - - 91.4 83.7 86.7 

The average indices at the optimal performance 
point (<SE>=91.4%, <PPV>=83.7% and 
<F>=86.7%, as shown in Table 5) should be 
compared to those of the four algorithms considered 
individually, shown in Table 3. While multi-
algorithm sensitivity is on a par with the best 
individual algorithm results, precision is about 11% 
higher, resulting in a 7% performance improvement 
over the best individual algorithm (B), as measured 
by <F> (86.7% vs. 81%). 

It is worth noting that this optimal multi-
algorithm performance point does not correspond to 
the optimal parameter settings of each individual 
algorithm, which are 3 for algorithm A, 0.024 for B, 
0.75 for C and 0.75 for D. The average performance 
with these settings would be only 84.5%. 

5 DISCUSSION AND FUTURE 
WORK 

Replicating the algorithms proposed in the literature 
poses serious difficulties, mainly due to lack of 
public access to sound file and reference annotation 
data used for validation tests. The creation of an 
open Web platform to stimulate the development 
and sharing of respiratory sound and annotation 
repositories, annotation tools, gold standards, 
agreement metrics and criteria, as well as detection 
algorithms, is essential to advance research in this 
area. 

While relative performances followed the 
expected trend, with FD-based algorithms 
outperforming the time-domain approach of 
algorithm A, the performance indices of the 
algorithms implemented were generally below the 
published claims for those in which they were based. 
The characteristics of the repository used here 
(longer files, more varied pathologies…) may 
partially explain this difference, but the main factor 
is probably the use of gold standards obtained 
through multi-annotation using a majority agreement 
criterion, which is likely to attenuate annotation bias. 

The multi-algorithm agreement technique 
proposed here clearly deserves further investigation, 
as the initial test results – a 7% improvement over 
the performance of the best individual algorithm 
involved – are extremely encouraging. The previous 
considerations on the absolute performance of the 
individual algorithms do not weaken this conclusion. 
Moreover, the algorithms were not chosen to suit 
this technique; in view of the considerations 
presented in Section 4.1, its potential is likely to be 
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underexplored, due to the similarity between 
algorithms B, C and D. 

The most immediate task in this project is to 
carry out more sophisticated performance evaluation 
tests, by using separate training and test sets and 
using a larger and more diverse annotated sound file 
repository, if possible. This is essential to reach 
statistically solid conclusions. 

It is also important to refine the detection 
algorithms already considered, explore others 
proposed in the literature (preferably very dissimilar, 
such as EMD) and investigate their individual and 
combined performance. 

Other future work threads include the 
contribution of each algorithm to multi-algorithm 
performance, alternative agreement criteria and 
computational efficiency analysis. 
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